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Abstract—In this paper, the problem of joint sensing and com-
munications is studied over terahertz (THz) vehicular networks.
In the studied model, a set of service provider vehicles provide
either communication service or sensing service to communication
target vehicles or sensing target vehicles, respectively. Therefore,
it is necessary to determine the service mode (i.e., providing
sensing or communication service) for each service provider
vehicle and the subset of target vehicles that each service provider
vehicle will serve. The problem is formulated as an optimization
problem aiming to maximize the sum of the data rates of all
communication target vehicles while satisfying the sensing service
requirements of all sensing target vehicles by determining the
service mode and the user association for each service provider
vehicle. To solve this problem, a graph neural network (GNN)
based algorithm with a heterogeneous graph representation is
proposed. The proposed algorithm enables the central controller
to extract each vehicle’s graph information related to its location,
connection, and communication interference. Using the extracted
graph information, the joint service mode selection and user
association strategy will be determined. Simulation results show
that the proposed GNN-based scheme can achieve 94% of the sum
rate produced by the optimal solution, and yield up to 3.95%
and 36.16% improvements in sum rate, respectively, compared
to a homogeneous GNN-based algorithm and the conventional
optimization algorithm without using GNNs.

I. INTRODUCTION

Integration of wireless signal communication and sensing
functionalities on smart vehicles has been regarded as a promis-
ing paradigm to improve the safety and efficiency of vehicular
networks. The joint design of sensing and communication func-
tionalities can mutually enhance each other by leveraging the
unified hardware, spectrum resource, and protocol design [1].
However, the scarce bandwidth of sub-6 GHz bands limits the
ability of wireless networks to satisfy the stringent quality-of-
service (QoS) requirements of emerging vehicular applications
in terms of delivering high data rate and high-resolution sensing
[2]. A promising solution is to use the high frequency terahertz
(THz) bands for abundant bandwidth. However, using THz for
joint sensing and communication in vehicular networks faces
several challenges, such as severe path loss and attenuation,
extremely directional nature of vehicular links, and stringent
service assurance requirements.
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the Open Research Project of the State Key Laboratory of Media Convergence and
Communication, Communication University of China (No. SKLMCC2021KF009).

Recently, several works, such as in [3]–[6], have studied the
problem of resource management for joint sensing and com-
munication systems. However, the proposed methods in [3]–
[5] might introduce mutual interference between sensing and
communication systems due to inconsistent operating modes of
different vehicles. To address this challenge, in [6], the authors
analyzed the interference between sensing and communication
services so as to optimize the time slot allocation for providing
sensing and communication services to each vehicle. However,
the works in [3]–[6] did not consider the use of THz bands to
provide high-quality communication and high-resolution sens-
ing services. Using THz bands can improve data transmission
rate and sensing resolution. However, the THz bands have
higher path loss and attenuation. Thus, it is necessary to design
novel sensing and communication for vehicular networks that
can overcome such limitations. The authors in [7]–[9] studied
the use of THz bands for providing communication service in
vehicle networks. However, none of the existing works [7]–[9]
considered the use of THz bands to provide sensing service.

The main contribution of this work is to design a novel
framework that enables service provider vehicles to provide
joint sensing and communication services to target vehicles
using THz bands. In particular, we consider a system model that
consists of a set of service provider vehicles that provide either
communication service or sensing service to communication
target vehicles or sensing target vehicles, respectively. A central
controller determines the service mode (i.e., providing sensing
or communication service) for each service provider vehicle and
the subset of target vehicles that each service provider vehicle
will serve. We formulate an optimization problem aiming to
maximize the sum of the data rates of all communication
target vehicles while satisfying the sensing service requirements
of sensing target vehicles by jointly determining the service
mode (communication or sensing) and the user association for
each service provider vehicle. To solve this problem, a GNN-
based algorithm with a heterogeneous graph representation is
proposed. The proposed algorithm enables the central controller
to extract each vehicle’s graph information that represents the
information related to vehicle location, vehicle connection,
and vehicle communication interference. Using the extracted
graph information, the joint service mode selection and user
association strategy will be determined. Simulation results show
that the proposed GNN-based scheme can improve the sum
rate by up to 3.95% and 36.16%, respectively, compared to
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Fig. 1: Illustration of the sensing and communication links.

a homogeneous GNN-based algorithm and the conventional
optimization algorithm without using GNNs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a vehicular network in which a set of vehicles
moving in a region, as shown in Fig. 1. The vehicles are
divided into three categories: service provider vehicles K,
communication target vehicles M, and sensing target vehicles
N . Each service provider vehicle is equipped with both sensing
and communication devices. Therefore, each service provider
vehicle can operate in either the communication mode or the
sensing mode. Operating in the communication mode, a service
provider vehicle can communicate with the target vehicles
through vehicle-to-vehicle (V2V) links. In contrast, a service
provider vehicle that operates in the sensing mode can sense the
location, speed and direction of the target vehicles for further
analysis (e.g. generate High-definition map (HD Map)). In our
model, the locations of the vehicles and the number of vehicles
vary over time with unknown distributions. We assume that all
service provider vehicles use the same THz band to provide
communication or sensing services.

1) THz Propagation and Antenna Model: We assume that
directional three-dimensional (3D) beams are utilized at the
vehicles to compensate for the severe path loss in the THz
bands. The antenna gains of the main lobe and the side lobes
of the beam from vehicle k to vehicle m is expressed as [9]

GM
km =

4π

(ε+ 1)Ωθk,φk

, (1)

GS
km =

4πε

(ε+ 1) (4π − Ωθk,φk
)
, (2)

where Ωθk,φk
= 4arcsin

(
tan

(
θk
2

)
tan

(
φk

2

))
with θk and φk

being the horizontal and vertical beamwidths of the antenna for
vehicle k, and ε is the ratio of the power concentrated along
the side lobes to the power concentrated along the main lobe.

The signal propagation at the THz bands is determined by
spreading loss and molecular absorption loss. The absorption
loss [7] is defined as LA

km = 1
τ(dkm) , with dkm being the dis-

tance between vehicle k and vehicle m. τ(dkm) ≈ e−ϕ(f)dkm

is the transmittance of the medium following the Beer-Lambert

law, with ϕ(f) being the overall absorption coefficient of the
medium, and f is the operating frequency.

Assuming free space propagation, the spreading loss is given
by LF

km = (4πfdkm)2

c2 , where c is the speed of light.
Therefore, the received power at vehicle m from vehicle k is

Skm =
PkG

T
kmGR

mk

LA
kmLF

km

, where Pk is the transmit power of vehicle
k. GT

km and GR
mk are the effective antenna gains at vehicle k

and vehicle m, respectively, corresponding to the link between
vehicle k and vehicle m with T ∈ {M,S} and R ∈ {M,S},
where M is for the main lobe and S is for the side lobes.

2) Communication Mode: The interference to the commu-
nication link between vehicle k and vehicle m is

IC
km(α,β) =

∑
i∈K\{k}

∑
m′∈M

αim′PiG
T
imGR

mi

LA
imLF

im

,

+
∑

i∈K\{k}

∑
n′∈N

βin′PiG
T
imGR

mi

LA
imLF

im

,

(3)

where α = [α1, · · · ,αM ] with αm = [α1m, · · · , αKm], and
β = [β1, · · · ,βN ] with βn = [β1n, · · · , βKn]. Here, α and β
are the mode selection and user association indicator matrices.
αim = 1 represents that vehicle i is selected to serve vehicle
m in the communication mode; otherwise, αim = 0. Similarly,
βin = 1 represents that vehicle i is selected to detect vehicle
n in the sensing mode; otherwise, βin = 0. In (3), the first
term represents the interference from other vehicles that operate
in the communication mode, while the second term is the
interference from other vehicles that operate in the sensing
mode.

The signal-to-interference-plus-noise ratio (SINR) between
vehicle k and vehicle m is

γC
km(α,β) =

αkmSkm

IC
km(α,β) +Nkm

, (4)

where Nkm = N0 +
∑

i∈K\{k} PiG
T
imGR

mi(1 − τ(dim))/LF
im

with N0 being the Johnson-Nyquist noise power. Nkm is caused
by thermal agitation of electrons and molecular absorption.

Therefore, the data rate of vehicle k transmitting data to
vehicle m is

RC
km(α,β) = B log2

(
1 + γC

km(α,β)
)
, (5)

where B denotes the spectrum bandwidth.
3) Sensing Mode: The interference to vehicle k operating in

the sensing mode can be expressed as

IS
kn(α,β) =

∑
i∈K\{k}

∑
m′∈M

αim′PiG
T
ikG

R
ki

LA
ikL

F
ik

+
∑

i∈K\{k}

∑
n′∈N

βin′PiG
T
ikG

R
ki

LA
ikL

F
ik

+
∑

i∈K\{k}

∑
n′∈N

βin′PiG
T
inG

R
nkσi,nc

2

(4π)3f2d2ind
2
knL

A
inL

A
kn

,

(6)

where σi,n is the target’s radar cross section (RCS) between
vehicle i and vehicle n. In (6), the first term represents the inter-
ference from other vehicles that operate in the communication
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mode. The second term represents the interference propagating
in the direct path i → k from other vehicles that operate in
the sensing mode. The third term represents the interference
propagating in the scattering path i → n → k from other
vehicles that operate in the sensing mode.

From (3) and (6), we can see that a vehicle that operates in
the sensing mode is interfered by other vehicles that operate
in the sensing mode from scattering paths, which will not
interfere the vehicles that operate in communication mode.
This is because the impacts of scattered sensing signals on a
communication link is much weaker than that on the sensing
link [6].

Given (6), the SINR of vehicle k that operates in the sensing
mode when sensing vehicle n can be expressed as

γS
kn(α,β) =

βknPkG
T
knG

R
nk(L

S
kn)

−1(LA
kn)

−1

IS
kn(α,β) +Nkn

, (7)

where LS
kn =

(4π)3f2d4
kn

σk,nc2
is the spreading loss of the path k →

n → k.

B. Problem Formulation

To maximize the data rates of all communication target
vehicles while satisfying the sensing service requirement, an
optimization problem is formulated as:

max
α,β

∑
k∈K

∑
m∈M

RC
km(α,β) (8)

s.t.
∑
k∈K

αkm = 1, αkm ∈ {0, 1},∀m ∈ M, (8a)∑
k∈K

βkn = 1, βkn ∈ {0, 1}, ∀n ∈ N , (8b)∑
m∈M

αkm ≥ 0,
∑
n∈N

βkn ≥ 0,∀k ∈ K, (8c)

αkmβkn = 0,∀k ∈ K,∀m ∈ M,∀n ∈ N , (8d)∑
k∈K

γS
kn(α,β) ≥ γmin,∀n ∈ N , (8e)

where γmin is the minimum SINR requirement of the sensing
service. In (8), constraint (8a) ensures that a communication
target vehicle can only be served by one service provider
vehicle. Constraint (8b) ensures that a sensing target vehicle
can only be detected by one service provider vehicle. Constraint
(8c) indicates that a service provider vehicle can serve multi-
ple sensing or communication target vehicles simultaneously.
Constraint (8d) indicates that a service provider vehicle can
operate in either the communication mode or the sensing mode.
Constraint (8e) is the minimum SINR requirement of a sensing
service.

Problem (8) is hard to solve due to the following rea-
sons. First, the objective function is non-convex and hence
the complexity of using traditional optimization algorithms is
extremely high. Meanwhile, traditional optimization methods
do not consider the dynamic vehicle topology such as the arrival
of new vehicles. Therefore, when the vehicle topology changes,

the central controller must execute the optimization algorithm
again to optimize mode selection and user association schemes.
Machine learning (ML) has been developed to learn the re-
lationship between neighboring nodes rather than obtaining a
separate feature vector for each vehicle [10], [11]. To solve this
problem, we propose to use graph neural networks to learn a
function to generate the feature vector for each vehicle. It can
obtain the feature vector of the new vehicle quickly without
retraining. Then the new mode selection and user association
strategy can be determined based on the extracted feature
vector.

III. MODE SELECTION AND USER ASSOCIATION BASED ON
GRAPH NEURAL NETWORK

In this section, we introduce a heterogeneous graph neu-
ral network-based algorithm to solve problem (8). First, we
transform the joint mode selection and user association prob-
lem (8) into a classification problem, where service provider
vehicles and target vehicles are considered as samples and
classes, respectively. Since each service provider vehicle can
simultaneously provide service for multiple target vehicles, the
corresponding problem naturally becomes a multi-label classi-
fication problem, where each sample belongs to a set of classes.
We study the use of a heterogeneous GNN-based algorithm to
solve this classification problem. Next, we introduce the use
of a heterogeneous graph to represent our considered system
model, and then introduce the components of our designed
algorithm. We will also explain the training method for the
designed algorithm.

A. Graph Representation for Vehicular Networks
We first introduce the use of a heterogeneous graph to

represent the considered network as a graphical model. A
heterogeneous graph G = (V, E ,O,R) consists of a node set
V , an edge set E , a node type set O, and a set R that consists
of different edge types. We model each vehicle as a node in
the graph, and each link between two vehicles as an edge. The
nodes can be divide into three categories, O = {O1, O2, O3},
which correspond to the three types of vehicles. Meanwhile, we
consider three types of edges R = {RSC, RSS, RI}, where RSC

represents the communication link between service provider
vehicle and communication target vehicle, RSS represents the
sensing link between service provider vehicle and sensing target
vehicle, and RI represents the interference link between two
service provider vehicles. Specifically, the feature of each ve-
hicle is fv = [ev1, . . . , evM ′ ] ,V ∈ K∪M∪N ,M′ = M∪N ,
where fv ∈ RL×1, and L = (|M|+ |N |) is the total number
of target vehicles, and evm′ is the number of service provider
vehicles within the line-of-sight link between vehicle v and
vehicle m′. It evaluates the potential interference between the
current vehicle and each target vehicle. The weight of the edge
between vehicle v and vehicle v′ is gvv′ =

(
LA
vv′LF

vv′

)−1
for

all v′ ∈ V \ {v} with gvv′ ∈ R1×1.

B. Components of the GNN-based Algorithm
Next, we will introduce the components of the proposed

GNN-based solution for problem (8). Then, we will explain its
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Fig. 2: Structure of the GNN model.

training process. The proposed GNN-based algorithm consists
of four components: a) input layer, b) hidden layer I, c) hidden
layer II, d) hidden layer III-V, and e) output layer, which are
specified as follows:

• Agent: Our agent is a central controller that can obtain
the geographic location of all vehicles. In each time slot,
the central controller implements the designed GNN-based
algorithm to determine the service mode and user asso-
ciation for each service provider vehicle. Therefore, the
controller actually executes the neural network |K| times
so as to determine the service mode and user association
for |K| vehicles.

• Input Layer: To determine the service mode of vehicle k
and its serviced vehicles, the input of the designed scheme
is based on the features of the vehicles that can connect
to vehicle k. However, since the number of vehicles
that can connect to different service provider vehicles
are different, the size of input matrix may be different.
To enable a neural network to extract graph information
for different service provider vehicles that may connect
to different number of service target vehicles, we use
uniform sampling to calculate the average feature of each
connected vehicle so as to fix the size of the input. In
particular, we assume that the number of vehicles that the
proposed algorithm needs to sample for a vehicle k is si in
sampling iteration i ∈ {1, · · · , I}. Meanwhile, we assume
that the set of sampled vehicles that can directly connect
to vehicle k as the set of first hop vehicles, which is
represented by L1 (k) with |L1(k)| = s1 being the number
of vehicles in set L1 (k). The set of sampled vehicles that
can connect to vehicle k via the first hop vehicles as the
set of second hop vehicles and it is represented by L2 (k),
where L2 (k) = {L1 (v′) |v′ ∈ L1 (k)}. The number of
vehicles in set L2 (k) is s2. For example, in Fig. 3, the
total number of sampled vehicles is 5 (set s1 = 2 and
s2 = 3), L1 (k) = {v1, v2}, and L2 (k) = {v3, v4, v5}. We
assume that the subset of first hop vehicles with the type
R edge is L1

R (k). For example, in Fig. 3, L1
RI

(k) = {v1}
and L1

RSS
(k) = {v2}. Given these definitions, we next

introduce the input of the proposed GNN-based method.
From Fig. 2, we see that the input is connected to four

fully connected layers and each fully connected layer has
different inputs. The inputs to the four fully connected
layers are: a) h0

k = fk ∈ RL×1, b) h1
RSC

∈ R(L+1)×1, c)
h1
RSS

∈ R(L+1)×1, and d) h1
RI

∈ R(L+1)×1, where

h1
RSC

=
1

|L1
RSC

(k) |
∑

v′∈L1
RSC

(k)

h0
kv′ , (9)

h1
RSS

=
1

|L1
RSS

(k) |
∑

v′∈L1
RSS

(k)

h0
kv′ , (10)

h1
RI

=
1

|L1
RI

(k) |
∑

v′∈L1
RI

(k)

h0
kv′ , (11)

with h0
kv′ =

[
h0
v′∥gkv′

]
, h0

kv′ ∈ R(L+1)×1, ·∥· being the
vector concatenation, |L1

RSC
(k) |, |L1

RSS
(k) |, and |L1

RI
(k) |

being the number of vehicles in set L1
RSC

(k), L1
RSS

(k), and
L1
RI

(k), respectively.
• Hidden Layer I: This layer consists of four fully-connected

layers and it is used to extract the graph information of
first hop vehicles of each vehicle k. The output of this
layer is

h1
k = σ

([
w1h

0
k∥w2h

1
RSC

∥w3h
1
RSS

∥w4h
1
RI

])
, (12)

where σ (·) is the rectified linear unit function (ReLU),
w1 ∈ R(λ0/4)×L, w2 ∈ R(λ0/4)×(L+1), w3 ∈
R(λ0/4)×(L+1) and w4 ∈ R(λ0/4)×(L+1) are the weight
parameters of the four fully connected layers. λ0 is the
dimension of graph information vector, w1 is the weight
matrix for the current vehicle, and w2, w3 and w4 are
the weight matrices for the vehicles with the type RSC,
RSS, and RI edge, respectively. To support heterogeneity
of nodes and edges, we set separate neighbourhood weight
matrices w2, w3 and w4 for each type of vehicles. From
(9) to (12), we extract only the graph information of
vehicle v. However, we need the graph information of all
sampled first hop vehicles to optimize mode selection and
vehicle connection. Therefore, we need to execute (9) to
(12) for each sampled vehicle (i.e., for s1 times). After
that, we can obtain h1

v′ ∈ Rλ0×1, ∀v′ ∈ L1 (k) for each
sampled vehicle v′.
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Fig. 3: An example of vehicle sampling.
• Hidden Layer II: This layer consists of four fully-

connected layers and it is used to extract the graph
information of second hop vehicles of vehicle k. From Fig.
2, we can see that the input to each fully connected layer in
hidden layer II is different. The inputs to the four fully con-
nected layers are: a) h1

k ∈ Rλ0×1, b) h2
RSC

∈ R(λ0+1)×1,
c) h2

RSS
∈ R(λ0+1)×1, and d) h2

RI
∈ R(λ0+1)×1, where

h2
RSC

=
1

|L1
RSC

(k) |
∑

v′∈L1
RSC

(k)

h1
kv′ , (13)

h2
RSS

=
1

|L1
RSS

(k) |
∑

v′∈L1
RSS

(k)

h1
kv′ , (14)

h2
RI

=
1

|L1
RI

(k) |
∑

v′∈L1
RI

(k)

h1
kv′ , (15)

with h1
kv′ =

[
h1
v′∥gkv′

]
and h1

kv′ ∈ R(λ0+1)×1. The
output of this layer is

h2
k = σ

([
w5h

1
k∥w6h

2
RSC

∥w7h
2
RSS

∥w8h
2
RI

])
, (16)

where h2
k ∈ Rλ0×1, w5 ∈ R(λ0/4)×λ0 , w6 ∈

R(λ0/4)×(λ0+1), w7 ∈ R(λ0/4)×(λ0+1), and w8 ∈
R(λ0/4)×(λ0+1) are the weight parameters of the four fully
connected layers, respectively. w5 is weight matrix for
vehicle k and the others are the weight matrices for three
types of second hop vehicles, i.e., w6 is the weight matrix
for the vehicles with a type RSC edge, w7 is the weight
matrix for the vehicles with a type RSS edge, and w8 is
the weight matrix for the vehicles with a type RI edge.
Compared to the aggregate function in [12] that considers
only node features, we consider both node features and
edge weights in both hidden layers I and II. Here, the
output h2

k can be considered as the graph information
of vehicle k, since it includes the graph information of
sampled first hop and second hop vehicles.

• Hidden Layers III-V: Three fully-connected layers are
used to find the relationship between the graph information
vector h2

k and the probability distribution of vehicle k ser-
vicing each target vehicle in the corresponding operating
mode.

• Output: The output of the network, yk =
[
y1k, · · · , y

L+1
k

]
,

is the probability distribution of vehicle k servicing L+1
target vehicles in the corresponding operating mode. Here,
L+1 is the total number of classification classes, including
the case that vehicle k is not connected to any target
vehicles.

Algorithm 1 GNN-based Method for the Joint Mode Selection
and User Association Problem
1: Input: Vehicle features {fv , ∀v ∈ V}, edge weights {gvv′ , ∀v′ ∈ V \
{v}}, and sampling size s1 and s2.

2: Initialize: w, p, and b are initially generated randomly via a uniform
distribution;

3: h0
v ← fv , h0

vv′ ←
[
h0
v′∥gvv′

]
, ∀v ∈ V, ∀v′ ∈ V \ {v};

4: for k = 1→ K do
5: Sample the first hop vehicles L1 (k) and second hop vehicles L2 (k)

for vehicle k;
6: Extract the graph information h1

k of vehicle k based on (9)-(12);
7: for v′ ∈ L1 (k) do
8: Extract the graph information h1

v′ of vehicle v′ based on (9)-(12);
9: end for

10: h1
kv′ ← [h1

v′∥gkv′ ], ∀v′ ∈ L1 (k);
11: Extract the graph information vector h2

k for vehicle k based on (13)-
(16);

12: Use h2
k to predict the probability distribution yk of vehicle k;

13: Calculate loss J (w,p, b) based on (17) and update the weight matri-
ces;

14: end for
15: Obtain the probability distribution yk for each vehicle k ∈ K;
16: Determine the mode selection and user association strategy by selecting

k∗1 = argmax
k∈K

ymk for all m ∈ M, and k∗2 = argmax
k∈K

y
|M|+n
k for

all n ∈ N . Then, set αk∗
1m

= 1 and βk∗
2n

= 1;
17: Reassign the vehicle k to sensing target vehicle n if the sensing service

requirement is unsatisfied.
18: Output: The mode selection and user association indicator matrices, α

and β.

C. Training of the Proposed GNN-based Algorithm

Given the components defined in the previous section, next,
we introduce the entire procedure of training the proposed
GNN based method. We use binary cross entropy (BCE) as
the loss function to minimize the difference between the the
predicted multi-label classification result and the actual multi-
label classification result, which is given by

J (w,p, b) =

L+1∑
l=1

−zlk log δ
(
ylk
)
−
(
1− zlk

)
log

(
1− δ

(
ylk
))

,

(17)
where δ (·) is the sigmoid function; zlk is the label of vehicle
k for class l, which is generated by exhaustive searching; w is
the weight matrix of hidden layer I; and p and b are the weight
matrix and bias of hidden layer III-V, respectively. To minimize
(17), we optimize w, p, and b using the back-propagation
algorithm with the stochastic gradient descent (SGD) approach
[13]. The entire training process of the proposed algorithm is
summarized in Algorithm 1.

IV. SIMULATION RESULTS AND ANALYSIS

In our simulations, we consider a specific region of 100 m
× 100 m. The detailed parameters are the same as Table II in
[9]. The size of hidden layer III-V is set as {32, 64, 64}, the
number of training iterations is 5,000, and σ is 1. The GPS
dataset used to generate vehicle topologies is obtained from
Shanghai Traffic Department [14]. For comparison purposes,
we consider three baselines: baseline a) is an exhaustive search
algorithm, which can be considered as the optimal solution for
problem (8), baseline b) is based on homogeneous graph. For
comparison fairness, baseline b) uses the same neural network
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Fig. 4: The sum rate as the vehicle topology varies (λ0 = 64,
s1 = s2 = 10, |K| = 5, |M| = 2, and |N | = 2).

architecture as the proposed method, but a graph information
extraction method from [15]. Baseline c) directly uses the
geographic location information to optimize mode selection and
user association scheme, without using GNNs to extract the
graph information vectors.

Fig. 4 shows how the sum of data rates of all communica-
tion target vehicles change as the vehicle topology varies. In
this figure, the location of service provider vehicles varies in
different vehicle topologies while the location of service target
vehicles is fixed. From Fig. 4, we see that the proposed scheme
improves the sum rate by up to 3.95% and 36.16% compared to
baselines b) and c). This is because the proposed scheme jointly
considers the geographical location information and topological
information and, hence, it can optimize user association and
resource allocation to reduce the interlink interference. In Fig.
4, we can also observe that, there is only a slight performance
gap between the proposed scheme and baseline a). This is
because the proposed scheme enables the trained GNN to
quickly adapt to changing vehicle topologies.

Fig. 5 shows how the sum of data rates of all communication
target vehicles change as the number of communication and
sensing target vehicles varies. From this figure, we can see
that, as the number of communication and sensing target
vehicles increase, the sum of data rates of all communication
target vehicles increases since more communication links are
established. Fig.5 also shows that, compared to baselines b)
and c), the proposed scheme can achieve up to 2.78% and
34.85% gains in terms of sum rate. The is due to the fact
that the proposed scheme considers the vehicle type impact
on mode selection and user association. Fig.5 also shows that
the gap between the proposed scheme and baseline a) is less
than 6%. This indicates that the proposed GNN-based scheme
can effectively decide the mode selection and user association
strategy for service provider vehicles.

V. CONCLUSION

In this paper, we have developed a novel framework that
uses THz for joint sensing and communications in vehicular
networks. Our goal is to maximize the sum of data rates of
all communication target vehicles while satisfying the sensing
service requirements of all sensing target vehicles. To this
end, we formulated an optimization problem that jointly con-
siders service mode selection, user association, THz channel
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Fig. 5: The sum rate as the number of target vehicles varies
(λ0 = 64, |K| = 5, |M| and |N | vary from 2 to 6).

particularities, and fast-changing vehicle topologies. To solve
this problem, we developed a novel heterogeneous GNN-based
scheme. The proposed scheme enables the trained GNN to
quickly adapt to the fast-changing vehicle topologies with vari-
ous vehicle types. Simulation results verified that the proposed
method can achieve significant gains.
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