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Abstract—With the rapid development of the cognitive ra-
dio networks, the number of terminal devices has exploded.
Massive devices generate a large amount of privacy-sensitive
data, typically WiFi signals. This paper proposes a method for
Radio frequency (RF) fingerprinting identification of WiFi signals
based on federated learning, which trains a cooperative model
to complete RF fingerprinting identification without transmitting
privacy-sensitive data. The experimental findings on a real-world
dataset validate that the strategy described in this study increases
the RF fingerprinting identification accuracy in a variety of
size circumstances, and ensures that data privacy will not be
compromised.

Index Terms—Privacy Security, RF Fingerprint Identification,
Federated Learning, Cognitive Radio

I. INTRODUCTION

With the rapid development of cognitive radio driven by

the artificial intelligence (AI) technology, a large number of

terminal devices have been deployed. The massive devices

generate large amounts of data, most of which are transmitted

over wireless networks. The wireless network’s communica-

tion environment is open, which means that any user on the

network can receive information sent over the air. This trait

constantly exposes wireless network information transfer to

prospective attacks. As more investigation are being made, it

has been shown that the RF fingerprinting technology may

greatly enhance wireless network security.
Deep learning has recently been applied in the field of signal

detection as motivated by its exceptional performance in pic-

ture classification, signal recognition, and other domains[1–5].

The deep learning-based RF fingerprint recognition approach

has attracted a lot of interest. The RF fingerprint identification

method based on deep learning has also received extensive

attention. Although deep learning has shown its powerful

capabilities, it still faces a very critical problem: a large-scale

high-quality dataset is a necessary condition for training a

high-performance deep model. An important issue is that most

of the data generated by devices is privacy-sensitive, and the

large-scale transmission of data undoubtedly increases the risk

of privacy leakage.
Faced with this challenge, Google proposed Federated

Learning as a solution. Federated learning is a decentralized

computing paradigm that allows neural networks to be collabo-

ratively trained on local devices. Federated learning may offer

strong anonymity and privacy guarantees to the neural network

training process when used in conjunction with techniques

such as differential privacy and secure aggregation. Federated

learning enables each participant to jointly train data among

multiple nodes without directly exchanging data, so as to

achieve the goal of establishing a shared and globally effective

artificial intelligence learning model.

In order to solve the privacy problem in RF signal fin-

gerprint identification, this paper proposes a RF fingerprint

identification method based on Federated learning, namely

FedRFID. The rest of this paper is organized as follows. In

Section II, we describe previous work in RF fingerprinting and

federated learning. The simulation results are presented in Sec-

tion IV, after our federated learning-based RF fingerprinting

method presented in Section III. Finally, the paper concludes

in Section V.

II. RELATED WORK

Deep learning has made excellent achievements in various

fields, and it is no exception in the field of RF fingerprint

identification. With deep learning, can directly use the trans-

mitted signal of RF equipment to train the neural network

model for equipment identification and classification. Refer-

ence [6] developed a hybrid adaptive classification technique

that adapts to changing environmental conditions by combin-

ing four modulation features from constellation. The feature

weights are determined during the training phase for various

channel conditions. The classification error rate is as low

as 4.8% in the LOS scenario, and 11.05% when a different

receiver is used for classification 18 months after training.

The genuine device authentication success rate (ASR) and

malicious device detection success rate (RSR) are both 90%

when the SNR is 15dB. Reference [7] proposed a novel multi-

channel convolutional neural network (MCCNN) for LTE

terminal identification. The experimental findings demonstrate

that when the SNR is 30dB, the classification accuracy for the

line-of-sight (LOS) case may reaches 98.96%. Reference [8]

used convolutional neural network (CNN) to classify wireless

signals to identify devices. The identification accuracy on 7

Zigbbe devices is 92.29%, and the channel robustness is high.

The multi-stage training deep neural network model proposed

in [9] can achieve 100% identification accuracy of 12 devices.978-1-6654-3540-6/22 © 2022 IEEE
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Although deep learning can achieve high identification

accuracy of signal RF fingerprints, when privacy constraints

lead to the lack of original training data, using deep learning

becomes a challenging problem. Federated learning provides

a solution where data owners can collaboratively train a

machine learning model without exposing their private data.

Federated learning has been widely used in many fields[10–

13]. In the field of signal recognition, the technique proposed

in [14] uses a distributed recognition architecture to provide

federated learning-based global optimization of numerous sub-

networks. Simulation results show that the method achieves

an excellent recognition performance in the case of small

datasets. A method of differential privacy-based federated

learning for signal modulation recognition was proposed in

[15], and the results showed that it achieves recognition rates

comparable to centralized neural networks while satisfying

privacy protection and data security requirements.Reference

[16] studied the unique identification of RF received signal

strength fingerprints based on feature extraction and spectral

clustering methods. The proposed algorithm can perfectly

detect RF fingerprints with shorter running time.

As mentioned above, in the field of RF fingerprinting, both

traditional RF fingerprinting methods and deep learning-based

RF fingerprinting methods have made great progress. However,

both of them lack in the consideration of data privacy. This

paper proposes a WiFi signal RF fingerprinting method based

on federated learning, which leverages the privacy-preserving

benefit of federated learning to develope an effective deep

learning model while protecting the privacy of WiFi signals.

III. PROPOSED METHODS

A. Federated Learning

The federated learning training process is shown in Fig.

1. In the federated learning framework, there is a trusted

central server, which can be a third-party government agency

or some other organization with integrity. Clients participating

in federated learning do not exchange local user data with

other clients, nor can they expose user data to the central

server. Before each round of FL training starts, the server will

first filter out a valid subset from all devices as participants in

this round of federated training.

After the participants are selected, all devices in the partici-

pant subset will receive the global model from the server, and

then the relevant client will train the model on its local node.

After obtaining the intermediate parameters of the model, it

sends the parameters to the central server. The central server

cannot reversely deduce the data of the client through the

received parameters, thereby ensuring the privacy of the data.

With the received parameters, the central server conducts

security aggregation, and then returns the results after security

aggregation to each client. After receiving the updated model

returned by the central server, each client performs training to

update the model parameters again.

Federated learning aims to solve the problem of interactive

training of global functions between multiple devices and a

Fig. 1. The federated training process

central server. Specifically, the optimization problems solved

by federated learning are as follows:

min
ω∈Rd

⎧⎨
⎩f(ω) :=

1

m

m∑
j=1

fj(ω)

⎫⎬
⎭ (1)

where m represents the number of devices and w represents

the model parameters, fj(·) is the local loss function of the

jth device with the following expression:

fj(ω) =
1

n

n∑
j=1

fj,i(ω, (xi, yi)) (2)

where n is the local sample size of each device, and xi and

yi are the local training data and corresponding labels. For

the problem of RF fingerprint identification of WiFi signal,

the softmax cross entropy loss function is used in the training

process. For the i− th sample, the loss function is:

fi(ω; yi, ŷi) = −
C∑

c=1

yci log p
c
i

pci =
eŷi

c

∑C
l=1 e

ŷi
l

(3)

where C is the number of prediction categories, ŷci is the true

distribution of the input data, pci is the probability that the

sample belongs to category c, and ŷi
c represents the predicted

value of category c. The predicted value ŷi
c is obtained from

the training sample xi by the local neural network model,

which is related to the input value of the model and the

model parameters. The loss function first converts the output

of the convolution network into a probability form through an

exponential transformation, and then measures the difference

between the two distributions through cross entropy.

The steps of federated aggregation are as follows:

• Step 1 (SEVER):

1. Initialize the global model and model weight ω.
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Fig. 2. The residual unit structure used in this paper

2. Perform k rounds of training until the model converges.

In each round of training, the server first selects a set of

devices Sk. T is the total number of devices. For each

device i in the device set Sk, use the weight W i
k of the kth

round to perform step 2 to update the model parameters

W i
k+1 of the next round. Finally, the federated average

algorithm Wk+1 =
∑T

i=1
ni

n ∗W i
k+1is used to obtain the

new global model weight Wk+1.

• Step 2 (CLIENT):

1. Perform E rounds of epoch training, where E is the

given number of training times for each user equipment in

each round. The batch of each round is B, which is also

the local minibatch size on each device. After each round

of training, an update will be uploaded to the server.

Algorithm 1 summaries the training process in Federated

learning.

Algorithm 1 Federated Training Process

1: Initialize global model W ;

2: for each round k = 1, 2, ... do
3: Sk ← Select a subset of T devices;

4: Send global model W k−1 to each device in St;

5: for each device i ∈ Sk paralled do
6: Local training neural network;

7: Minimize cross entropy loss:

8: min
ω

fi(ω; yi, ŷi) = −∑C
c=1 y

c
i log p

c
i ;

9: W k
i ← LocalUpdate(i,W k−1);

10: end for
11: Modle aggregation;

12: end for

B. Local Model

Convolutional neural network has been widely used in

various fields. Convolutional neural network mainly uses the

convolution layer and pooling layer as its core layer, which

has a stronger ability in feature extraction and generalization,

as well as achieving a better identification and prediction

performance. In theory, as the network depth increases, the

learning ability of the network should also increase, and the

training results will be improved. However, the actual result is

not so. The simple stacking of layers not only does not improve

the model training ability, but also caused model degradation,

causes the gradient to explode or disappear.

Resnet solves this problem well. Resnet not only greatly

improves the number of model layers, but also improves the

accuracy of the model. It mainly improves the accuracy of

the model by adding an identity mapping with equal input

and output behind a shallow network with high accuracy. At

the same time, it can transform the model into a shallow

network again. If the identity mapping function H(x) = x
can be completely fitted, the degradation caused by network

superposition will be mitigate. If the network can be designed

as H(x) = F (x) + X , and the identity mapping is a part

of the network, the problem needs to be transformed from

obtaining the identity mapping to learning the residual function

F (x) = H(x) − X . It is easy to see from this equation

that when f(x) = 0, the identity mapping H(x) = x holds,

resulting in a residual unit structure. The classical residual

unit structure is shown in Fig. 2(a). The curve on the right in

Fig. 2(a) is the “Shortcut Connection,” which means skipping

one or more layers of connections and sending information to

a deeper layer of the neural network. Through the “Shortcut

Connection,” the residual unit can be trained as a deeper neural

network. A Resnet network can be created by stacking many

residual unit together.

In the task of RF fingerprinting of WiFi signals, the input to

the neural network is in a one-dimensional I/Q signal format,

so the residual unit needs to be modified accordingly. There

is a serious over-fitting phenomenon obserbed in fingerprint

identification, so the batch-normalization layer is added to the

residual unit used in this paper, that is, the combination of the

BN layer and the Conv1D layer (16, 5) as shown in Fig. 2(b).

The local network used in this paper is shown in Fig. 3. In

order to reduce the complexity of the network and suppress

the over-fitting caused by federated learning, only four residual

blocks are superimposed. In each residual block, the first layer

is Conv1D (16,1), which is connected with two 1D residual

units. The finally output is through the Maxpool layer. After

four residual blocks, the extracted features pass through two

Dense layers, and the prediction probability is output by the

last Softmax layer. The number of neurons in the Softmax

layer is consistent with the number of device categories to be

predicted.

IV. SIMULATION RESULTS

A. Dataset

The 2.4 GHz WiFi model used in this article is ESP8266,

which is set to the 802.11b WiFi standard and the signal

bandwidth is 20MHz. ESP8266 is a high-performance UART

WiFi (serial-wireless) module, which uses serial port (LVTTL)

to communicate with an MCU (or other serial port devices),

and has a built-in TCP/IP protocol stack, which can realize the

conversion between the serial port and WiFi. The spectrum an-

alyzer is the FSW26 spectrum analyzer from Rohde&Schwarz.

After setting the access channel, the WiFi module sends the
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Fig. 3. The Local training network structure.

Beacon management frame cyclically, the spectrum analyzer

receives wireless signals through the antenna, the PC and

the spectrum analyzer are connected with a network cable,

and the acquisition parameters of the spectrum analyzer are

controlled by the host computer to carry out data collection

and recording. This paper uses an 80M sampling rate to collect

baseband I/Q signals from 100 target devices in channel 6 in

a laboratory LOS environment.

B. Simulation Results

In the simulation experiment part, we conducted several

groups of control experiments to test the performance of the

centralized method, FedRFID (4 clients), FedRFID (5 clients)

and FedRFID (10clients) in classifying 10, 25, 50 and 100

targets.

1) Classification performance of centralized Resnet for 100
targets: We first carried out the classification experiment of

WiFi devices on the centralized Resnet, which is used as the

baseline model in this paper. The centralized Resnet uses

the network architecture introduced in Section III and the

dataset mentioned above to classify 10, 25, 50, and 100 targets,

respectively. Each category contains 100 samples, and each

sample signal is preprocessed into 1000 × 2 signal length. The

residual block structure is used to extract the RF fingerprint

features of each target device, and then the target device

is identified through the classifier layer. Fig. 4 shows the

classification accuracy of the centralized Resnet on identifying

10, 25, 50, and 100 targets. As can be seen from Fig. 4,

the centralized Resnet has oscillations in the early stage of

training in four cases, but the accuracy tends to stabilize after

25 rounds. When identifying 10 target devices, an accuracy

rate of 100% can be achieved because there are fewer targets;

when identifying 25 and 50 targets, the accuracy rate are

both higher than 98%, which are 98.199% and 98.774%,

respectively; When identifying 100 targets, the recognition

accuracy rate of 95.962% is achieved despite the large number

of target devices. When classifying 25 and 50 targets, our

local training network can well extract the RF fingerprint

Fig. 4. Classification performance of centralized Resnet for 100 targets

features of different WiFi devices because the number of target

categories is not very large, so as to achieve similar high

accuracy in classifying a medium number of target categories.

When classifying 100 targets, because of the large number of

target categories, our deep neural network cannot extract the

best RF fingerprint features, resulting in a slight decline in

classification accuracy.

2) Classification performance of FedRFID for 100 tar-
gets under different numbers of clients: In this experiment,

FedRFID uses the local network architecture introduced in

Section III, and uses the real-world dataset mentioned above

to classify 100 targets. We consider the impact of different

numbers of clients on FedRFID, which are 4, 5, and 10 clients

respectively. The data category of each client is the same. In

the federated scenario, each client is trained locally 3 times in

each round of interactions. Similar to the centralized RESNET,

the neural network of each client independently extracts the

RF fingerprint features of their local WiFi device data, and

uses their own classifiers to identify WiFi devices. The client

then sends the local neural network parameters to the server

for aggregation. We tested the classification performance of
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Fig. 5. Classification performance of FedRFID for 100 targets under different
number of clients

Fig. 6. Classification performance of FedRFID with 4 clients

Federated Resnet on 100 target devices under 4, 5 and 10

client conditions, as shown in Fig. 5. It can be seen from Fig.

5 that Federated Resnet achieves a high classification perfor-

mance when identifying 100 WiFi devices. The classification

accuracy under the condition of 4 clients is the highest, which

reaches 98.339%. At the same time, the accuracy of 5 clients

and 10 clients reaches 97.562% and 96.499% respectively.

Fewer clients achieve higher accuracy. This may be due to

the fact that in the federated learning process, the network

parameter aggregation and average operation is performed. For

WiFi RF fingerprint data, more clients mean more sub-weight

iterations, which increases the risk of overfitting. Although

the BN layer and the Dropout layer are added to the local

network, 10 clients still have the problem of overfitting. Other

application scenarios also have the problem of finding the

optimal number of clients, but the optimal number of clients in

this paper does not apply to other scenarios or other datasets,

which is related to the characteristics and size of the dataset.

3) Classification performance of FedRFID for different
numbers of targets: In the final simulation experiment, the

local network and dataset of FedRFID are the same as the

above. We consider the classification performance of different

clients for different number of targets, and the data category

Fig. 7. Classification performance of FedRFID with 5 clients

Fig. 8. Classification performance of FedRFID with 10 clients

of each client is the same. We conducted experiments to

identify 10, 25, 50, and 100 target devices under 4, 5, and 10

clients, and the experimental results are shown in Fig. 6, Fig.

7, and Fig. 8, respectively. The accuracy rate of identifying

10 target devices is still the highest when the number of

clients is different, but the accuracy rate of identifying 25,

50, and 100 target devices is almost the same. When using

4 clients for federated training, the classification accuracy

is more than 98%. Compared with centralized Resnet, the

improvement is most obvious when classifying 100 targets.

This is because FedRFID carries out similar local training

between clients during federated training, which is equivalent

to increasing the batch size of local training in a sense, which

alleviates the over fitting problem of centralized resnet, and

it can more accurately extract the RF fingerprint features of

WiFi devices, so as to classify WiFi devices. The specific

values of the above experimental results are shown in Table I.

From Table I, we find that compared with the localized neural

network, FedRFID has improved classification performance

when identifying 25, 50, and 100 target devices. When clas-

sifying 10 targets, both centralized Resnet and FedRFID can

achieve 100% classification accuracy. The federated training

of 4 clients has the best effect, which shows that the method

proposed in this paper has good performance for both small-
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TABLE I
COMPARISON OF CLASSIFICATION PERFORMANCE BETWEEN CENTRALIZED RESNET AND FEDRFID

Targets number

Methods
Centralized FedRFID (4 clients) FedRFID(5 clients) FedRFID(10 clients)

10 100% 100% 100% 100%

25 98.199% 98.6% 98.4% 96.7%

50 98.774% 98.9% 98.15% 96.249%

100 95.962% 98.339% 97.562% 96.499%

scale scenarios and large-scale industrial IoT scenarios, and

ensures the security of privacy-sensitive data.

V. CONCLUSIONS

In this paper, we proposed a method for RF fingerprinting

of WiFi signals based on federated learning (FedRFID), and

performed experimental verification on WiFi data actually

collected in the real world scenario. The experimental results

showed that FedRFID can not only effectively protect the

privacy of sensitive data, but also improve the performance

of RF fingerprinting. When identifying 10, 25, 50, and 100

targets, FedRFID achieves the highest accuracy of 100%,

98.6%, 98.9%, and 98.339% respectively, which outperforms

the traditional centralized Resnet. FedRFID has great appli-

cation potential in different scenarios such as small smart

home systems and large-scale industrial IoT. In addition, in

this paper, the sample category of each client were the same,

but in the real IoT scenario, this maybe unrealistic. Therefore,

our future work is to apply federated personalized learning to

complete the identification of RF fingerprint signals in het-

erogeneous scenarios, and make full use of the heterogeneous

devices scattered on each client to build a global model with

good performance and high efficiency.
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