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Abstract—Metaverse seamlessly blends the physical world and
virtual spaces through ubiquitous communication and comput-
ing equipment and infrastructure. In intelligent transportation
systems, the vehicular Metaverse can provide a fully immersive
and hyperreal travel experience (e.g., via augmented reality head-
up displays, AR-HUDs) to drivers and passengers in autonomous
vehicles (AVs) through roadside units (RSUs). However, providing
real-time and immersive services requires effective physical-
virtual synchronization between AVs and virtual simulators. This
paper proposes a generative AI-empowered physical-virtual syn-
chronization framework for the vehicular Metaverse. In physical-
to-virtual synchronization, digital twin (DT) tasks generated by
AVs are offloaded for execution in RSUs with future route gener-
ation. In virtual-to-physical synchronization, virtual simulators
customize diverse and personalized AR content via generative
AI models based on user preferences. Furthermore, we propose
a multi-task enhanced auction-based mechanism to match and
price AVs and virtual simulators for RSUs to provide real-time
and effective services. Finally, property analysis and experimental
results demonstrate that the proposed mechanism is strategy-
proof and adverse-selection free while increasing social surplus.

Index Terms—Vehicular Metaverse, generative artificial intel-
ligence, digital twin, augmented reality, auction theory.

I. INTRODUCTION

As a long-term vision, the Metaverse is an evolution of

the mobile Internet towards the advanced three-dimensional

visualization stage of digital transformation [1]. By blending

physical transportation systems with 3D virtual spaces via

multi-dimensional and multi-sensory communications, the ve-

hicular Metaverse can extend the physical space of vehicles

via real-time physical-virtual synchronization [2]. For instance,

autonomous vehicles (AVs) with large windshields and side

windows provide the most convenient and promising interface

for users to synchronize and interact with avatars and other

objects in virtual space. In physical-to-virtual (P2V) synchro-

nization, vehicles can connect with the digital twin (DT)

in virtual space by continuously executing DT tasks [3]. In

virtual-to-physical (V2P) synchronization, vehicles can install

the windshield and side windows with augmented reality (AR)

head-up displays (HUDs), which can blend and display 3D vir-

tual content on AR-HUDs with realistic street views. However,

achieving high synchronization accuracy while providing real-

time and immersive services with effective physical-virtual

synchronization in the vehicular Metaverse is challenging.

On the one hand, to effectively synchronize digital twins

and avatars in virtual space, AVs continuously generate

computation-intensive DT tasks to synchronize with the vir-

tual space, i.e., the P2V synchronization. However, the local

computation resources of AVs might be insufficient to execute

these tasks and update the results to RSUs [4]. Therefore,

AVs prefer to offload these tasks to RSUs with large-scale

computing and communication infrastructure for real-time

execution. In addition, RSUs can utilize the information in

AVs’ DTs to assist with service provisioning. For example, AI

models that analyze past routes and current locations in AVs’

DTs can predict the future routes of vehicles. This way, the

accuracy of location-based services can be improved during

the physical-virtual synchronization in the Metaverse.

On the other hand, based on the preferences of drivers

and passengers in AVs, Metaverse virtual simulators provide

personalized services with AR content on HUDs, for effective

V2P synchronization. However, high-quality AR content is

scarce due to the intensive computing and time cost of the

content creation process, which leads to low match qualities

between AVs and virtual simulators [3]. Fortunately, generative

AI, with effective and efficient inference and information

creation capabilities, allows for diverse AR content customiza-

tion. Specifically, based on user preferences in AVs’ DTs,

RSUs can provide AI-generated content (AIGC) related to

the original subjects of virtual simulators with generative

AI models [5]–[7]. This way, virtual simulators can provide

diverse and scalable AR content to AVs through generative

rendering and streaming at RSUs.

As shown in Fig. 1, in this paper, we propose a novel gen-

erative AI-empowered physical-virtual synchronization frame-
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Fig. 1: The generative AI-empowered vehicular Metaverse.

work where generative AI is leveraged to create personalized

AR content. In this framework, we design the P2V synchro-

nization that AVs maintain and continuously update the DTs

by offloading DT tasks to RSUs for execution. To improve

synchronization accuracy, RSUs can predict the future route

of AVs for effective location-based synchronization services

based on the current location and historical routes of AVs.

Moreover, based on the future route and user preferences,

RSUs can customize the AR content of virtual simulators

by creating diverse content via the generative AI model

named TSDreamBooth, which is fine-tuned using the Belgium

traffic sign (BelgiumTS) dataset [8]. Finally, we propose

a multi-task enhanced auction-based mechanism to satisfy

multi-dimensional requirements (e.g., deadlines and quality)

of multiple DT tasks simultaneously.

Our main contributions are summarized as follows:

‚ In the vehicular Metaverse, we propose a novel AI-

native physical-virtual synchronization framework, which

consists of DT-assisted route generation and preference-

aware AR content generation.

‚ We propose the TSDreamBooth to empower Metaverse

virtual simulators to customize diverse simulated AR

content based on the future routes and user preferences

of AVs.

‚ To incentivize RSUs for provisioning communication and

computing resources, an enhanced auction-based mech-

anism is proposed to maximize social surplus during

synchronization while guaranteeing fully strategy-proof

and adverse-selection free of participants.

II. GENERATIVE AI-EMPOWERED SYSTEM MODEL

In the system model, we consider three main roles in the

vehicular Metaverse, i.e., AVs, RSUs, and virtual simulators.

The set of AVs is represented by the set I “ 1, . . . , i, . . . , I ,

the set of RSUs is represented as J “ t1, . . . , j, . . . , Ju,
and the set of virtual simulators is represented as K “
t0, 1, . . . , k, . . . ,Ku. We consider the RSUs to possess the

communication and computing resources in the system. To fa-

cilitate physical-virtual synchronization, uplink and downlink

channels are allocated to uploading DT tasks and streaming

AR content. Therefore, communication resources at RSUs

consist of uplink bandwidth Bu
j and downlink bandwidth Bd

j .

Moreover, to provide services such as executing DT tasks and

rendering augmented reality layers, each RSU j is equipped

with computing resources, including the CPU frequency fC
j

and the GPU frequency fG
j .

During the synchronization, N DT tasks

generated by each vehicle can be represented as

DTi “ păsDT
i,1, e

DT
i,1, di,1ą, . . . ,ăsDT

i,N , eDT
i,N , di,Nąq, where

sDT
i,n is the size of DT data, eDT

i,n represents the number of CPU

cycles required per unit data, and di,n denotes the deadline

for completing the task. The size of preference caches of AV

i within the DT is Ci. Each vehicle i P I has its private value

vi for executing its DT task DTi, drawn from the probability

distributions. The values of DT tasks can be interpreted as

the characteristics of the autonomous vehicles, such as the

level of urgency to align with DT models [9], which may

vary for each vehicle during its travel.

Similar to the Internet display advertising [10], we consider

two types of virtual simulators in the system, i.e., virtual

driving simulators and virtual traffic simulators. Virtual traffic

simulators 1, . . . ,K provide AR content designed to elicit real-

time feedback from drivers and passengers, such as providing

information about sales or promotions at nearby shops. The

virtual driving simulator 0 delivers driving simulations for

improving the performance of autonomous driving. The value

of personalized AR content for each synchronizing pair of AV

i and virtual traffic simulator k is Ui,k, which is the product of

the common value vi of AV i and the match quality mi,k, i.e.,

Ui,k “ vimi,k. The common values for virtual traffic simulator

k are gained from the provisioning of real-time traffic simu-

lations for the synchronizing AV i, which can be represented

by the AV i’s private value vi. Additionally, the amount of

personalized information determines the match quality mi,k

of virtual traffic simulator k. The values of AVs and virtual

simulators in synchronizing pairs are positively correlated.

Finally, let Uι,plq and mι,plq represent the l highest value and

match quality for the synchronizing AV ι, respectively.

A. Multi-task Digital Twin Model

To synchronize with the vehicular Metaverse, physical

entities, i.e., AVs, generate and offload DT synchronizing

demands, i.e., DT model updates, to RSUs for real-time

execution. Therefore, we consider the demands as tasks that

are required to be accomplished by RSUs. The transmission

delay for AV i to upload its DT task DTi to RSU j can

be calculated as [9] tDT
i,n,j “ sDT

i,n

Ru
i,j
, where Ru

i,j is the uplink

transmission rate. The computation delay in processing the

DT task DTi of AV i for RSU j can be calculated as

lDT
i,n,j “ sDT

i,ne
DT
i,n

fC
j

. In the proposed system, without loss of

generality, we consider that each RSU can accomplish both

computing and transmission requirements of DT tasks, i.e.,

tDT
i,n,j ` lDT

i,n,j ď di,n,@i P I, j P J , n “ 1, . . . , N . With

available communication and computing resources, RSUs can

provide AR rendering services for virtual simulators. This

608



way, virtual simulators can send their AR content to AVs, i.e.,

synchronizing from virtual spaces to the physical world.

B. AR Simulation Model

1) Generative AI-based AR Simulation Customization: The

process for customizing AR simulation using generative AI is

divided into two stages: fine-tuning and inference. To fine-

tune a text-to-image diffusion model using AR simulations

for a specific subject from virtual simulators, we follow a two-

step process. In the first step, the low-resolution text-to-image

model is first fine-tuned with input images paired with a text

prompt that includes a unique identifier. At the same time, a

class-specific prior preservation loss is incorporated to ensure

that diverse instances belonging to the subject’s class are

generated while preserving the model’s prior knowledge about

the class. In the second step, the super-resolution components

are then fine-tuned using pairs of low-resolution and high-

resolution images taken from the set of input images, allowing

high accuracy in small details of the subject to be maintained.

During the fine-tuning of generative AI, virtual simulators

input their original AR simulations as training data to train

models. Based on the knowledge of AR simulations, e.g., a

class of traffic signs, the fine-tuned generative AI model can

extract features of these traffic signs for customization.

Therefore, the provisioning of AR simulations is no longer

limited to the hit preference caches hi,k [3]. However, due to

the limitation of generative AI models, some customized AR

content might not be satisfactory, which can be identified by

the trained validation models.

The validation models indicate the quality of generative

AI models with generative score Gi,j,k P r0, 1s. For each

AR layer of virtual traffic simulator k, the rendering task

can be represented by ARk “ ăsAR
k , eAR

k ą [11], where sAR
k

is the data size of each AR layer and eAR
k is the required

GPU cycles per unit data for rendering. Therefore, given the

total number of virtual simulators K ` 1, the match quality

mi,k and hit preference caches hi,k are drawn independently

from a set of distributions mi,k “ hi,k „ Fi,k. To explain

further, given the synchronizing AV ι, virtual traffic simulators

k “ 1, . . . ,K can measure the match qualities mι,k of

their traffic simulations. However, the virtual driving simulator

0 that provides AR simulations to the synchronizing AV ι
cannot immediately measure its match quality mι,0. Therefore,

asymmetric information exists among virtual simulators that

might result in adverse selection [10].

Empowered by generative AI models, the match quality

mi,k is no longer limited by the hit preference caches hi,k.

As generative AI can generate countless and diverse AR

content based on user preferences and location datasets, virtual

simulators can utilize more computing resources and downlink

transmission resources during offline training. During the re-

maining time of DT execution, the total amount of simulations

Qi,n,j,k can be calculated as Qi,n,j,k “ pdi,n´TDT
i,n,jqRAR

i,j{sAR
k

for task n in DTi of AV i and its RSU j. Then, the marginal

generative AI-empowered match quality of AV i in simulator

k via RSU j can be measured as

mi,n,j,k “ log2p1`Gi,j,kQi,n,j,kqhi,k

θphi,kq , (1)

where θphi,kq is the relative accuracy among the original

model wi and the fine-tuned model wi,k for strongly convex

objectives [12]. In particular, θp¨q “ 1 indicates no improve-

ment for training in simulation platforms, and θp¨q “ 0
indicates the AI model is trained optimally.

2) AR Simulation Rendering: The effective transmission

latency of transmitting the AR content ARk to AV i for task

n from RSU j can be calculated as

tAR
i,j,k “ Qi,n,j,ks

AR
k

Rd
i,j

, (2)

where Rd
i,j is the downlink transmission rate between AV i

and RSU j. Moreover, the effective computation latency in

completing the simulation ARk can be calculated as

lAR
i,j,k “ Qi,n,j,ks

AR
k eAR

k

fG
j

, (3)

which depends on the simulation latency in the GPUs of RSU

j. Eqs. (2) and (3) imply that the V2P synchronization in

generative AI-empowered vehicular Metaverse can fully utilize

communication and computing resources.

In the synchronization system, RSUs can use their available

computation and communication resources to provide real-

time physical-virtual synchronization services for AVs and

virtual simulators. However, the total synchronization delay

cannot exceed the required deadline of AV i. Let gDT
i,j be the

allocation variable that AV i is allocated to RSU j and gAR
i,j,k

be the allocation variable that virtual traffic simulator k is

allocated by RSU j to match AV i. The total synchronization

delay T total
i,j,k required by RSU j to process both the DT task of

AV i and the AR rendering the task of virtual traffic simulator

k should be less than the required deadline, which can be

expressed as

T total
i,n,j,k “ gDT

i,j ¨ ptDT
i,n,j ` lDT

i,n,jq
` gAR

i,j,k ¨ ptAR
i,n,j,k ` lAR

i,n,j,kq ď di,n,
(4)

@i P I, j P J , k P K, n “ 1, . . . , N . The AR content of virtual

traffic simulator k is displayed on AR-HUD of AV i during

the processing of DT tasks at RSU j, and thus the expected

utilizing duration of AR content can be represented by T total
i,j,k.

III. SURPLUS MAXIMIZATION

In the proposed system, a synchronization market, consist-

ing of the physical and the virtual submarkets, is established

to incentivize RSUs to provide communication and comput-

ing resources for synchronization between AVs and virtual

simulators. Here, we consider physical and virtual entities in

the market to be risk neutral, and their surpluses are cor-

related positively. Therefore, the synchronization mechanism

is expected to map the DT values v “ pv1, . . . , vIq and

AR values U “ pI1,0, . . . , UI,Kq to the payments of AVs
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pDT “ ppDT
1 , . . . , pDT

I q and the payments of virtual simulators

pAR “ ppAR
1 , . . . , pAR

K q with the allocation probabilities gDT “
pgDT

1 , . . . , gDT
I q and gAR “ pgAR

0 , . . . , gAR
K q. By accomplishing

DT tasks, the total expected surplus for RSUs from AV i P I
in the physical submarket can be represented by SDTpgDTq “
E

”řI
i“1 vig

DT
i,jpvq

ı
. Based on the optimal reaction to the

dominant strategies of the virtual traffic simulators, the virtual

driving simulator can motivate RSU with the expected surplus

of SAR
F “ ErUi,0g

AR
i,j,0pQiqs. In addition, the total expected

surplus provided by virtual traffic simulators is defined by

SAR
I pgARq “ ErřK

k“1 Ui,kg
AR
i,j,kpUiqs. In conclusion, the total

surplus that RSU j can gained from the virtual submarket

can be defined as SARpzARq “ γSAR
F pzARq ` SAR

P pzARq, where

γ denotes the relative bargaining power of virtual driving

simulator 0.

Then, the objective is to maximize the total surplus in the

synchronization market, which can be represented as

SDT `
Nÿ

n“1

T total
i,n,j,k ¨

`
γSAR

F ` SAR
I

˘
. (5)

IV. MULTI-TASK ENHANCED MECHANISM DESIGN

To tackle the multi-task synchronization system, we propose

the multi-task enhanced second-score auction-based mecha-

nism, named MTEPViSA, based on the EPViSA proposed

in [3]. Similarly, the MTEPViSA allocates and prices the

synchronizing AV in the physical submarket by calculating the

scoring rule. Therefore, we first define the AIGC-empowered

synchronization scoring rule as follows.

Definition 1 (AIGC-empowered Synchronization Scoring

Rule). Let o be any offered bidding price, the AIGC-

empowered synchronization scoring rule Φsynpo,dq is defined

as

Φsynpo,dq “ q ´ φpdq, (6)

where d contains the submitted deadlines of DT tasks and φp¨q
is a non-decreasing function and φp0q “ 0.

The auctioneer can calculate the scoring rule based on

previous transaction results and current submitted bids and

deadlines. In the physical submarket, AVs submit their multi-

dimensional bids bDT “ ppbDT
1 , . . . , bDT

I q,d “ pd1, . . . ,dIqq
to the auctioneer. The auctioneer computes the scores Φsyn “
ΦsynpbDT, ηq “ pφsyn

1 pbDT
1 , η1q, . . . , φsyn

I pbDT
I , ηIqq to the auc-

tioneer. Then, the auctioneer determines the winning AV in

the physical submarket for synchronization according to the

calculated scores. The auctioneer allocates the trader with the

highest score as the winning physical entity, as gDT
i pΦsynq “

1tΦsyn
i ąmaxtΦsyn

´iuu. In addition, the payment that the winning

AV needs to pay is the bidding price of the second highest

score, i.e., pDT
i pΦsynq “ gDT

i pΦsynq ¨ bDT
argmaxtΦsyn

´iu.
In the virtual submarket, virtual simulators submit their bids

bAR “ pbAR
0 , bAR

1 , . . . , bAR
K q to the auctioneer. In the MTEPViSA

mechanism, the price scaling factor α ě 1 is utilized.

First, the auctioneer determines the allocation probabilities

for virtual traffic simulators as gAR
k pbARq “ 1bAR

k ąαbAR
´k

. Then,

the allocation probability of the virtual driving simulator is

calculated as gAR
0 pbARq ď 1 ´ řK

k“1 g
AR
k pbARq. Based on the

price scaling factor, the winning MAR is required to pay

pAR
k pbARq “ gAR

k pbARq ¨ ρAR
k , where

ρAR
k “

#
T total
i,j,0b

AR
0 , k “ 0,

T total
i,j,kαmaxtbAR´ku, k “ 1, . . . ,K.

(7)

Then, the efficient AIGC-empowered Scoring Rule can be

defined as follows.

Definition 2 (Efficient AIGC-empowered Scoring Rule). An

efficient synchronization scoring rule is in the form of

ΦsynpoDT,d˚q “ oDT ` d˚rγSAR
F pMq ` SAR

I pMqs, (8)

where d˚rγSAR
F pMq`SAR

I pMqs is the total surplus of virtual

simulators by providing Metaverse billboards.

The allocation and pricing rules are effective and efficient

when the efficient scoring rule exists [13] and the price scaling

factor is selected as αι “ max p1, γrQι,0s{ErQι,p2qsq [10],

where ι is the synchronizing AV in the physical submarket.

Finally, under the cost-per-time model of rendering AR content

and the efficient scoring rule, the MTEPViSA is fully strategy-

proof and adverse-selection-free.

V. EXPERIMENTAL RESULTS

In the simulation of the vehicular Metaverse, we consider

a physical-virtual synchronization with 30 AVs, 30 virtual

simulators, and 1 RSU by default. For each RSU, 20 MHz

uplink and 20 MHz downlink channels are allocated for DT

task uploading and AR content streaming, respectively. In

addition, the CPU frequency of RSU is set to 3.6 GHz,

and the GPU frequency is set to 19 GHz. The channel

gain between RSUs and AVs is ranged from r0, 1s, where

U denotes the uniform distribution. The transmission power

of AVs is sampled from U r0, 1s mW and the transmission

power of RSUs is sampled from U r0, 5s mW. The additive

white Gaussian noise at AVs and RSUs is sampled from

N p0, 1q, where N denotes the normal distribution. For each

DT task generated by AV, the data size is sampled from

U r0, 1sMB, the required CPU cycles per unit data are sampled

from r0, 1s Gcycles/MB, and the required deadline is sampled

from U r0.9, 1.1s seconds. For each AR simulation, the data

size is sampled from U r0, 0.25s MB and the required GPU

cycles per unit data are sampled from U r0, 1s Gcycles/MB.

The valuation of AVs for accomplishing the DT tasks is

sampled from U r0.1, 1s, and the number of preferences of

AVs is sampled from Zipfp2q, where Zipf denotes the

Zipf distribution. The relative bargaining power of the virtual

driving simulator is set to 1 while the default synchronization

accuracy is 0.5. Generative AI based on large text-to-image

models, such as stable diffusion [5] and Dreambooth [6],

will have a game-changing impact on content creation in the

Metaverse. To demonstrate the ability to generate diverse and

high-quality images for vehicular Metaverse. As illustrated

in Fig. 2, we experiment with modifying background color

610



TSDreamBooth

Input: Images Background color modification

Text prompt:  
"The [V] sign"

Original traffic signs Green Blue White

"on the [color]
background color" /
"in the [context] "

 Re-contextualization

Ocean Beach Snow

Sign 1 
Acc=1.00

Sign 1 
Acc=1.00

Sign 3 
Acc=0.57

Acc=0.63

Acc=0.86

Acc=0.51

Output:

Fig. 2: Synthesized images of traffic signs by TSDreambooth

for background modification and re-contextualization tasks.

and re-contextualization for traffic signs, which is the iconic

task for transportation systems. We first use the training set

in BelgiumTS dataset [8] to fine-tune the Dreambooth to

the TSDreambooth. Then, we train a validation model based

on the pre-trained GoogLeNet to fit the BelgiumTS dataset.

Finally, we generate new images based on the testing set

in BelgiumTS and evaluate the generative score using the

validation model. In Fig. 3, we evaluate the performance of the

proposed mechanism under different system settings compared

with the PViSA and the EPViSA proposed in [3]. From

Fig. 3(b), we can understand the reason for the inefficiency of

the PViSA. The PViSA mechanism always selects the AV with

the highest valuation in the physical submarket to synchronize

while ignoring the potential surplus in the virtual submarket.

VI. CONCLUSIONS

In this paper, we have proposed a generative AI-empowered

physical-virtual synchronization framework for the vehicular

Metaverse. In this framework, we have designed the DT-

assisted future route prediction for AVs in the P2V synchro-

nization. In addition, we have considered virtual simulators

with generative AI models to customize diverse and scalable

simulations in the V2P synchronization. Finally, we have

devised the multi-task enhanced auction-based synchronization

mechanism to incentivize RSUs to support effective synchro-

nization. The property analysis has illustrated that the proposed

mechanism is strategy-proof and adverse-selection free. The

experimental results have illustrated that the proposed mech-

anism can increase the surplus by around 50%.
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