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Abstract—In this paper, we present a Swin Transformer based
indoor localization framework that employs RF hologram tensors
to locate multiple ultra-high frequency (UHF) passive Radio-
frequency identification (RFID) tags. The RF hologram tensor
captures the strong relationship between RFID measurements
and spatial location, and helps to improve the robustness
of the system in dynamic environments. We develop a Swin
Transformer-based hologram filter network to clean the fake
peaks in hologram tensors caused by multipath propagation
and phase wrapping, exploring the spatial relationship between
tags. In contrast to fingerprinting-based localization systems that
use deep networks as classifier, the proposed network treats
localization as a regression problem. An intuitive peak finding
algorithm is introduced for location estimation using the sanitized
hologram tensors. We prototype the proposed system using
commodity RFID devices and conduct extensive experiments to
evaluate its performance.

Index Terms—Radio-frequency identification (RFID), Indoor
localization, Swin Transformer, self-supervised learning.

I. INTRODUCTION

Indoor localization has remained a hot research topic over
the years, as it plays a critical role in solving position-
related problems such as gesture recognition and human pose
estimation [1]. Recently, researchers bring deep networks into
indoor localization systems cooperating with the fingerprinting
method. However, several inherent problems of fingerprinting
based localization systems are still open. Collecting finger-
prints in a large area would be laborious and time-consuming.
The minimum error of the fingerprinting-based localization
relies on the granularity of the stored fingerprints.

In this paper, Radio frequency (RF) hologram tensors are
created using phase readings from received RFID response
signals as input to a deep learning model for locating multiple
tags, as in our previous work MulTLoc [2]. We implement a
Swin Transformer-based hologram filter network for locating
multiple RFID tags with the Hologram tensors. Self-supervised
pre-training is leveraged to extract the general features from
the hologram tensors for improved localization performance.
Location estimation could be accomplished with the sanitized
hologram tensors directly with an intuitive peak detection
algorithm. The experimental results demonstrate the superior
performance of the proposed system.

II. SYSTEM DESIGN

A. Architecture Overview

Fig. 1 depicts the architecture of the proposed system. As in
our previous work MulTLoc [2], an RFID system collaborates
with a vision-based sensor to generate the hologram tensors
and the accompanying ground truth tensors in order to train
the networks for location estimation. The Robot Operating
System (ROS) is utilized to synchronize and unify the data
acquired from diverse hardware. The noisy hologram tensors
are sanitized with a Swin Transformer based network. Tag
locations are estimated by a peak detection algorithm.
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Fig. 1. The MulTLoc system architecture.

B. Network Architecture of the Hologram Filter Network

A Swin Transformer-based network is leveraged to sanitize
the noisy hologram tensors and ensure that the output tensor
has the same size as the input noisy hologram tensor. The
architecture of the Swin Transformer based hologram filter
network is depicted in Fig. 2(a). The network is a 3D variation
of the U-Net [3] with a Swin Transformer backbone. To be
fed into the Swin Transformer blocks, the input tensor is first
separated into non-overlapping 3D tokens. The patch merging
layer reduces the feature size by a factor of two in each stage of
the Swin Transformer backbone. The output of each stage will
not only be sent on to the next stage, but also be fed into the
DCNN based decoders to recreate the filtered hologram tensor.
The filtered hologram tensor is obtained directly from the
convolutional decoder of the top layer. A function consisting
of L1 loss and MS-SSIM loss is used as the loss function to
supervise the training [4]. A hyper-parameter α,which is set
as 0.6, is utilized for balancing two parts in the loss function.
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Fig. 2. (a) Architecture of the Swin Transformer based hologram filter network. (b) Architecture of the self-supervised training.

C. Self-supervised Pre-training of Swin Transformers

Self-supervised pre-training, as shown in Fig. 2(b), is lever-
aged to extract general features in the hologram tensors. We
adopted three pretext loss for learning a good data repre-
sentation, which are inspired by the prior work for medical
image analysis [5]. The hologram tensor is rotated in six
angle classes, including 90◦,−90◦ along with X-, Y-, and
Z-axis, to generate sub-volumes randomly. A cross-entropy
loss, Lrot, is leveraged to predict rotation angles. A tensor
recovery task is the second part of the self-supervised training.
To recover the mask-out pixels in the sub-volumes, the MSE
loss, Lrec is leveraged to measure the difference between the
original sub-volume and the recovered sub-volume. A simple
instance discrimination task is utilized as the third pretext task.
Two correlated sub-volumes of an input hologram tensor are
generated with rotation and cutout. For a minibatch, only the
feature representation from the same input tensor is treated as
positive pair, while the representation from the rest tensors is
the negative example. InfoNCE [6], Lcontrast, is utilized as the
contrastive loss function. Thus, the self-supervised training is
conducted with the loss function, L = Lrot+Lrec+Lcontrast.
The hologram filter network is fine-tuned based on the pre-
trained Swin Transformer backbone.

III. EXPERIMENTAL STUDY

To evaluate the performance of the proposed system, we
built a prototype using a Zebra FX9600 reader and eight
Zebra AN720 antennas. Three UPM Raflatac Frog 3D tags
are utilized as localization targets. In the experiment, we assess
the performance of the proposed framework by concurrently
localizing the tags attached to the shoulders and neck of a
subject. A Kinect V2 is leveraged to produce ground truth
coordinates for network training and testing. The serviced
area in our prototype covers an area of dimension 1.5m ×
1.5m × 1.5m at a height of 0.5m above the ground. The grid
size is set to 1cm. The estimation location is given by Ĝ=
{G|f(SR, G) = max(SR)}, where f(·) extracts the similarity
value at the grid location G from the sanitized hologram tensor
SR. Fig. 3 presents the cumulative distribution function (CDF)
of localization errors, which exhibits the overall precision
improvement brought by self-supervised learning. A mean
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Fig. 3. CDFs of location estimation errors with and without the pretriaining
of the Swin Transformer backone.

error of 0.0961m is achieved with the self-supervised training,
whereas the mean error is 0.1041m without self-supervised
training. The improvement is 7.68%. The experiment demon-
strates that self-supervised training contributes to the precision
improvement in location estimation.
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