10344

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 11, NOVEMBER 2024

A Unified Framework for Guiding Generative Al
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Abstract—With the significant advancements in artificial intelli-
gence (Al) technologies and computational capabilities, generative
AI (GAI) has become a pivotal digital content generation technique
for offering superior digital services. However, due to the inherent
instability of AI models, directing GAI towards the desired output
remains a challenging task. Therefore, in this paper, we design a
novel framework that utilizes wireless perception to guide GAI
(WiPe-GAlI) in delivering Al-generated content (AIGC) service,
within resource-constrained mobile edge networks. Specifically,
we first propose a new sequential multi-scale perception (SMSP)
algorithm to predict user skeleton based on the channel state
information (CSI) extracted from wireless signals. This prediction
then guides GAI to provide users with AIGC, i.e., virtual charac-
ter generation. To ensure the efficient operation of the proposed
framework in resource constrained networks, we further design a
pricing-based incentive mechanism and propose a diffusion model
based approach to generate an optimal pricing strategy for the
service provisioning. The strategy maximizes the user’s utility
while incentivizing the participation of the virtual service provider
(VSP) in AIGC provision. The experimental results demonstrate
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the effectiveness of the designed framework in terms of skeleton
prediction and optimal pricing strategy generation, outperforming
other existing solutions.

Index Terms—Wireless perception, AI-generated content, resou-
rce allocation, quality of service.

I. INTRODUCTION

HE proliferation of user data, advancements in hardware

devices, and the evolution of AI models catalyze the
progression of generative artificial intelligence (GAI) tech-
nology [1]. This progression brings the artificial intelligence-
generated content (AIGC) and its associated applications into
the spotlight [2]. Leading technological giants, such as Microsoft
and Google, invest heavily in creating their own exclusive GAI
model, with the objective of offering users more comprehen-
sive digital service [3]. A representative example is OpenAl’s
ChatGPT, which achieves notable breakthroughs in emulating
human in text processing tasks. For instance, ChatGPT is capable
of executing grammar error detection, generating text and code,
and performing content retrieval operations [4]. Beyond text pro-
cessing, the powerful capabilities of GAI are also unleashed in
the realm of image and video generation. For instance, StableD-
iffusion can generate images based on users’ descriptions (i.e.,
prompts) and process images according to users’ instructions,
including style modifications and rectification of missing pixels
and other visual imperfections [5].

Compared with the conventional content generation methods,
GALI exhibits two salient advantages. First, GAI demonstrates
remarkable efficiency in content production, capable of gener-
ating digital content efficiently in accordance with user prompts.
For example, Stable Diffusion [6] can generate a high-definition
image within seconds, which is challenging to accomplish by
the traditional user based generation method. Second, AIGC
exhibits greater diversity, manifested in two aspects [7]. The first
aspect pertains to the richness of the generated content. Due to
the randomness of the seed in Al models, GAI’s outputs can vary
significantly even with the identical instruction. For instance, the
diffusion model can generate entirely different images with the
same prompt, thus offering users a broader range of choices.
The second aspect involves multimodal presentation capabili-
ties, which enable AIGC to be delivered in various forms such
as text, images, audio, and even videos [8]. This makes AIGC
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highly adaptable, catering to a range of applications. Owing
to these benefits, GAI has emerged as the critical engine for
creating digital content, playing an essential role in our progres-
sion towards a more immersive and interactive next-generation
Internet [9], [10].

Despite the significant advancements, several challenges still
need to be tackled for practical applications. First, the inherent
instability of GAI models leads to generated content that often
struggles to directly meet user requirements. [6]. For example,
in augmented reality (AR) applications, such as virtual game
and shopping, the virtual service providers (VSPs) use the GAI
model to generate virtual characters for users. However, due
to the random seeds used in GAI models and the difficulty
of conveying information about users’ postures to the models
through prompts, the generated characters may not precisely
align the actual users. As a result, the user may trigger multiple
requests until a satisfactory character is generated, which not
only degrades the quality of service (QoS) of the VSP, but
also leads to resource wastage. To mitigate this, an effective
solution is to guide GAI with the help of other methods. Yet
the computing resources of the VSP deployed in mobile edge
networks are typically limited. This leads to the second challenge
when employing other methods to guide GAI, that is, how to
motivate the VSPs to actively participate in service provision,
thereby ensuring the efficient operation of the overall framework.
A potential solution to this issue is to establish a payment plan
between the user and the VSP, whereby the user provides a fee
to the VSP according to the plan to encourage participation.

Given the aforementioned challenges and potential solutions,
this paper introduces wireless perception guided GAI (WiPe-
GAI), anovel framework deployed in resource-constrained mo-
bile edge networks, which uses wireless perception to guide
GALI in providing AIGC to users and introduces an incentive
mechanism to ensure its economical operation. Specifically,
in WiPe-GAlI, we first propose a novel sequential multi-scale
perception (SMSP) algorithm, which enables WiPe-GAI to con-
struct a feature channel state information (CSI) matrix. This
is then fed into a trained neural network to predict the user’s
skeleton, to accurately capture the user’s posture in the physical
world. By integrating the user’s prompts with the predicted
skeleton, WiPe-GAI then guides the GAI model to generate the
corresponding virtual character for the user. Compared to image-
guided AIGC, WiPe-GAI not only enhances privacy by reduc-
ing the exposure of users under the camera, but also expands
service coverage through the ubiquitous availability of wireless
signals. Furthermore, considering the limited resources of the
VSP deployed in the mobile edge network, we design a pricing
strategy-based incentive mechanism and propose a diffusion
model based approach to generate an optimal pricing strategy.
This strategy maximizes the user’s utility, while encouraging
the VSP to actively participate in service provision, thereby
ensuring the efficient operation of WiPe-GAI. In summary, the
main contributions of this paper are as follows.

We propose WiPe-GAl, a unified framework deployed in
resource-constrained mobile edge networks. The frame-
work combines wireless perception with GAI to provide
AIGC service to users, while also including an incentive
mechanism to ensure its cost-effective operation.
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We propose a novel SMSP algorithm, which sequentially
performs large-scale and small-scale perception on the user
to construct a CSI feature matrix for the skeleton predic-
tion. During this process, the perception at different scales
cooperates by sharing perception results, thus enhancing
the overall perception performance.
We design an incentive mechanism based on pricing to
ensure the framework operates economically and propose
a diffusion model-based approach to generate an optimal
pricing strategy. This strategy maximizes the user’s utility
while encourages the VSP with limited resources to par-
ticipate actively in AIGC service provisioning.
The experimental results demonstrate that the WiPe-GAI
can accurately predict the user’s skeleton and generate the
corresponding virtual character for the user. Moreover, the
proposed diffusion-based method can effectively generate
the optimal strategy that not only yields greater user utility
than existing methods, but also ensures VSP’s participa-
tion, thereby enhancing the efficiency of the framework.
This paper is structured as follows. Section II reviews some
related works. Section III presents the overall framework and
details the design of the WiPe-GAI. The evaluation is given in
Section I'V. Section V summarizes the paper.

II. RELATED WORK

This section offers a review of related works on wireless
perception, diffusion model, and pricing-based incentive mech-
anisms.

A. Wireless Perception

Wireless perception aims to realize various sensing tasks [11],
[12] by processing and analyzing wireless signals. In [13], the
authors used convolution neural network (CNN) to condense the
spatial-temporal information in millimeter wave radar signals,
enabling the conversion of frequency modulated continuous
wave (FMCW) signals to human skeleton. This approach has
also been extended to through-wall scenarios [14]. Another
work [15] used two radar data to generate heatmaps and then
adopts CNN to transform the heatmaps into human skeleton.
Using the radio-frequency identification (RFID), the authors
in [16] first imputed the missing data via tensor completion.
On this basis, they estimated the spatial rotation angle of each
human limb and utilize the angles to reconstruct human pose.
Besides, other researchers have also used WiFi signals to pre-
dict user skeleton [17]. In [18], the authors designed a shared
convolutional module and a transformer, which explores the
spatial information of human pose via self-attention and maps
the WiFi CSI to human skeleton. The authors in [19] proposed
a deep learning approach, which takes WiFi signals as input
and utilizes annotations on two-dimensional images to achieve
pose estimation. Another work WiPose [20] used CNN and long
short term memory (LSTM) to process the angle of arrival corre-
sponding to the reflection signal introduced by the human target,
thereby achieving the human skeleton prediction. Unlike these
WiFi-based methods, which lack targeted processing of wireless
signals, we introduce the SMSP algorithm, which sequentially
performs large-scale and small-scale perception on the user.
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In this process, the perception at different scales cooperates
by sharing perception results, thereby enhancing the overall
perception performance and predicting more accurate human
skeleton.

B. Diffusion Model

The diffusion model is a type of deep generative model [21],
which can generate the sample by learning the reverse diffusion
process [5]. This model is widely used in image generation [22].
For instance, the authors in [23] proposed a unified multi-modal
latent diffusion model, which takes texts and images containing
specified subjects as the input and generates customized images
with the subjects. By introducing cross-attention layers, the
authors in [24] transformed the diffusion model into a generator
for general conditional inputs, making it possible for high-
resolution synthesis in a convolutional manner. Additionally,
the authors in [25] achieved high perceptual quality image
generation with less data, by adopting a novel neural adapter
based on layout attention and task-aware prompts. Besides im-
age generation, recent studies have expanded the application of
the diffusion models to areas such as behavior cloning, policy
regularization [26], and network optimization [27]. As demon-
strated in [21] the diffusion models are capable of achieving
network optimization with or without labeled optimal solutions.
Moreover, they can incorporate changes in external conditions,
such as the cost of unit computing resources, into the optimiza-
tion process. This enables diffusion models to generate solutions
based on given conditions, demonstrating notable adaptability.
Given these advantages, in this paper, we propose to use the
diffusion model to generate optimal pricing strategy for users
and VSPs, thereby ensuring the efficient operation of WiPe-GAL

C. Pricing-Based Incentives

In wireless network, pricing strategies are often used in build-
ing incentive mechanisms, with the aim of enhancing the utility
of the strategy provider [28]. For instance, the authors in [29]
developed a stochastic game to simulate the dynamics between
users and the access point (AP). Here, the AP establishes a price
to maximize its utility, while users strategize their offloading to
minimize both latency and costs. The authors in [30] employed
the Stackelberg pricing game to facilitate spectrum trading be-
tween mobile network operators (MNOs) and wireless spectrum
providers (WSPs), aiming to simultaneously maximize the pay-
offs for both MNOs and WSPs. In another study [31], the authors
introduced a pricing strategy to stimulate content caching among
device-to-device (D2D) users. The simulations indicate that a
uniform pricing scheme with linear rewards is ideal for high
cache quality scenarios, while the discriminatory pricing scheme
with nonlinear is better for evenly distributed cache content.
Additionally, the authors in [32] presented a pricing strategy
by considering both cellular base station’s revenue and network
throughput. Through the tests, they showed that the proposed
algorithm can improve the total transmission rate of vehicular
ad hoc networks by at least 20% compared with the random
selection approach. From these works, we can see that the pricing
strategy incentive mechanisms have better market adaptability

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 11, NOVEMBER 2024

and are more transparent to users and service providers. This
allows the incentive mechanisms to be updated according to
market changes. On this basis, the user can decide whether to
participate in services based on updated price and their own
conditions, which is more friendly to both users and service
providers. Inspired by these advantages, this paper design the
pricing strategy to incentivize the VSP to actively participate in
service provision.

III. SYSTEM DESIGN

In this section, we first provide an overview of the proposed
WiPe-GAI. Subsequently, we introduce the key components,
including SMSP algorithm, the user skeleton extraction, and
the GAI based virtual character generation. Finally, we present
the design of the pricing-based incentive mechanisms and the
diffusion model based pricing strategy generation.

A. System Overview

By taking virtual interactive gaming as an example, Fig. |
illustrates the proposed framework, which involves three core
steps, represented by A, B, and C, respectively. Specifically, in
the step A, a user initiates an AIGC service request. Then, in the
step B, WiPe-GAI employs the proposed diffusion model based
approach to generate an optimal pricing strategy according to
current conditions. After that, in the step C, the VSP provides
AIGC services to the user once the utility brought by the gener-
ated strategy meets the requirements. Concretely, during service
provision, the VSP first runs the proposed SMSP algorithm to
construct the CSI feature matrix. Then, leveraging the trained
neural network, the extracted CSI feature matrix is converted
into the user skeleton, which represents the user’s posture in
the physical world. Lastly, the VSP uses the acquired skeleton
to guide GAI to generate a corresponding virtual character for
the user. In contrast to other guiding strategies based on images
or videos, WiPe-GAI not only offers better protection of user’s
privacy but covers wider range due to the ubiquity of wireless
signals [33]. Meanwhile, the pricing-based incentive mechanism
and the corresponding generated optimal pricing strategy ensure
the entire framework operates efficiently. Next, we will detail the
designs of the proposed WiPe-GALI. To facilitate the description,
we summarize the main notation in Table I.

B. Sequential Multi-Scale Perception

1) Large-Scale Perception: Upon receiving the service re-
quest from the user, the VSP employs the wireless APs around
the user to perform SMSP via the wireless signal transmis-
sion. Using the captured wireless signals, the first step is to
perform large-scale perception. Concretely, assuming that one
AP located at [X¢, Yt] act as the transmitter to send the signals
modulated by the orthogonal frequency division multiplexing
(OFDM) technique, while another AP (denoted as the -th
receiver) located at [Xq, Yq] utilizes a uniform linear antenna
array to receive signals. Then, the CSI obtained by the receiver
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Fig. 1.

Structure of the WiPe-GAI framework. When the user initiates the service request, WiPe-GAI employs the proposed diffusion model-based method to

generate the pricing strategy, as four figures at the bottom show. Once the utility brought by the generated strategy meets the requirements of the VSP, the VSP

provides the AIGC service to the user.

TABLE I
SOME KEY NOTATIONS

Section Notation Definition Notation Definition
M Total number of antennas N Total number of subcarriers
k Antenna spacing c Signal propagation speed
P . U Total number of measurements L Total number of propagation paths
erception 9 Signal AoA Signal ToF
gnal Ao T ignal To
Q Total number of receivers I Identity matrix
F, Rotation matrix H pn, H o] CSI feature matrix
B (") Neural network for converting V into V' S (v) Neural network for predicting V,
Skeleton \4 Video data Vv’ Pose adjacent matrix
dicti H” Output of encoder H” Output of feature extractor
prediction Vo Predicted skeleton LrvsE Loss function
vy Price for per unit of QoS paid by user Q¢ QoS
Incentive Iy Base fee provided by user to VSP Ve Unit cost of computing resources
mechanism Vm User’s gain per unit of QoS E Total computing resources
Utn Utility threshold of VSP T Number of rounds to add noise

can be expressed as

Hip - Hin

(1)

Hwmai-HmN

where Hm n, is the CSI extracted from the m-th antenna and the
n-th subcarrier, M represents the total number of antennas, and
N represents the number of subcarriers. Each element in matrix
H is the sum of the CSI of all the signal propagation paths [33].
For a given specified propagation path I, the corresponding CSI

can be written as

—jonf, tH+(m-1ksin o ¢
HI =gl 121 T 4
m,n m,n

[

where Om, n represents the attenuation introduced by the propa-

gation path, fj, is the frequency of the n-th subcarrier, T(Eu] is the
time of flight (ToF) of the signal arriving at the reference antenna,
k represents the antenna spacing at the receiver (assumed to be
half-wavelength [34]), 9([1” represents the signal angle of arrival
(AoA), ¢ is the signal propagation speed, e J€ represents the

phase error, and nﬁ{n is the noise.
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As can be observed from (2), for each propagation path, the
signal AoA is encoded in the phase difference between the anten-
nas, while the ToF is embedded in the phase difference between
the subcarriers. Consequently, based on H, the two-dimensional
multiple signal classification algorithm is used here to jointly
estimate the AoA and ToF of the propagation path. The basic
idea of this algorithm is the eigenvalues analysis of a correlation
matrix Rx, denoted as

Rx=E XX' = ARsA" +d?l, (3)

where X RM *N 5 obtained by conducting spatial smoothing

on the H, the superscript 1 is the conjugate transpose operator, A
is the array manifold corresponding to X, Rg is the correlation
matrix of the signal matrix, | is the identity matrix, and 02 is the
variance of noise. The matrix Rx has M eigenvalues, among
which the larger ones correspond to eigenvectors that form the
signal subspace Es. According to the information theoretic
criteria [35], the number of large eigenvalues, denoted as L,
can be estimated by minimizing

(M —L)U
M 1 (M -L)
MDL(L) = —log ij'-“ .
M- =L+ N
1
+ EL(2M — L) log(U), 4)

where Aj is the i-th largest eigenvalue, and U is the number
of observations.! Apart from Eg, the remaining eigenvectors
form the noise subspace Ep, which is orthogonal to the steering
matrix a'(8, T) extracted from X. Using this orthogonality, we
can build

1

POD=3 (6,T)ENELa(8,1)’

&)

through which the joint AoA and ToF estimation for each signal
propagation path is achieved by traversing 8 and T, i.e., AoA and
ToF, respectively. In this way, the VSP uses the CSI obtained
from each receiver to estimate the AoA and ToF corresponding
to the user induced reflection. By combining these estimated
parameters, along with the locations of the transceivers, the VSP
calculates the user’s location in the physical world, denoted as
[Xus. Yus]-

According to the Fresnel Zone Theory [37], the user’s posture
has a greater influence on nearby wireless transmission links.
This implies that the CSI obtained from links closer to the user
carries more detailed information regarding the user’s posture.
Hence, the VSP calculates the distance between the user and
each link. By using the link formed by the g-th receiver and
transmitter as an example, this distance is

— [YXus + Y Yus + (Xg — Xt) Yt — (Yus — Vo) %t

D AL A
Y2 4+ Y2

q

(6)

This value is determined based on the data transmission rate during the
perception. For instance, assuming the node is a commonly used WiFi device
with a data packet transmission frequency of 400 Hz. Then, based on the channel
coherence time [36], U can be set as 400 x 0.84 = 34.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 11, NOVEMBER 2024

where Y =Yg — VY, and Y = X¢ — Yq. On this basis, the score
of large-scale perception is calculated according to the computed
distance as follows:

Slg=min{Dy} Dq, q=1,...,Q (7

where min{Dq} represents the minimum distances and Q is the
total number of receivers involved in the perception. As shown
in (7), links closer to the user yield higher scores, reflecting
the richer information that they contain. These scores are sub-
sequently utilized as weights in constructing the CSI feature
matrix, thereby ensuring that links with more information play
a more pivotal role in skeleton prediction. In this manner, the
VSP accomplishes large-scale perception of the user, and the
obtained user’s location is then utilized to aid in the following
small-scale perception.

2) Small-Scale Perception: After large-scale perception, the
VSP further conducts small-scale perception of users to obtain
the CSI that contains more detailed information about user’s
posture. Inspired by the Fresnel Zone Theory [37] and the impact
of user’s orientation and behavior on the wireless link, the VSP
analyzes the signal fluctuation characteristic with the help of the
obtained user location to achieve small-scale perception.

Specifically, the VSP first utilizes [Xus, Yus] and [Xq, Yq] to
calculate the direction of the user relative to the g-th receiver,
denoted as eq. Then, the VSP uses eq to construct a phase
weight for the CSI of the m-th antenna and the n-th subcarrier?,
which is

(m-1)ksin( 8,
Wim.n eq — éannf(Q)

®)

By using this weight, the power received by the g-th receiver in
the direction of 6 at time U can be calculated as

M N 2
PLl 6, = Wmn - Hmn - ©9)
m=1n=1
Then for a power stream with U observations, the VSP employs
unbiased variance to describe the fluctuation features of the
wireless link over this period of time

v — 2
S =—— P o, —P, 8

u=1

(10)

where ISW(Gq) is the average power value during this period.
Based on the variance of each wireless transmission link, the
score of small-scale perception is calculated as

S2,=S2 max S2 (11)

q = S, By

where maX{Sgq } is the maximum among Q variances. From the
above analysis, it can be seen that a link with higher fluctuations
(i.e., influenced more significantly by the user’s posture) tends

to contain more information [37], thereby yielding a higher
score. With the help of large-scale perception results, i.e., user

29q is derived from [Xg, Yq] and [Xys, Yus], where the user’s location is deter-
mined by constraints based on the estimation results from multiple receivers [12].
Hence, Gq is more accurate than 8 and it is employed for small-scale perception.
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mismatched phases of these CSIs may diminish the proportion of user-induced reflections in the CSI sum, consequently degrading the perception performance. In
WiPe-GAI, we propose to rotate the CSIs corresponding to the user to the same direction before summation, as depicted in the second row, thereby circumventing

such an issue.

location, the VSP finishes the small-scale perception of the user
and obtains the corresponding score, which will be integrated
with the large-scale score later to create the CSI feature matrix
for user skeleton generation.

To further improve the user skeleton extraction performance
by combining CSI from all receivers, the VSP performs more
processing on the original CSI data to enhance the user induced
reflection before constructing the CSI feature matrix. Taking
the case of two receivers as an example, for the m-th antenna
and the n-th subcarrier, the CSI obtained by the 1-st and the
g-th receivers are shown in Fig. 2. Here, the blue arrowed line
represents the CSI of the user induced reflection signal, the red
arrowed line is the CSI corresponding to the sum of the signals
from all other paths, and the green arrowed line is the noise. As
shown by the first row in Fig. 2, if the CSIs from two receivers
are directly summed, the phase inconsistency of the CSI among
different receivers may weaken the user induced reflection,
thereby reducing the perception performance. To circumvent
such anissue, the VSP needs to rotate the CSI of the user obtained
by each receiver to the same direction. Recall that the phase (i.e.,
the angle between the blue vector and the Re-axis) of the CSI
corresponding to the user induced reflection is determined by
the ToF and AoA, while the amplitude (i.e., the magnitude of
the blue vector) is determined by the reflection coefficient [38].
Therefore, using the estimated AoA and ToF of the user induced
reflection, the VSP builds a rotation factor matrix. For the g-th
receiver, the matrix is

I:q[l,l] I:q[l,N]
Fo= ! I (12)
F(gM,l] FCEM,N]

where

Fq[m‘n] — ej2r[fn Tg+(m—1)ksin(®@4) ¢ (13)

where fq is the estimated ToF. Next, H is multiplied with Fq to
rotate the CSI induced by the user to the positive direction of

the Re-axis

Hy=H-oF,, (14)

where © is the Hadamard product operator. By performing this
operation to all receivers, the CSI corresponding to the user
induced reflection received by each receiver will be rotated
towards the same direction.

As demonstrated in the second row of Fig. 2, this ensures
that the CSI induced by the user is not attenuated during the
summation process. Following this, the rotated CSI from each
receiver is weighted by the scores acquired by the SMSP algo-
rithm and then aggregated to construct the CSI amplitude and
phase feature matrix, respectively denoted as

H am

o (S1q +S2q)angle (H q)

o1 (S1q +S2g)abs (H q), (1%

where angle{-} and abs{-} are phase and amplitude extractor,
respectively. From (15), it is clear that the derived CSI feature
matrix is abundant with information about user’s posture. Hence,
the VSP uses these matrices to predict user skeleton with neural
networks, which is explained in detail in the following section.

C. Skeleton Extraction

Based on the acquired CSI feature matrix, the VSP further
needs to convert it into skeleton, so as to guide the GAI model
to create the virtual character for the user. To this end, the VSP
utilizes a camera synchronized with the signal receiver to capture
a video stream, from which the user’s skeleton is extracted (via
neural network B(+)) and used as supervision to train a neural
network (denoted as S(+)), as shown in Fig. 3. Finally, based on
the trained neural network, the VSP can convert the CSI feature
matrix into user’s skeleton.

Specifically, let {\, H } be a pair of synchronized training
data, where V is the video frame, H is composed of multiple
samples of H pn and H am, since the sampling rate of CSI is
higher than that of the video frame. To convert the CSI data into
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Key points

Feature
extractor

Fig. 3.

Training process of the network, which converts CSI feature matrix to user skeleton. Note that during the training process, the VSP needs to use a camera

to acquire V', which serves as supervision to optimize the neural network S(-). However, during the operation, the WiPe-GAI needs only the wireless signals to
predict the user’s skeleton, without the use of a camera. This makes the proposed framework applicable to more scenarios where cameras are not applicable.

skeleton data, the neural networks B(+) and S(+) are constructed.
For any given data pair, B(:) takes V as the input and outputs
skeleton data containing 18 points, by using OpenPose [39]. Af-
ter that, these 18 points are transformed into a pose adjacent ma-
trix \VV , and we denote this processas B(V) V  R2x18x18
At the same time, S(*) takes H as input and predicts V),
which is denoted as S(H )  V,  R#*18*18 On this basis,
S(+) is optimized with the supervision of V , to assist training.
The architecture of this network is shown in Fig. 3, where
S(+) includes three components: encoder, feature extractor, and
decoder, which are introduced below.

Encoder: This module is designed to adjust the data dimen-
sionof H through several operations. Specifically, in this paper,
the CSI is collected using an IEEE 802.11ac based AP, with
one antenna at the transmitter and four antennas at the receiver.
One of the receiver’s antennas is used for phase calibration and
the remaining ones for H construction. Because of the different
sampling rates between the camera and receiver, one image is
used to match three CSI measurements. Therefore, we have
H pn R?°6*3 and H 5 R?°%™3, where 256 represents the
number of subcarriers and 3 represents the number of anten-
nas. Subsequently, the encoder removes the CSI corresponding
to subcarriers at the bandwidth edges® and performs down-
sampling to convert[H pn, H am] R*?*3t0[H pn, H am]
R1%0%3_On this basis, three [H ph, H am] are directly stacked
to obtain H pm R150%3>3 - After that, H pm R150%3x3 g
interpolated to obtain H ~ R50%144x144 Concretely, assum-
ing that the values of four adjacent elements in H pn, are
hi1, hyy, hyy, and h,,, respectively, and their corresponding
coordinates are [-,r1,C1], [, r1,C2], [, r2,C1], and [, 2, C2],
respectively. Using these four elements, the element obtained
through interpolation located at [, r, ] is

hye = [hyy (rz = 1) (c2 —¢) + hyy (r —r1) (c2 — )]

+[hyp (r2 = r)(c—c1) + hy (r—r1)(c—ci)],
(16)

3The CSIs of the subcarriers at the edge of the bandwidth have amplitudes
close to 0, containing no useful information [40]. Therefore, we remove the CSI
corresponding to these subcarriers. Specifically, the indexes of these subcarriers
are 1-24, 123-136, and 233-256.

0 0 Edges removing I: " " :I
I:th 2 Ham :I & down sampling > th »Hg,
I
Stacking o
| " Interpolation "
[, |, | (H, > H
Fig. 4.  Structure of the encoder.

where ri < r <rjandc; <cC<Cp. Atlast, H is fed into the
next module for feature extraction. The structure of the encoder
is shown in Fig. 4.

Feature Extractor: Based on H , a feature extractor is used
to learn the effective features for user skeleton prediction. As
deeper networks are known to have greater feature learning
capabilities, the VSP could use them to fully unleash the feature
information contained within H . However, the deeper networks
have potential risks, i.e., the gradient vanishing or exploding in
deep convolutional layers caused by the chain rule in the back-
propagation optimization. These risks also need to be carefully
considered. The ResNet [41], a widely-used network in deep
learning, can alleviate this problem through the use of shortcut
connections and residual blocks. Given this ability, therefore,
four ResNets basic blocks are stacked to form the feature extrac-
tor, as shown in Fig. 5, for learning features H R300%18x18
Note that each convolutional layer is followed in succession
by a batch normalization layer [42] and a rectified linear unit
activation layer [43].

Decoder: The purpose of the decoder is to perform shape
adaptation between H and V . As explained for the encoder,
V is atensor of size 2 X 18 x 18, and the decoder takes H as
the input to predict the matrix Vp, which has the same sizeas V .
Based on the predicted V), we can extract the elements along
the diagonal of the matrix to form the skeleton of the user. To
accomplish this, the decoder utilizes two convolutional layers,
as depicted in Fig. 6, where the first layer primarily extracts
the channel-wise information, and the second layer reorganizes
the spatial information of H using 1 % 1 convolutional ker-
nels. During the training phase, B(VV) 'V is used as the
supervisionand S(H ) V), is the prediction. Hence, the loss
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Parameters_ )
kernel: 3% 3, out-channel: 150, stride: 1 kernel: 3x 3, out-channel: 150, stride: 2
kernel: 3x 3, out-channel: 150, stride: 1 kernel: 3x3, out-channel: 150, stride: 1
kernel: 3x3, out-channel: 150, stride: 1 kernel: 3x 3, out-channel: 150, stride: 1
kernel: 3x 3, out-channel: 150, stride: 1 | kernel: 3x3, out-channel: 150, stride: 1
[—I
Block 1 Block 2 Block 3 Block 4
H ” ﬂ H n
Lt L L
Output size: Output size: Output size: Output size:
150x144x144 150x72x72 300%36x36 300x18x18

Feature extractor

Fig. 5. Structure and parameters of the feature extractor.
Layer 1 Layer 2
kernel: 3x3 kernel: 1x1
Hm —out-channel: 36| out-channel: 2
stride: 1 stride: 1
Fig. 6.  Structure of the decoder.

function is set as the mean squared error (MSE) between V' and
Vp, which is:

2

LMSE: Vp—V 2 (17)

Under the above configurations, the network is trained for 20
epochs using the Adam optimizer with an initial learning rate of
0.001 and a batch size of 32. The learning rate is decayed by 0.5
at the 5th, 10th, and 15th epochs. Upon completion of training,
the model is able to predict V| by leveraging the constructed
CSI feature matrix solely. Finally, the diagonal elements from
V), are extracted and paired to get the predicted user skeleton.
The pairing process can be denoted as

1, 18]
[1,18],

Xp = Vp(lyp,p)’ p

_ (18)
Yp = VP(Z,p,p)' P

where Xy, and Y, are the coordinates of the predicted skeleton.

D. Virtual Character Generation

After obtaining the user skeleton, the VSP needs to further
generate the virtual character and the specific background based
on the user’s requests. Various GAI models have been developed
for such purposes. In this paper, the VSP is deployed at the
network edge to provide such services to the user. Considering
the size of the training dataset, training time, and deployability,
ControlNet [6] is selected for generating digital content for
users. However, unlike previous approaches that use images for
guidance [44], WiPe-GAL utilizes the predicted user skeleton to
direct ControlNet in producing virtual character for the user.

Specifically, we consider a feature matrix ¢ and the neural
network (+; ©), where © is a set of network parameters. In

Neural network
Cinput®)—— N ok )

A. original

@ »| Neural network|, ., '
o> Qo)
@

. ]

Zero 4 g Zero
. 9| Trainabl > .
convolution e ainable copy " lconvolution

B. ControlNet

~]
»

Fig. 7. Structure comparison between the original network and ControlNet.
Building upon the original network, ControlNet creats a trainable block for
external condition training. Meanwhile, the neural network is connected to
the zero convolution layers that are initialized with zero weights and biases.
These parameters are then optimized from zero to their optimal values through
training.

the original network, I'(-; @) can transform the ¢ into another
feature matrix ¢ , i.e., I ($p; ©)=0 , to realize the digital content
generation, which is illustrated in part A of Fig. 7. However, in
this paper, the network is required to generate the corresponding
virtual character for the user under the guidance of the predicted
skeleton. Therefore, ControlNet first locks ©, and then copies
and creates a trainable © , which is trained with an external con-
dition vector . This operation not only mitigates the over-fitting
problem due to a limited number of samples, but also maintains
the quality of the content produced by the original network.
After that, the neural network block is connected to a unique
zero convolution layer, i.e., a1l % 1 convolution layer where both
weight and bias are initialized with zeros, as shown in Fig. 7.
By doing so, such a layer can gradually grow from zero to the
optimal parameters through training. Once trained, the network
can generate corresponding images based on the input feature
matrix ¢ and external condition {. Following this structure, VSP
uses stable diffusion as the core neural network, with the user
prompts serving as ¢ and the extracted user skeleton as the
external condition vector , to generate the virtual character for
AIGC service provision.
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E. Pricing-Based Incentive Mechanism

Given the limited resources of VSP deployed at the mobile
edge networks, we propose a pricing-based incentive mechanism
to ensure efficient operation of WiPe-GAI. In this mechanism,
the user compensates the VSP based on the quality of both per-
ception and virtual character generation services, to encourage
the VSP’s active participation. On this basis, we further propose
a diffusion model based method to generate the optimal pricing
strategy for the implementation of this incentive mechanism.

1) Incentive Mechanism Design: We design a pricing strat-
egy to stimulate a VSP to engage actively in service provision
while maximizing the benefits of users. In particular, assuming
that the VSP provides perception and AIGC services to users,
then the user pays a basic fee, as well as an additional fee based
on the quality of service (QoS) to the VSP. Therefore, the profit
of the VSP can be denoted as

lvsp = VrQ¢ + Iy, 19)
where Vv, denotes the price that the user pays to the VSP for
per unit of QoS, Q¢ represents the QoS, and I, denotes the
basic fee offered by the user to the VSP. Since the service
provided by the VSP consists of the wireless perception and
virtual character generation, the QoS measure should consider
the performance of both tasks. Specifically, wireless perception
provides the skeleton for GAI, and then the GAI generates the
virtual character based on the skeleton and prompt. Therefore,
the following metrics are used.

The reciprocal of the normalized euclidean distance be-
tween V and V is used as Qs to quantify the precision of
the generated skeleton. As more computing resources are
allocated to perception, the VSP can engage more wireless
nodes to participate in perception, leading to a more ac-
curate skeleton. Therefore, we have Qg = (s(Xs), where
Xs represents the computing resources allocated to the
wireless perception and (s(+) is the mapping relationship
between computing resources and QoS.

The Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) and Total Variation (TV) are use as the QoS of
the generated virtual character. Similar to wireless percep-
tion, when more computing resources are assigned to GAI,
the GAI model can execute more inferences, resulting in
better AIGC. Hence, the QoS of AIGC is defined as Qag =
BRISQUE + TV = Gorq(Xag) + Gtv(Xag), where Xag
represents the resource allocated to GAI by the VSP, Gorq ()
is the mapping relationship between computing resources
and BRISQUE, and ¢t (-) is the mapping relationship
between computing resources and TV.*

Based on the above analysis, we can model the total QoS of
the service as

Qt = Qs + Qag = ¢s (Xs) + Gorqg Xag) + Gtv (Xag) - (20)

4These mapping relationships, including ¢s(-), Gbrg(+), and Gev (+) are ob-
tained by fitting real-world test results, which will be explained in detail in
Section IV.
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Given lysp and Qq, the utility function of the VSP can be
obtained as

Uvsp = lvsp — (Xs + Xag) Ve = VrQt + I — (Xs + Xag) Ve,

(21)
where V. is the unit cost of computing resources. Meanwhile,
for users, the utility function can be defined as

Uus = VmQet — (vr Q¢ + Ip) = (Vm — V¢) Q¢ — Iy, (22)

where Vpy, is the gain per unit QoS obtained by user, which is
determined by the market. Based on the aforementioned model,
the pricing strategy offered by users includes I and vy, which
aims to maximize user’s utility and provide rational incentives
for the VSP to agree to the pricing strategy. To obtain an
optimal pricing strategy, we formulate an optimization problem
as follows

max

Vrylb,XSyXag
Xs1Xag argmax Uvsp (Ve Ib, Xs» Xag) »
Xs:Xag

Xs+XagSEti
UVSp XS!Xagvvr1|b1 2Utha

Uus (Vr, Iy, Xs» Xag)

s.t. (23)

where the first constraint is to ensure that the VSP can max-
imize its own utility, the second one comes from the limited
computing resources of the VSP, and the third one is the utility
threshold Ugn, signifying that the VSP only participates in
service provision when the expected utility exceeds this value.
As demonstrated by the above model, the users maximize their
own utility through pricing, while the VSP seeks to optimize
its utility by conducting resource allocation while meeting the
constraints imposed by the provided pricing and limited comput-
ing resources. Therefore, the optimization problem is essentially
a joint pricing and resource allocation problem. Considering
the uncertainty in mapping relationship between computing
resources and QoS and varying prices of computing resources
across different situations, we propose a diffusion model-based
approach to tackle this optimization problem.

2) Diffusion Model Generated Optimal Pricing Strategy:
The diffusion model is a type of latent variable model, which
first introduces Gaussian noise to perturb training samples, and
then learns to perform the inverse denoising process to generate
samples similar to the original. This denoising process allows
the model to understand the underlying structure of the data,
leading to more accurate and realistic generations [27]. Hence,
we leverage the inverse diffusion process to generate optimal
pricing strategy to solve this optimization problem [21].

Specifically, the forward process of the diffusion model is
defined as a Markov chain, wherein T rounds of noises are
sequentially added to the training samples. As T approaches
infinity, the original samples converge to standard Gaussian
noise distribution. For a given distribution Sp, this forward
process can be expressed as follows

T

z (s1:Tlso) = Z (St|st-1)
t=1
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= N s 1—B¢St—1,Bel

t=1

(24)

where {}t=1.7 is the hyperparameter corresponding to the vari-
ance of Gaussian distribution, | is the identity matrix. Therefore,
for given Sp, St can be denoted as

z(st|s)) =N st 9¢So, 1—9¢ |, (25)
where 9 = [_; (1 — Bi). In contrast to the forward process,
the inference stage involves an inverse denoising process to
generate samples. Theoretically, if Z(S¢—1|St) can be obtained,
we can use it to recover the original sample from the standard
Gaussian distribution. However, the acquisition of z(S¢—1|St)
requires knowledge of all pricing strategies in all conditions,
which is difficult to acheive in WiPe-GAI. Therefore, a neural
network is used to learn the following transition relation as
follows

Po (St=1]St) =N Se—1; K (S, 1), 023 (S, )1, (26)

where w is the hyperparameter of the neural network. On this
basis, the inverse denoising process can be described as

1
Po (SoT) =p(ST)  Po (St—1[St)
=T
1
=p(st) N seaiH, (St t),05 61,
=T
(27)

where p(st) = N(s7;0,1). As it can be seen, the purpose of
training the neural network is to learn [, (St, t) and 02 (s, t),

respectively. From another perspective, given Sp, the Bayes
equation can be utilized to obtain

Z (St-1l5t,50) = N se—1; e (5¢) , Bel (28)

v .
where  [e(St) = (St —Bt€ 1—39) J¢ and Pr=
(1 —3¢-1)Bt (1 —I¢). Considering {It(S¢) as the ground
truth, therefore, the learned i, (St, t) is essentially €4, (St, t),
due to the relation

o (S0 t) = :»L sc—

——¢& Gt . (29
t
and the prediction result of the model at step t — 1 is
€u (St t
St-1 (5t t;0) = )»L s - BB LD g (s, e,
1—3
(30)

where e N(O, I).

Building upon the aforementioned model and taking the fac-
tors, such as the cost of computing resources, into consider-
ation, we construct a conditional diffusion model and utilize
its inverse process to generate the optimal pricing strategy.
Specifically, assuming the pricing to be generated is repre-
sented by s = {Vy, Iy}, and the state parameters influencing
the resource allocation and QoS of the VSP are denoted by
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Algorithm 1: Diffusion Model Generated Optimal Pricing
Strategy.

Training Phase:
1: Input hyper-parameters: denoising step T, initialize
neural network parameters w and Vv
##Learning Process
Initialize a random process for pricing strategy
exploration
while not converge do
Observe the current environment
€ = {Ccs Caorqs Ceey s Ve Vi Vim}
Set Sy as Gaussian noise. Generate pricing strategy So
by denoising Sy according to (33)
8: Apply the generated pricing strategy So to the
environment and observe the utility value as (22).
9: Record the real utility value
10: Update Qy by minimizing the mean squared error
between the real and predicted utility values
11:  Update g, according to (34)
12: return The trained solution generation network €g
Inference Phase:
1: Observe the environment vector C
2: Generate the optimal pricing strategy So by denoising
Gaussian noise using €g
3: return The optimal pricing strategy So

AR A

C = {Cce» Caprqr Cry» Ve Vrs Vm ) then the inverse process of the
conditional diffusion model is defined as
1
;0,1 P o (St-1lst,C),
t=T

Py (Slc) =N sT (31)

where p,,(St-1[St,C) can be model as a Gaussian distribution
expressed as N (S¢—1; M, (St, T, C), Ga (st, t,©)1), and the corre-
sponding mean and variance are denoted as

He (Stv t, C) =A%*t St —

O-z) (St! t1 C) = Btlu

Bt <
A%étew (s, 1,0) 32)

respectively. Meanwhile, according to (31), under the condition
of c, the prediction outcome of the conditional diffusion model
inverse process at step t — 1 can be expressed as

Bt
St—1 (51,1, C; @ SV N
-1 (St ) 5 S S

— Ut

€ (51, t,C)

+ 0, (St, t,C) €. (33)

In WiPe-GALl, our objective is to determine the €, capable of
generating the optimal Sp based on the given the condition C.
Here, the Sg is defined as the one that maximizes U,s subject
to the constraints defined in (23). Inspired by the deep rein-
forcement learning paradigm, we redefine certain elements in
our context. Concretely, C is treated as the environment, while
Sp is considered the action. The expected cumulative reward is
represented as the Q-value, denoted as Qy (Sp, €). To manage the
training process, Q-learning is adopted. Hence, the optimal £,
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becomes synonymous with a denoising network that maximizes
the expected cumulative Q-values, which can be expressed as

» [Qv (S0, C)].

argmin L(w) = —Es,

w

(34)

After training, the model is utilized to generate the optimal
pricing strategy, based on which the VSP calculates the best
resource allocation method through convex optimization, so as
to maximize its utility and solve the optimization problem in
(23)). The overall training and inference process is summarized
in Algorithm 1.

IV. EXPERIMENT AND EVALUATION

In this section, we conduct a comprehensive evaluation and
analysis of the proposed WiPe-GAI framework through experi-
ments from two perspectives. First, we evaluate the performance
of the user skeleton extraction and virtual character generation,
based on collected CSI data, to validate the feasibility of WiPe-
GALI Then, based on these results, we derive the mapping func-
tions Cs(+), Gorq(), and Gy (+) through fitting. Subsequently, we
perform experiments to evaluate the efficiency of the proposed
incentive mechanisms.

A. Experimental Configuration

In the experiments, multiple APs equipped with the Broadcom
4366C0 chips and the Nexmon toolkit [45] are used to collect
CSI data based on the IEEE 802.11ac protocol. The AP operates
at 5.805 GHz with the signal bandwidth of 80 MHz (including
256 subcarriers) and the transmission rate of 100 packets per
second. During the perception process, the transmitter utilizes
a single antenna for signal transmission and the receiver em-
ploys four antennas to receive the signal and extract the CSI.
Note that the CSI from one antenna is used for phase error
cancellation and the CSIs from the rest antennas are used for
user skeleton prediction. The proposed algorithms are executed
on an experimental platform constructed on a standard Ubuntu
20.04 system, equipped with an AMD Ryzen Threadripper
PRO 3975WX 32-core processor and an NVIDIA RTX A5000
graphics processing unit (GPU).

B. Wireless Perception to Virtual Character Generation

1) Effectiveness of WiPe-GAI: To verify the effectiveness
of WiPe-GAI, we first conduct experiments on user skeleton
prediction and the virtual character generation, the results are
presented in Fig. 8. Taking the skeleton predicted by Open-
Pose [39] as the ground truth, from the figures, we can observe
that WiPe-GALI can effectively predict the skeleton of the user
by using the proposed SMSP algorithm and the trained S(:).
There are some differences between the predicted skeleton and
the user’s actual posture. For instance, as shown in the second
row of results, there are minor differences in the position of the
predicted and actual knees. However, these differences are slight
and overall, the predicted skeleton is fairly close to the user’s real
posture. This validates the effectiveness of the proposed SMSP
based skeleton extraction.
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Building on this, the predicted skeleton and the user’s prompts
are used as external conditions and prompts, respectively, to
generate the virtual character for the user. As can be seen from the
fourth column in Fig. 8, WiPe-GAl is able to effectively generate
the virtual character based on the predicted skeleton and user’s
prompt. Compared to the results without skeleton guidance in the
fifth column, we can see WiPe-GAI produces a virtual character
that more accurately match the user’s actual posture, demon-
strating the effectiveness of the proposed WiPe-GAI framework.
Furthermore, WiPe-GAI can craft a fitting background for the
virtual character based on user’s prompts, thereby enhancing the
overall naturalness of the generated content.

2) Impact of AP Quantity on Skeleton Prediction: After ver-
ifying the effectiveness of WiPe-GAI, we analyze the effect
of the number of APs on perception accuracy, and compare
our approach with the existing method in [46]. The results are
presented in Fig. 9. As can be seen, the skeleton prediction
performance deteriorates as the number of APs decreases. This
can be explained by the fact that a decrease in the AP quan-
tity causes a reduction in the information about user posture
contained in the CSI feature matrix, which subsequently leads
to a decline in prediction accuracy. However, given the fixed
total computing resource, using fewer APs would free up more
resources for the virtual character generation, which can enhance
the AIGC quality. Furthermore, we can see from Fig. 9 that
with the proposed SMSP algorithm, the predicted skeleton is
improved compared to directly using the original CSI data for
skeleton prediction, especially when fewer APs are involved.
For instance, when only one AP participates in perception, the
skeleton predicted by our algorithm can roughly indicate that
the user is in a standing position, while the prediction of [46]
implies that the user is in a squatting position, which does not
match the ground truth.

We conduct multiple predictions with varying numbers of
APs and analyze the prediction accuracy by employing the
reciprocal of the normalized euclidean distance between the
predicted skeleton and the skeleton obtained by OpenPose as
the metric. The blue and red bars in Fig. 10 illustrate that for
both the proposed WiPe-GAI framework and the method in [46],
an increase in the number of APs participating in perception
leads to the CSI feature matrix containing more user information,
which in turn results in higher prediction accuracy. Specifically,
when only one AP is used, the prediction accuracies of the
proposed WiPe-GAI and the method in [46] are about 5.7 and
4.2, respectively. However, when the number of APs is increased
to five, the prediction accuracies of these two methods rise to
about 23.5 and 22.9, respectively. Additionally, as the number
of APs grows, the performance of the method in [46] gradually
becomes closer to that of WiPe-GAL This is because more APs
provide a greater amount of information about the user’s posture,
leading to more accurate predictions, even without specialized
signal processing.

By fitting the prediction results of both systems, the mapping
relationships between the number of APs and the perception
accuracy can be obtained, as shown by the red and blue lines in
Fig. 10. From the fitting results, it can be seen that the overall
prediction performance of WiPe-GALI is better, especially with
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OpenPose

Predicted

Prompt: A dinosaur in the forest

AIGC with guidance AIGC without guidance

| Pae

Prompt: The batman in the sky

Prompt: The kung fu panda

Prompt: captain America with shield

r

Fig. 8.

Predicted user skeleton and the generated virtual character. In the figures, the first column presents the user’s posture captured by camera in the real-world

scenario. The second column are the skeletons predicted by OpenPose based on the video sequence. The third and fourth columns, respectively, illustrate the user’s
skeleton predicted by WiPe-GAI and the generated corresponding virtual character. The fifth column displays the generated virtual characters without the guidance

of skeleton.

The number of AP

Predicted with the
proposed SMSP

Ground truth
via OpenPose

Predicted without the
proposed SMSP

Fig. 9. Impact of AP quantity on skeleton prediction.

fewer APs, demonstrating the effectiveness of the proposed
SMSP algorithm. Essentially, the obtained mapping relationship
signifies how computing resources relate to perception accu-
racy, as more APs used in perception lead to larger amount
of resources use for prediction. Therefore, we use the fitted
relationship as ¢s(-) for the following analysis.

3) Impact of Inference Steps on Virtual Character Genera-
tion: In addition to the perception, we also analyze the impact of

the number of inference steps on the virtual character generation
and the results are illustrated in Fig. 11. From the figures, it is
clear that the quality of the generated virtual character improves
as the number of inference steps increases. Specifically, the
virtual character generated with only 2 to 3 inference steps
are in black and white, with incomplete character limbs, as
shown by the first two figures of Fig. 11. However, with more
inference steps, these issues are effectively alleviated, exhibiting

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:40:55 UTC from IEEE Xplore. Restrictions apply.



10356

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 11, NOVEMBER 2024

40 | | | |
The fitting result of the propojed method | | |

35 : : !
. The fitting result of work [42] | | |
g0 i [ [ [

I : : :
§ 25 I I | |

g 20 ! ! ! .lm-m./
2 ! ! ! i
g ! ! 4T I '
S . . A
£10 : |\|n|mn|||’“”'m-‘ | ‘ H | '
; [ ‘ : ‘ ‘ | | 8
s | | ——— i T A | i i
| A L '
T T I | |
1 AP 2 APs 3 APs . . 4 APs 5 APs
The number of AP involved in perception

Fig. 10.

Relation between the number of APs involved in perception and the perception performance.

Fig. 11. Impact of inference steps on virtual character generation.
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Fig. 12. TV value versus the number of inference steps.

a character with more thematic color, complete limbs, and
less noise in the background. This is understandable, as more
steps implies that the GAI model can perform more in-depth
denoising, thereby producing higher quality results.

On this basis, we further calculate the BRISQUE and TV val-
ues based on the images generated from multiple experiments.
The results, represented as data points, are shown in Figs. 12
and 13. According to the results, we can observe a decrease
in the TV value, from around 78 to 32, and a decline in the
BRISQUE value, from approximately 55 to 3, as the number of

BRISQUE)

10

Inference steps

Fig. 13.  BRISQUE value versus the number of inference steps.

inference steps increases from 1 to 10. These trends suggest a
significant improvement in the naturalness and smoothness of
the generated image, which contains the virtual character and
the corresponding background, while also showing that GAI
consumes more resources. By fitting these data points, we obtain
the relationship between the computing resources allocated to
GAI and the quality of the generated digital content, as the
blue curves show. Hence, we use them as Cey () and Cprq(+) for
subsequent analysis.
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Fig. 14.  Training curves, with the diffusion step of 10, batch size of 512, soft

target update parameter of 0.005, discount factor of 0.95, exploration noise of
0.01, and learning rate of 1075,

C. Incentive Mechanism Analysis

1) Pricing Strategy Generation: Utilizing the obtained ¢s("),
Cev(+), and Corg(-), we analyze the performance of WiPe-GAI
in generating optimal pricing strategies. Moreover, we com-
pare the generated strategies with those extracted by two DRL
algorithms, i.e., Soft Actor-Critic (SAC) [47] and Proximal
Policy Optimization (PPO) [48]. Specifically, the PPO realizes
optimization by using a clipped surrogate objective to update the
policy iteratively, which can provide smooth policy changes. The
SAC is an off-policy algorithm, which maximizes the expected
cumulative reward and the entropy of the policy by learning a
stochastic policy. During the experiments, we assume that the
VSP has a total of 100 units of computing resources, with pro-
cessing the CSI of a single AP consuming 2 units, predicting the
skeleton requiring 1 unit, and executing an inference consumes
2 units.

The results in Fig. 14 show the achievable reward against
the training epoch of WiPe-GAI in comparison with SAC and
PPO. From the experimental results, it can be observed that,
under the preset number of epochs, the proposed algorithm has
already converged, while SAC and PPO do not show a clear
trend of convergence, indicating that the proposed algorithm
converges faster. Moreover, the reward of WiPe-GAl is about
1000, whereas DRL-SAC and DRL-PPO can achieve around 970
and 960, respectively, which is lower than that of the proposed
algorithm. We attribute this to two primary factors. First, WiPe-
GALI has a better sampling quality because diffusion model can
reduce the influence of uncertainty and noise through multiple
rounds of fine-tuning. Second, unlike traditional neural networks
that only consider the input at the current time step, the diffusion
model can generate samples for more time steps by fine-tuning,
providing a stronger processing capability for tasks with long-
term dependencies.

Using the trained models, we further compare the optimal
pricing strategy design capabilities of different models under
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Fig. 15. Generated optimal pricing strategy and the corresponding utility of
the user and VSP.

a given environment state. As can be seen from the results in
Fig. 15, the strategy generated by the proposed method (with
I, = 13and v, = 35) yields a user utility of 910, higher than 787
and 737, which are achieved by SAC (with I, = 17 and v, = 43)
and PPO (with I, = 15and v, = 46), respectively. A noteworthy
detail is that the VSP’s utility provided by the optimal pricing
strategy generated by the diffusion model stands at 496, which is
lower than SAC’s 557 and PPO’s 626. We believe this trade-off
isreasonable, as the pricing strategy aims to maximize the utility
of the user while still incentivizing the VSP’s participation.

At the same time, it is worth noting that a trained model
typically requires only a small number of inference steps to
generate an optimal pricing strategy. This contrasts with image
generation processes, which often necessitate a large number of
inference steps. The reason for this difference is that, in solving
optimization problems using diffusion models, extending the
number of inference steps beyond a certain threshold does not
proportionally improve the optimization performance. Instead,
it causes higher consumption of computing resources and en-
ergy. Moreover, an excessive number of inference steps may
lead to overly deterministic decision-making solutions, thereby
hindering the model from exploring and adapting to unknown
environments.

2) Impact of Perception on Incentive Mechanism: In some
practical scenarios, the number of APs may be relatively limited.
Hence, we analyze the influence of the number of APs on the
incentive mechanism and the results are presented in Fig. 16. As
can be seen, when the total number of APs is relatively small,
an increase in the number of APs improves the utility of both
the user and VSP, while reducing Vv, and the total fee that the
user needs to pay. Specifically, when only one AP is involved
in perception, the generated optimal pricing strategy is (I, =
13, vy = 41), and the utility of the user and the VSP are 575 and
341, respectively. However, when the number of APs increases
to 6, I, goes up to 17 and v, drops to 34, while the utilities of
the user and the VSP increase to 1016 and 450, respectively.

This is because with few APs involved in perception, the
QoS of perception (i.e., Qs) is low, driving the VSP to allocate
more resources to the GAIL The aim of WiPe-GAI adopting this
strategy is to enhance Q¢ by increasing the number of inference
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steps, thereby maximizing the VSP’s utility and guaranteeing its
participation in service provisioning. However, once the number
of inference steps reaches a certain level, the rate of increase in
Q¢ slows down, which forces the user to further increase vy to
ensure the VSP’s participation in service provision. Fortunately,
as the number of APs gradually rises, the QoS improvement
achieved through perception exceeds that of AIGC when con-
suming one unit of energy. As aresult, the VSP reallocates some
of the resources originally designated for GAI to perception,
which maximizes the its utility and ensures its participation in
service provision. From another perspective, this reallocation
not only reduces Vy but also enhances the user utility, verifying
the rationality of the generated strategy and further illustrating
the effectiveness of the WiPe-GAI.

D. Discussion

In the experiments presented above, we evaluate the proposed
WiPe-GAI framework from perspectives of skeleton prediction,
virtual character generation, and incentive mechanism. From
these results, we can observe the following critical points:

The proposed SMSP algorithm utilizes the information
about user posture contained within CSI more effectively,
enhancing the performance of user skeleton prediction and
outperforming the method without SMSP.

Using the predicted skeleton and user’s prompts, WiPe-
GAI can effectively generate the virtual character and
the corresponding background for the user, verifying the
effectiveness of the proposed framework.

The proposed diffusion model based method can efficiently
generate the optimal pricing strategy, better than the con-
ventional DRL based methods in terms of maximizing the
user’s utility and speed of convergence.

Besides these achievements, the proposed WiPe-GAI has
certain limitations, which are summarized as follows:

The proposed SMSP improves the performance of CSI-
based skeleton prediction, but it may show unsatisfactory
results when fewer APs are available. One possible solution
for this issue is to optimize the deployment of APs, so that
each AP can collect more non-overlapping information at
different spatial locations for prediction.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 11, NOVEMBER 2024

WiPe-GAI only uses image as examples of the generated
digital content. Yet, practical applications may require
video streams to be produced for users. Given that video
generation demands more resources, retraining the diffu-
sion model is necessary. However, the framework and opti-
mization strategies proposed in this paper remain effective.
While the proposed diffusion based model demonstrates
faster convergence in optimal pricing strategy generation,
each execution involves a multi-step denoising process,
which is not outstanding in terms of efficiency. Considering
the complexity of real-world applications, further improv-
ing the efficiency of the proposed model is necessary.

V. CONCLUSION

This paper introduces WiPe-GAl, a framework that combines
wireless perception with GAI to provide the AIGC service
to users. In WiPe-GAI, we prpose a novel SMSP algorithm,
which uses CSI to predict the user’s skeleton, thereby guiding
the GAI to generate virtual characters for the user. Further-
more, to encourage the VSP to participate in service provision,
WiPe-GAI builds an incentive mechanism based on pricing and
incorporates an new diffusion-based method to generate optimal
pricing strategy, which maximizes user’s utility while ensuring
the VSP’s participation. Through comprehensive experiments, it
is demonstrated that WiPe-GAI can accurately predict the user’s
skeleton and generate the corresponding virtual character for
the user. Furthermore, the proposed diffusion-based approach
can effectively generate the optimal pricing strategy, which not
only yields greater user utility, but also ensures that the VSP’s
participation, outperforming the existing DRL based methods. In
the future, we will refine WiPe-GAI by incorporating additional
factors such as communication loss and multi-user concurrency.
Meanwhile, we will continue to explore the utilization of diffu-
sion model-based optimization in different domains.
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