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Abstract—In the age of Artificial Intelligence of Things (AIoT),
human pose tracking has attracted increasing interest in many
fields. To address the limitations of conventional vision based
pose tracking techniques, Radio Frequency (RF) based pose
monitoring has been proposed in recent years. However, most
of the existing RF-based approaches depend on a vision-aided
multi-model learning model, which requires extensive labeled
data for supervised training. Collecting such large amounts of
training data is time-consuming and costly. In this paper, we
address this issue by proposing a Generative Adversarial Network
(GAN) based data augmentation method, termed RFPose-GAN,
to generate synthesized datasets to assist the training of multi-
model neural networks. Our experimental results demonstrate
the efficacy of the proposed data augmentation approach on
improving the performance of 3D human pose tracking when
there is only a limited amount of training data.

Index Terms—Radio-frequency identification (RFID), 3D hu-
man pose tracking, Generative Adversarial Network (GAN), Data
augmentation.

I. INTRODUCTION

With the fast development of Artificial Intelligence of
Things (AIoT), human pose tracking has been widely used
in many application domains, such as safety surveillance,
human-computer interaction, and somatosensory gaming [1].
Computer vision-based techniques have been shown effective
in many cases, but their performance is usually constrained
by the illumination condition, camera angle, and obstacles in
the line-of-sight path. Using a video camera frequently raises
privacy concerns. To address these limitations, researchers
have resorted to radio frequency (RF) sensing based solutions,
where various RF technologies have been exploited, such
as WiFi, Frequency Modulated Continuous Wave (FMCW)
radar [2], and Radio Frequency Identification (RFID) [3]. Al-
though effectively addressed all the above issues, RF sensing-
based solutions also bring about many new challenges, such
as noisy and sparse RF data, susceptible to environmental
interference, and difficulty in extracting human motion related
features from RF data. It has been shown that a multi-model
learning approach would be useful, where vision data is used
for supervised training of the model to learn human activity
features from RF input data [2], [3].

To be resilient to environmental interference, the near-field
communication technology, RFID, has been utilized for human
pose tracking, where RFID tags are used as low-cost wearable
sensors [4]. The several existing RFID-based pose tracking
systems have demonstrated the feasibility and high potential
of this approach. In such systems, passive tags are attached to

the human body, so that the collected RFID phase data can
carry the features of body movements. For example, the RFID-
Pose system [4] adopts the vision-aided multi-model learning
design, where a deep kinematic neural network is trained with
the synchronized data sequences sampled simultaneously by
a Kinect 2.0 device and an RFID reader, respectively. After
training the deep learning model, RFID-Pose can learn body
motion related features from RFID data and reconstruct a 3D
human pose in real time without needing vision data anymore.

One downside of the vision-aided method is that the
training process requires a large amount of synchronized, or
paired, RFID and Kinect data. The dataset collection is time-
consuming; the test subject needs to keep on performing many
activities for an extended period of time in front of the Kinect
camera and RFID reader. In addition, to improve the general-
izability to different deployment environments or different test
subjects, the training dataset should possess high diversity with
respect to various environments and body forms [5], [6]. One
solution to this problem is meta-learning [5], where a model
is pre-trained first using a variety of data, and then fine-tuned
using a small amount of new data when deployed in a new
environment. Alternatively, we propose an effective data aug-
mentation approach to generate a large amount of synthesized
training data to avoid the cost of dataset collection [7], [8].
We find that generating human pose data may not be that
expensive, because pose data can either be extracted from
videos or simulated by a 3D animation software [9]. To this
end, the key challenge is how to generate the synthesized RFID
phase data that is paired with a given human pose sample.

In this paper, we address the above challenge by devel-
oping a Generative Adversarial Network (GAN) based data
augmentation system, termed RFPose-GAN, to generate syn-
thesized training data at a low cost. The RFPose-GAN system
requires a given pose dataset. It will then synthesize RFID
data samples paired with each sample in the pose dataset.
As discussed, the pose data can be sampled using a camera
or even be simulated, so collecting the human pose dataset
will be inexpensive. Then, we use RFPose-GAN to generate
synthesized RFID phase data sequence, which is synchronized
with the given pose data sequence. Such synthesized, paired
data generated by RFPose-GAN will be useful for supervised
training of the multi-model deep learning network used in
RFID-based human pose tracking systems, to achieve a good
performance when only a small amount of real sampled data is
available. Through an experimental study, we demonstrate that
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Fig. 1. Overview of the proposed RFPose-GAN system.

the proposed RFpose-GAN can effectively reduce the amount
of real sampled data required for model training, so the cost
of training dataset collection will be significantly reduced.

The main contributions of this paper are summarized as:

• To the best of our knowledge, RFPose-GAN is the first
data augmentation system to effectively reduce the cost
of training data collection for RFID-based pose tracking.

• We design the GAN-based model to generate synchro-
nized RFID data paired with the given human pose
data. The generator in the GAN model is designed to
extract features from the human pose data, while the
discriminator is responsible for identifying whether the
generated fake data is similar to the real synchronized
RFID data.

• The proposed data augmentation system is implemented
and evaluated with extensive experiments. The results
show that the proposed data augmentation technique can
effectively enhance the performance of 3D human pose
tracking with only a small amount of real sampled data.

The rest of this paper is organized as follows. We discuss the
RFPose-GAN design in Section II. In Section III, we present
our experimental study. Section IV concludes this paper.

II. DESIGN OF RFPOSE-GAN

A. System Overview

The architecture of RFPose-GAN is presented in Fig. 1.
As the figure shows, the main idea is to train an optimized
generator, which can generate synthesized RFID data from
the given human pose data. For offline training of the GAN
model, we first collect synchronized RFID phase data and
human pose data. In the generator, a recurrent autoencoder
is used to learn the body movement features from the human
pose data. Then the extracted feature is translated into fake
RFID data. However, the generated fake RFID phase data
may not be useful for training the deep learning network in
RFID-based pose tracking systems. The GAN model has a
discriminator to identify whether the generated fake data is
similar to the real RFID data. Specifically, the discriminator
will calculate a realistic score to identify the similarity between
real RFID data and generated fake data. When the realistic
score reaches a predefined threshold, the generated fake data
will be considered as useful data, i.e., the discriminator cannot
decide whether the data is fake or not. During online testing,
the well-trained generator will generate synthesized RFID data
paired with the given human pose data.

Fig. 2. The generative adversarial network model designed for RFPose-GAN.

B. Deep Network Design in RFPose-GAN

The detailed architecture of the proposed GAN model is
plotted in Fig. 2. As the figure shows, the GAN architecture
is leveraged to generate synthesized RFID data [10]. The goal
of training the GAN model is to learn and map the features of
ground truth RFID data, paired with Kinect captured poses,
to synthesized RFID data. The 3D pose data is obtained
using Kinect in the form of consecutive 3D coordinates of
12 human joints. The GAN network comprises two key parts:
(i) a Recurrent Autoencoder as the generator and (ii) a 1D
convolutional neural network as the discriminator. In the
Recurrent Autoencoder, the Recurrent Neural Network (RNN)
is used for learning and extracting the time-series features of
Kinect data, which has a simple yet powerful model structure.
In the generator, the features of Kinect data are first extracted
by the Recurrent Encoder and kept in the hidden layers, where
256 gated recurrent units (GRU) are incorporated to compute
the encoding outputs. The encoding outputs in the previous
time slot are then fed into the next encoder along the timeline.
As a result, the Recurrent encoder can learn features of Kinect
data from both the present time and the previous time. The
next step is to leverage the Recurrent decoder to transform
the extracted features kept in the hidden layer into synthesized
RFID data.

The synthesized RFID data is further evaluated by the dis-
criminator. The proposed discriminator consists of four hidden
layers, each being a 1D convolutional layer. 1D convolutional
layers are selected because of their ability for extracting
temporal features. The other input to the discriminator is the
ground truth RFID data that is, in essence, the phase variations
collected from 12 RFID tags in consecutive time slots. The
first hidden layer has 64 kernels and a leaky ReLU function
to compute the layer outputs. The second hidden layer has 128
kernels, the third layer has 256 kernels, and the fourth layer
has 512 kernels. Each of the three hidden layers’ convolution
outputs is fed through a batch normalization function and then
a leaky ReLU function. The kernel width of all the layers is
set to 1. In the end, the output of the fourth hidden layer is
fed into a final 1D convolutional layer to flatten it as a logits
vector for realistic score calculation.

Fig. 3 illustrates an example of the synthesized RFID data
by the GAN generator. The RFID data here refers to the RFID
phase variations in the responses received from each of the
12 tags that are attached to the 12 joints of the test subject.
Before this work, RFID phase variations have already been
collected and orgznied in the form of 3rd-order tensors. Fig. 3
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Fig. 3. Example of synthesized RFID data generated by RFPose-GAN.

depicts the phase variations of the 12 joints that are received
by one out of the three RFID antennas in 71 consecutive
time slots. The upper plot presents the phase variations of
the synthesized RFID data, while the lower plot illustrates the
phase variations of the ground truth RFID data. We can see
that there is considerable overall similarity between these two
for each of the joints and over time. This example visually
validates that the RFpose GAN model is capable of generating
RFID data that can be as good as the ground truth RFID data,
as the generator can successfully fool the discriminator with
the synthesized RFID data after being well trained.

III. EXPERIMENTAL EVALUATION

A. System Configuration and Data Collection

To evaluate the performance of RFPose-GAN, we develop
a prototype system with an off-the-shelf Impinj R420 reader,
which is used to interrogate passive ALN-9634 (HIGG-3) tags
using three S9028PCR polarized antennas. The human pose
data used for training the proposed generator is collected with
a Kinect 2.0 device. The original dataset is collected for three
subjects in five different environments, which will be used
to train RFPose-GAN. The augmented dataset is comprised
of the original RFID data and the synthesized RFID data
generated by RFPose-GAN. Five different types of activities
are included in the this study, including boxing, drinking,
squatting, hand waving, and walking. It takes about 8 hours to
train the RFPose-GAN with 30 training datasets consisting of
different movement types with a GTX 1660 Ti Graphics card.

Three datasets consisting of different training data samples
are used to highlight the efficacy of data augmentation. The
first dataset, Dataset 3Act, includes three different types of
activities, and the second dataset, Dataset 5Act, consists of
five different types of activities. Each of these two datasets
only include a small amount of samples for each type of
activity, which are only 71 frames in total. The third dataset,
Dataset Aug, is the augmented dataset by RFPose-GAN,
which contains both the real samples and the synthetic samples
for each of the five types of activities. The augmented dataset
includes 284 frames (213 synthesized plus 71 sampled) for
each type of activity. The test dataset includes real samples
for all five types of activities mentioned above, but is distinct

from any of the training datasets, so that the trained model
can be realistically evaluated with new, unseen data.

B. Evaluation Results and Discussions
To showcase the benefits of the data augmentation approach,

we train the same RFID-Pose model [4] with the augmented
dataset and an original small dataset, respectively. The trained
models will then be used for 3D human pose tracking using the
same new RFID test data. Snapshots of testing results when
the subject is walking are presented in Fig. 4 and Fig. 5. In
both figures, the left-hand-side plot (blue) is the ground truth
pose obtained by Kinect. while the right-hand-side plot (red)
is the pose estimated using the trained RFID-Pose model. As
shown in Fig. 4, the estimated pose using the model trained
with augmented data is quite close to the ground truth. On
the other hand, Fig. 5 shows that the estimated pose obtained
using the model trained with the original small dataset, even
though roughly mimicking the ground truth pose, exhibits
some apparent differences from the ground truth, e.g., the
estimated right arm and right leg. In fact, the estimated four
limbs using the limited training dataset struggle to imitate the
ground truth pose all the time. This example demonstrates that
the model trained by the augmented dataset achieves a higher
accuracy on estimating the joints positions, despite that the
original dataset only consists of a limited amount of ground
truth RFID data.

The performance of RFPose-GAN is also evaluated on
estimating different types of poses. We use the Euclidean
distances between the joint positions in the estimated 3D pose
and that in the corresponding ground truth pose to indicate
estimate error. The overall estimation error Eall used in our
experimental evaluation is given by:

Eall =
1

12

12∑
n=1

||P̂n − Ṗn||, (1)

where P̂n represents the estimated position of joint n, Ṗn

denotes the ground truth position collected by Kinect 2.0 for
joint n, and ||P̂n− Ṗn|| is the Euclidean distance between the
two 3D positions.

Fig. 6 shows the mean pose estimation error comparison
for the three models that are respectively trained using the
three datasets. A trained model with insufficient data usually
performs poorly when tested on unseen data. The model
trained using Dataset 3Act has the largest errors for all the
five tested activities, which are all greater than 11.41cm. The
model trained with Dataset 5Act performs relatively better,
but its smallest mean error among the five activities is still
7.46cm (for walking). The poor performance is as expected
due to the limited amount of data used for model training.
With data augmentation, the accuracy of pose estimation is
considerably improved across all the tested activities. The
largest error of the model trained by Dataset Aug is 7.84cm
for squatting, which is lower than the minimum error of the
other two models.

The efficacy of data augmentation can be further demon-
strated by the Cumulative Distribution Function (CDF) curves
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Fig. 4. Example of the estimated pose obtained by the trained model using
the augmented dataset.

Fig. 5. Example of the estimated pose obtained by the trained model using
the limited original dataset.
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presented in Fig. 7. It can be seen that the median error
is 3.77cm for the augmented model, 5.97cm for the model
trained with Dataset 5Act, and 6.61cm for the model trained
with Dataset 3Act. The largest error for the augmented model
is significantly smaller than that of the other two models.
These results validate that the proposed RFPose-GAN can
effectively generate synthesized RFID data that are useful. The
RFID pose model trained with the augmented dataset estimates
human pose more accurately than the models that are trained
with the unaugmented datasets.

IV. CONCLUSIONS

In this paper, we proposed RFPose-GAN for data augmen-
tation for RFID-based 3D human pose tracking. Our approach
was to augment the existing RFID dataset by generating
synthesized samples paired with given pose samples using a
GAN model. Through an experimental study, we demonstrated
that the cost of data collection for vision-assisted RFID-based
3D human pose tracking can be greatly reduced with the
proposed data augmentation approach, and the synthesized
RFID data is useful for training the deep pose tracking model.
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