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Abstract—With the rapid development of the information tech-
nology, the number of devices in the Internet of Things (IoT) is
increasing explosively, which makes device identification a great
challenge. Deep neural networks (DNNs) have been used for
device identification in IoT due to their superior learning ability.
However, DNNs are susceptible to adversarial attacks, which can
greatly degrade the accuracy of deep learning (DL) models for
device identification. The adversarial attack is one of the funda-
mental security concerns for DNNs, and it is of great importance
to study the generation of adversarial examples and to exam-
ine the attack effects for the design of robust DNN-based device
identification schemes. In this article, we examine the effects of
nontargeted and targeted adversarial attacks on convolutional
neural network (CNN)-based device identification and propose
combined evaluation indicators of logits to enrich the evaluation
criteria. Our experimental results demonstrate that the identifi-
cation accuracy degrades with the increase of the perturbation
level and iteration step size, and the proposed combined evalua-
tion indicators are effective to show the individual device signal
differences. The insights from this study will be useful for the
design of robust DL-based IoT systems.

Index Terms—Adversarial attacks, convolutional neural
network (CNN), deep learning (DL), device identification,
Internet of Thing (IoT) security.

I. INTRODUCTION

THE INFORMATION technology and communication
networks are developing rapidly in the upcoming 6G

era [1], [2], which provides a technical foundation for the
interaction of a large number of devices and the genera-
tion of massive data in the Internet of Things (IoT). Modern
information technology has greatly promoted the explosion of
the IoT, enabling it to support numerous networked devices
more efficiently and conduct fast transmission [3]. However,
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in the increasingly large-scale modern IoT, the numbers
of devices and signals have exploded, and distinguishing
each unique device and signal has become a challenge [4].
Therefore, the device identification technology and its security
strategy are growingly becoming a hot topic in the field [5],
which aims to provide a safer and smarter decision-making
method for the IoT.

Generally, automatic modulation analysis (AMC) plays an
important role in signal recognition, which can effectively
ensure the security of the physical layer [2], [6]–[8]. The radio
frequency (RF) fingerprint identification method based on
machine learning has been shown to address the authentication
issues effectively [9], and promote the development of wire-
less device security systems in the IoT. However, traditional
identification technologies may have limited practical impacts
in the continuously more complicated IoT [10]. Traditional
methods are faced with challenges, such as massive training
samples [11], noise influence, and high-dimensional feature
learning [12]. In order to solve the above problems, researchers
try to apply deep learning (DL) in the IoT [13] and some
DL-related methods have been proposed for the works of sig-
nal recognition [14], [15]. DL has many advantages in device
identification, such as excellent automatic analysis capabil-
ities [16], individual feature extraction without complicated
processes [17], a fully trained model with a small number
of training samples, and the ability to characterize individual
signals with fewer fingerprint feature dimensions [18].

However, some security issues arise while DL provides a
powerful technical method. Recently, the IoT faces much more
risks than before with DL models widely used, posing a great
threat to the training process, testing process, and privacy secu-
rity of the models. Data poisoning attacks [19] and backdoor
attacks [20] will destroy the integrity of IoT model training.
Adversarial attacks [21]–[25] threaten the complete model test-
ing by means of algorithm flaws. Privacy inference attacks [26]
causes data leakage based on gradient updates. The adversarial
attack is a malicious behavior that uses adversarial examples
to deceive the models, which seriously threatens the stability
of the IoT. Szegedy et al. [27] first showed that introduc-
ing a carefully designed weak perturbation could trick the
DL classifier to produce completely wrong prediction results
in the image classification task. Such weak perturbation is
called adversarial examples, which refer to the input exam-
ple created by deliberately adding subtle perturbations to the
data sets. The perturbed input data fool the machine learning
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Fig. 1. Schematic diagram of the IoT under the adversarial attacks.
Adversary will destroy the reliable transmission of IoT by carefully designed
perturbations, causing serious identification security risks.

model to produce error output with high confidence. Presently,
adversarial examples have been demonstrated to seriously
degraded the reliability of DL models in computer vision [28],
speech recognition [29], and text classification [30].

It is worth noting that Sadeghi and Larsson [31] applied
adversarial examples to modulation recognition for the first
time, and found that the DL model in signal recognition is
also vulnerable to adversarial attacks. Since then, adversarial
attacks in the signal domain have aroused widespread research
interests. Exploratory attacks are applied to the IoT, caus-
ing serious losses in wireless communication throughput [32].
RF signal adversarial examples can cause misclassification
with small waveform changes [33], [34]. In [35]–[37], the
over-the-air (OTA) attacks have been considered with chan-
nel effect, exposing the vulnerability of the receiver against
wireless adversarial attack. In addition, the targeted attacks in
the RF signals have also been verified in [38], demonstrating
the attacker can make the machine learning model output the
expected category. According to [39], most researches focus on
digital attacks, that is, adversarial attacks are lunched directly
at the receiver, which can damage the performance of device
sensors in the IoT. As shown in Fig. 1, the adversarial exam-
ples can cause serious disasters to the IoT, such as damaging
the equipment authentication, device identification and reliable
transmission, and harming the communication security and pri-
vacy protection in the IoT. Although methods for safe device
authentication in the IoT has been proposed [40], adversarial
attacks can often break the common security system.

In order to make a credible evaluation of the signal adver-
sarial examples, some evaluation standards are proposed. In
previous work, Lin et al. [41], [42] evaluated the impercep-
tibility of adversarial examples by recovering and comparing
the waveforms before and after the signal was perturbed. The
fitting difference of the waveforms was also used to measure

the detectability of an adversarial attack [43]. The statistical
test analysis before and after the perturbation was depended
on the peak-to-average-power ratio of the data points in [44].
Bit error rate is introduced for the evaluation of adversarial
examples in [45]. However, the above works utilized mod-
ulated signal data sets rather than actual individual device
signals. Moreover, these evaluation indicators are only used
for nontargeted attacks, and cannot measure the targeted attack
performance against the models. The objective analysis of the
output given by the key network layers can also provide an
important reference for developing the security strategy of
the IoT.

In this article, we verify the threat of adversarial attacks on
individual device identification, and explore the factors that
affect the effectiveness of nontargeted attacks and targeted
attacks. Due to the diversity of the generation methods of
adversarial examples, it is universally significant for nontar-
geted attacks and targeted attacks to explore the maximum
perturbation limit range and iterative step length. In addition,
we train the complex neural network [46] by generated data
sets to recognize the individual devices. Since the complex
neural network is a DL technology that has been proven effec-
tive in signal processing, which has achieved good results in
tasks such as AMC [47].

Then adversarial examples of individual device signals are
generated to evaluate this model performance.

In particular, we propose combined evaluation indicators
of logits to evaluate the performance of targeted attacks.
The logits layer retains the models initial judgment on the
input samples, which is conducive to observing the inducing
performance of the targeted attack to the model, and detecting
high-quality robust signals. With the combined evaluation indi-
cators of logits, we can evaluate the robustness of the original
signals and the performance of the adversarial attack algo-
rithms from the perspectives of the source and target logits
difference.

The main contributions of this article are summarized as
follows.

1) We evaluate nontargeted attacks with adversarial exam-
ples against complex neural networks under the white-
box attack scenario on convolutional neural network
(CNN)-based device identification, which provides a
useful reference for the design of robust DL models.

2) We analyze targeted attacks generated by representative
algorithms on CNN-based device identification, where
the adversarial examples will fool the CNN-based clas-
sifier toward a specific output result. The targeted attack
experiment has strong practical significance and pro-
vides useful insights on the design of robust CNN
models.

3) We propose to use combined evaluation indicators of
logits in this article, which helps to reveal the real dif-
ferences of different examples in the model prediction
output and to promote the comprehensiveness of classi-
fication model evaluation.

The remainder of this article is organized as follows. The
preliminaries on complex neural networks and adversarial
examples are summarized in Section II. The generation of
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Fig. 2. Schematic diagram of the structure of a CNN classifier. The convolu-
tional layers and the pooling layers extract features of input samples. The fully
connected layers integrate the extracted features and output the classification
results.

individual signal data sets, adversarial attack algorithms, and
the proposed combined evaluation indicators of logits are pro-
vided in Section III. We present experimental results and
discussions in Section IV. The conclusions and future work
are presented in Section V.

II. PRELIMINARIES

A. Convolutional Neural Network

CNN is a representative category of deep neural network
(DNN) and have been widely used in many areas [48]. CNN
usually consists of an input layer, multiple convolutional lay-
ers, pooling layers, multiple fully connected layers, and output
layers [49]. The structure of a CNN classifier is shown in
Fig. 2. An original example is fed into the network and enters
the convolution layer. The convolution layer contains several
convolution kernel functions, which acts on the input example
to extract local features of the example. The convolution layer
is followed by the sampling layer, whose main function is to
subsample the feature map in the convolution layer to reduce
the resolution and thereby reduce the complexity of the model.
Generally, a convolutional layer combined with a subsampling
layer consists of a feature extraction process. The last layer
of CNN is composed of multiple fully connected layers. After
feature mapping, the final classification result is obtained. Each
neuron cell of the output feature surface in the convolutional
layer is locally connected to its input, and the weighted sum-
mation is added to the local input through the corresponding
connection weight, while the offset value is obtained to adjust
the input value of the neuron [50].

In the convolutional layer, the feature map of the previous
layer is convoluted with a learnable convolution kernel, and
the obtained result is fed into an activation function. The out-
put of the convolutional layer is composed of a new feature
map with a different dimension. Each output feature map can
be obtained by the convolution of a combination of multiple
feature maps in the previous layer [51], and the operation of
the convolutional layer is as follows:

Xl
j = f

⎛
⎝ ∑

i∈Ml−1

Xl−1
i ∗ Kl

ij + bl
j

⎞
⎠ (1)

where Xl
j represents the jth feature map of the lth layer, Kl

ij is
the convolution kernel function, f (·) is the activation function,
bl

j is the bias of the jth feature map in the lth layer, and Ml−1
represents the selected input feature map set.

B. Complex Neural Network

We will use the generated data sets to train a complex neural
network model [46], and then the trained model for device
identification. Since the individual device signals are usually
in the complex form, it is natural and more effective to apply a
complex neural network model to process these data sets. The
design of the proposed model is discussed in the following.

1) Convolutional Layer Construction: The complex-
numbered convolution operation can be realized by real-
numbered convolutions [52]. As an example, let’s consider
the convolution of a complex vector �s = �u+ j�v and a complex
matrix L = A + jB, where A and B are real-numbered matri-
ces, and �u and �v are real-numbered vectors. The convolution
process of L and �s is as follows:

L ⊗ �s = (A ∗ �u − B ∗ �v) + j(B ∗ �u + A ∗ �v). (2)

The convolution of complex numbers can be divided into
real convolution and imaginary convolution of the two vectors,
and the convolution between the real part and the imaginary
part is performed separately.

According to the theory of converting complex convolu-
tion into real convolution, the convolution between a complex
feature map M and a complex convolution kernel K can be
expressed as follows:

M ⊗ K = (MRKR − MIKI) + j(MRKI + MIKR) (3)

where R represents the real part and I represents the imaginary
part. Fig. 3 shows the convolution process of the complex fea-
ture map M and the complex convolution kernel K. In Fig. 3,
the green (light blue) blocks represent the real (imaginary)
parts of the convolution kernel, and the blue (brown) blocks
represents the real (imaginary) parts of the complex feature
map. After the convolution operation, the output feature map
is still divided into real and imaginary parts (blue and brown,
respectively).

2) Batch Normalization: Batch normalization helps to
speed up the learning of the neural networks and normalize a
set of complex numbers into a standard normal complex dis-
tribution. Since the standard method of batch normalization is
only applicable to real-valued data, it is necessary to derive
the following complex batch normalization method.

Define ã as the centered and scaled value of a complex
data a, given by

ã = a − E[a]√
1/D

(4)

where D is a 2 × 2 covariance matrix given by

D =
(

Drr Dri

Dir Dii

)
. (5)

(D)−1/2 is determined by the positive definite property of D,
which can be computed by adding an arbitrary matrix X to
the Tikhonov regularization of D. In (5), Drr, Dri, Dir, and Dii

can be obtained by the covariance operation accordingly.
After (4), the resulting ã has a standard complex distribution

with mean t = 0, covariance φ = 1, and pseudo covariance
Pc = 0. The normalization of plural batches, BN(·), is given by

BN(ã) = φ · ã + η (6)
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Fig. 3. Schematic diagram of the complex convolution process. Both the real and imaginary parts need to participate in the computation process.

where φ is the scaling parameter and η is the bias.
3) Fully Connected Layer: The fully connected layer acts

as a classifier in the DNN [53]. To fully utilize the complex-
valued network, a complex fully connected layer is used at the
end of the complex convolutional network. Similar to the com-
plex convolutional kernel, the complex fully connected layer
is also performed through the alternating product of the real
and imaginary parts of its weights and the real and imaginary
parts of the input signal.

4) Complex Weight Initialization: In DNN, a proper weight
initialization helps to prevent sharp changes in gradients. In
this article, the convergence of training will be accelerated by
a proper initialization of the complex weights, which follows
the same principle as the initialization of real-valued weights.

A complex weight Wi can be expressed in polar coordinates
or Cartesian coordinates as

Wi = |Wi|ejα = �{Wi} + jI{Wi} (7)

where α and |Wi| are the phase and modulus (or, amplitude) of
Wi, respectively; and �{·} and I{·} represent the real and imag-
inary parts, respectively. When Wi is symmetrically distributed
around 0, the variance of Wi can be estimated from a single
parameter of the Rayleigh distribution. We use the expected
value of 0 and the variance of 2σ 2 to initialize the complex
weight value from the Rayleigh distribution. The parameter σ

will be set differently according to different neural network
architectures.

5) Complex Activation Function: The complex activation
function used in this article is denoted by CReLU(·), which
is defined as

CReLU(z) = ReLU(�(z)) + jReLU(I(z)) (8)

where ReLu(·) is the traditional rectified linear activation func-
tion. The complex activation function calculates the activation
unit of the current function in the real domain and the complex
domain, and finally forms a unified CReLU(z).

C. Adversarial Example

As mentioned above, adversarial examples refer to a type of
artificially constructed examples, which threaten the classifier
models and produce wrong predictions by adding specific per-
turbations to the input data. DL can classify different examples

Fig. 4. Schematic diagram of generating adversarial examples. The classifier
decision boundary is inconsistent with the true decision boundary, resulting
in adversarial examples.

if the model is well trained, and the decision hyperplane,
composed by specific detection algorithms, will help distin-
guish between normal examples and abnormal examples [54].
The optimal decision surface can be obtained if the model is
trained with a large amount of labeled training data sets with
the same perturbation of the test data sets [55]. However, it
is usually difficult to train the model to cover all the exam-
ple features, and the existing methods cannot guarantee that
the model will successfully recognize all example categories.
Insufficient training data sets will cause a considerable differ-
ence between the model decision surface and the real decision
surface. The area corresponding to this difference is the space
where the adversarial examples are located.

In the example shown in Fig. 4, triangles and squares repre-
sent two different types of examples, respectively. The red line
represents the decision boundary of the classifier, and the black
line represents the true decision boundary. The two boundaries
intersect with each other. If the data exists in the intersecting
area, it is considered as an adversarial example, which will
cause the classifier to classify it incorrectly.

After the adversarial examples were demonstrated in [27]
for the first time, a number of related studies have been
reported in the literature, especially in the area of com-
puter vision. Most of the proposed adversarial attacks can
be expressed as expressions under the constraint of lp-norm.
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Fig. 5. Process to generate the individual device data sets. In order to identify
a individual communication signal transmitter, the collected communication
transmitter source signal will be used as the preliminary processing object.
We extract power amplifiers from the entire transmitter system and use unified
receiving equipment.

Goodfellow et al. [21] proposed a high-dimensional linear
theory of adversarial examples and the fast gradient signs
method (FGSM) that is constrained by the l∞-norm, which
shows that various adversarial example generation methods
can be developed based on gradients. Kurakin et al. [22]
proposed further enhancements that increase the gradient
optimization from one-step to an iterative approach. Moosavi-
Dezfooli et al. [24] proposed the DeepFool scheme to find the
closest distance from the original input to the decision bound-
ary of adversarial examples, which is based on the constraint
of l2-norm. Carlini and Wagner [25] proposed an optimization-
based adversarial attack method that can effectively fool many
defense models under the three measurement l0, l2, and l∞
norm. The adversarial methods based on the optimization of
the lp-norm help to reduce the perceptibility of the perturba-
tion, and the appropriate constraint method can fool the neural
networks with the imperceptible perturbation.

III. METHODOLOGY

A. Creation of Individual Identification Data Sets

The process of individual communication signal trans-
mission includes signal generation, signal power amplifica-
tion, channel attenuation, and signal reception, as shown in
Fig. 5. During the process, the signal power amplifier mag-
nifies the subtle differences between signals to facilitate the
identification of individual device signals. Considering that dif-
ferent receiving devices even with identical parameters could
have different effects on signal processing (due to different
design and other factors), a unified receiver is used in all the
experiments in this article. We provide detailed descriptions of
the signal generating device, the signal power amplifier device,
and the signal receiving device in the following.

1) Signal Source: Signals are generated using a software
tool (i.e., without using real hardware). These signals will
be provided to the signal generators after being generated
in their own format. After that, the signal generators set
the carrier frequency and power of the input signals, and
then send the up-converted signals. In the acquisition process,
the signal generators are used to change the power, modu-
lation mode, and center frequency of the input signals from
the power amplifiers. The frequency of transmitting random
data by the signal generators is 433 MHz. The maximum

Fig. 6. Eight BLT53A power amplifier for generating individual device
signals. Due to the difference of the device physical layers, the amplifiers can
be distinguished from each other by the individual device signals.

output from the signal generators to the power amplifier is set
to 10 dBm.

2) Power Amplifier: The power amplifiers are the core com-
ponent in the process of device identification. The modulated
signals are transmitted to the power amplifiers through an RF
cable, and the input signal power is set to 0 dBm. In order
to ensure that all the extracted features have the same phys-
ical layer characteristics, we select eight power amplifiers of
the same model Taidacent BLT53A as shown in Fig. 6 [56].
With the output of these amplifiers generating the required
individual device signals, we make full use of the individual
differences caused by the inherent dynamic nonlinearity of the
amplifiers for individual identification.

3) Channel Attenuation: In order to extract the pure indi-
vidual signals as much as possible and avoid the influence
of other factors on the adversarial perturbation, the cable of
the power amplifier is directly connected to the baseband
signal receiver. At the meanwhile, for purpose of protecting
the receiver, a 30 dB channel attenuator is used between the
amplifiers and the receiver.

4) Receiver Device: The signal acquisition equipment is
used to collect the in-phase and quadrature (IQ) data sets.
We set the sampling rate of the IQ data to 5 MHz, the sam-
pling point to 20000, and the sampling bandwidth to 500
kHz. We collect 1600 samples in total, of which each power
amplifier generates 200 samples, and these samples are evenly
distributed to avoid sample skew during the model training.

B. Generation of Adversarial Examples

An adversarial attack is to deliberately introduce perturba-
tions to the data sets samples to fool a trained model (e.g., a
classifier) to produce a wrong output (e.g., misclassification)
with high confidence [57]. Generally speaking, considering a
learning system M(·) and a clean input example a, and we
assume that example a is correctly classified by the learning
system, i.e., M(a) = ytrue. If there is another example ã that is
almost identical to a but has been misclassified by the system
as M(ã) 
= ytrue, we call example ã an adversarial example.

Authorized licensed use limited to: Auburn University. Downloaded on October 04,2022 at 21:24:38 UTC from IEEE Xplore.  Restrictions apply. 



BAO et al.: THREAT OF ADVERSARIAL ATTACKS ON DL-BASED IoT DEVICE IDENTIFICATION 9017

Kurakin et al. [22] first introduced the concept of linear
interpretation. Intuitively, it would be unreasonable for the
classifier to respond differently to input a and its perturbed
version with perturbation ξ , i.e., ã = a + ξ . In general, for
effective classifier design, as long as ‖ξ‖∞ < δ (δ is suffi-
ciently small), the classifier should classify a and ã into the
same category. Assuming that the activation function is linear
(modeled as multiplication with a vector �z), then the input to
the classifier for ã is

�zTã = �zTa + �zTξ, ‖ξ‖∞ < δ (9)

thus the classifier output becomes M(�zTa) + M(�zTξ). If the
perturbation ξ satisfies the maximum norm constraint, i.e., ξ =
δ · sign(�z), the maximizer of the adversarial perturbation will
be attained. For high-dimensional problems, a small change in
the input can cause a large change in the output.

According to the previous expressing, adversarial examples
are constraint under the lp-norm. In the signal domain, in
addition to measuring the defined range of perturbations, the
lp-norm can also measure the waveform difference between
the original signal and the adversarial example. Among them,
attacks based on l0 and l2 norms will produce more obvious
abnormal changes in the waveform [43]. The attack methods
in this article are all constraint by the l∞-norm that are used as
the perturbation threshold of all sampling points in the wave-
form, so that the shape of the perturbed waveform maintains
the previous outline but still make the classifier misclassify.

Generally, adversarial attacks are divided into nontargeted
attacks and targeted attacks. Nontargeted attacks do not fool
the model toward a certain fixed category, as long as it pro-
duces perturbations that cause any misclassification [39]. Its
loss function is as follows:

argmax
ã

J(f (θ, ã), l) (10)

where f (·) is the selected network model, l is the most likely
output category, and J is the loss function used to evaluate
the modeling effect of the algorithm on the data sets [58].
Adversarial attacks can maximize the loss function, making the
model unable to obtain the optimal parameters θ to achieve
the purpose of the attack. Therefore, the nontargeted attack
only needs to ensure that the perturbation is added along the
opposite direction of the gradient, and the distance between
the perturbed sample and the original sample is increased.

In targeted attack, the attacker has a specific target and needs
to ensure that the current attack can drive the network learn
and classify toward a desired direction. Its loss function is as
follows:

argmin
ã

J
(
f (θ, ã), l∗

)
(11)

where the original label l is replaced with the type l∗ that the
attacker expects the final output of the classifier model to be.
That is, the targeted attack needs to subtract the calculated
perturbation from the original sample to obtain the adversar-
ial examples. In order to improve the credibility of the target
type, the loss function of the target needs to be minimized to
output the specified result. The typical methods to generate
adversarial examples are as follows.

1) Fast Gradient Signs Method: FGSM is one of the sim-
plest methods to generate adversarial examples [21]. The key
is to make the input example move in the direction of decreas-
ing category confidence. Let θ be the model parameter and ξ

be the perturbation level. Let J(θ, a, l) be the loss function
for training the neural network and ∇aJ(θ, a, l) is the partial
derivative of the loss function. We can linearize the loss func-
tion around the current value of ξ to obtain the maximum norm
limit of perturbation. Specifically, we first obtain the gradient
value Ga as

Ga = ∇aJ(θ, a, l). (12)

Next, we calculate the perturbation level ξ as follows:

ξ = δ · sign(Ga). (13)

Under the targeted attack, the adversarial example generated
by FGSM is as follows:

a′ = a + δ · sign
(∇aJF,l∗(a)

)
(14)

where F is the objective function and l∗ is the target category.
Each time FGSM is implemented, the gradient will be updated
from the original signal a to generate adversarial example a′.

2) Basic Iterative Method: This method improves the effect
of FGSM with an iterative optimizer [22]. The basic iterative
method (BIM) executes FGSM with small step sizes and crops
the updated adversarial examples to the effective range. A total
of T iterations are performed this way. In BIM, the gradient
operation should be performed first to obtain the gradient value
of the tth operation

Gat = ∇at J
(
θ, a′

t, l
)
. (15)

The gradient in the (t + 1)th iteration is then update as

a′
t+1 = Clipa,δ

{
a′

t + δ · sign
(
Gat

)}
(16)

where Clipa,δ{x} means to cut x to the range [a − δ, a + δ].
Under the targeted attack, the adversarial example generated
by BIM is as follows:

a′
t+1 = at − Clip

{
δ · sign

(∇aJF,l∗(at)
)}

. (17)

3) Projected Gradient Descent: Projected gradient descent
(PGD) can be regarded as a generalized form of BIM, with no
constraints on the iteration step [23]. To constrain the adver-
sarial perturbation, PGD projects the adversarial examples
learned in each iteration into the δ neighborhood of the benign
examples, so that the value of the adversarial perturbation will
not exceed δ. The update method is as follows:

a′
t+1 = Proj

{
a′

t + δ · sign
(
Gat

)}
. (18)

The Proj{·} operation projects the updated adversarial exam-
ples into the δ neighborhood with an effective range. The
adversarial example generated by PGD with targeted attack
is as follows:

a′
t = a′

t−1 − Proj
{
δ · sign

(∇aJF,l∗
(
a′

t−1

))}
. (19)
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4) Momentum Iterative Method: Inspired by the momentum
optimizer, Dong et al. [59] proposed to integrate momentum
memory into the iterative process, and introduced a new
iterative algorithm named momentum iterative method (MIM).
Because the iterative FGSM-based method will move the
adversarial examples to the direction of the gradient symbol
in each iteration, which is prone to local optimal solutions
and overfitting. MIM integrates momentum into the iterative
FGSM, so that the direction of each model update could
remain stable. The gradient of MIM is calculated as follows:

Gt+1 = μGt + ∇aJθ

(
a′

t, l
)

∥∥∇aJθ

(
a′

t, l
)∥∥

1

(20)

where μ is a decay factor that affects the attack effect. When
μ = 0, MIM will become an ordinary iterative attack. After
updating the parameter Gt+1 by accumulating the velocity vec-
tor in the gradient direction, the updated adversarial example
for a T-iteration procedure is as follows:

a′
t+1 = a′

t + δ

T
· sign(Gt+1). (21)

When combine the targeted attack with MIM under the l∞
constraint, the adversarial example can be got as following:

a′
t+1 = a′

t − δ

T
· sign

(
μGt + ∇aJθ

(
a′

t, l∗
)

∥∥∇aJθ

(
a′

t, l∗
)∥∥

1

)
. (22)

C. Combined Evaluation Indicators of Logits

The maximum predicted value output by the last layer (i.e.,
softmax) of DNNs serves as the confidence. As the exponential
function is used in softmax, a large input leads to a much
larger output [60], which leads to the difficulty of acquiring
the true difference between samples in the prediction results.
The evaluation of the adversarial attack performance from the
logits layer of DNNs is more microscopic. Logits represents
the function that maps the probability (in [0, 1]) to the entire
real number domain with the following mapping:

L = ln

(
p

1 − p

)
(23)

where L represents the logits value and p represents a certain
probability value. Logits in DNNs represent the layer before
softmax without normalization.

We propose a set of improved general indicators called
combined evaluation indicators of logits. While capturing the
confidence of the output, these indicators show the classifi-
cation effect of the model on the current sample before and
after the perturbation is introduced in a more intuitive manner.
The proposed combined evaluation indicators of logits express
the logits difference from two perspectives. The source log-
its difference represents the maximum output of subtracting
all incorrect types from the real class output, which can be
described as follows:

	logits = ls − lT , lT = max(lk ∀k 
= s) (24)

where ls is the logits value of the original category and lT is
the logits value with the largest prediction among other cate-
gories except the original category. Furthermore, considering

the goals of targeted attack, the target logits difference can be
evaluated as follows:

	logits = lt − lS, lS = max(li ∀i 
= t) (25)

where lt is the logits value of the selected target category and
lS is the maximum logits value except for the target category.

From the perspective of the target category, the performance
of the targeted attack and the robustness of different signals
can be measured more intuitively. The logits output layer of the
complex neural network is used to evaluate the effect on the
output of the classifier model after the adversarial perturbation
is introduced in this article, while the combined evaluation
indicators of logits help to intuitively analyze the performance
of targeted attacks.

IV. EXPERIMENTAL STUDY AND DISCUSSIONS

As shown in Section III, four different methods can be
applied to generate adversarial examples. Two types of dif-
ferent attack methods are considered for testing in our exper-
imental study: 1) nontargeted attack and 2) targeted attack.
In the experiments of nontargeted attacks, we control the
variables to evaluate the influence on the signal receiver.
In the targeted attack experiments, 200 original examples
for each signal are used to study which kind of the sig-
nals can be identified by the receiver after the adversarial
attack.

In this study, all the experiments were carried out on an
NVIDIA GeForce GTX 1080Ti, and only one GPU was used
for one operation. Based on the CleverHans library [61], we
implemented model selection of the generation methods of the
adversarial examples. TensorFlow and Keras machine learn-
ing frameworks were used to train the DNN models. The
open-source library provides a method for constructing adver-
sarial examples and provides a reference for standardized
implementation of adversarial examples.

A. Evaluation of Different Perturbation Levels Under
Nontargeted Attacks

First, to examine the effect of different attack methods on
identification of individual device signals, Fig. 7 shows the
trend in the identification accuracy under the four attack meth-
ods. The signal-to-noise ratio (SNR) is set to 0 and 15 dB,
respectively, and the iteration step λ is 0.0004. In this exper-
iment, we use the one-step attack method FGSM and three
iterative attack methods, i.e., BIM, PGD, and MIM, and their
effects are evaluated by the accuracy of individual device sig-
nal identification under different perturbation levels ξ . The
experimental results show that as the perturbation level is
increased, all the four attack methods cause degraded identifi-
cation accuracy. As Fig. 7(a) shows, the effect of the iterative
attacks is stronger than that of the one-step attack when the
SNR is 0 dB. As the perturbation level continues to increase,
the effect of FGSM exceeds that of the iterative attack methods
eventually. Fig. 7(b) demonstrates the trend of the four attack
methods along with increased perturbation level when the SNR
is 15 dB. The identification accuracy tends to 12.5% as ξ
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(a)

(b)

Fig. 7. Effect of nontargeted attacks with increased perturbation level ξ . The
iteration step λ is 0.0004. The one-step attack method FGSM and the three
iterative attack methods BIM, PGD, and MIM are evaluated. The experiment
shows that the identification accuracy decreases with increased perturbation
level ξ . (a) SNR = 0 dB. (b) SNR = 15 dB.

is further increased, which also represents the characteristics
under randomized distribution of the nontargeted attacks.

The four attack methods are all gradient-based attacks, and
FGSM is the only one-step attack among them. Gradient-based
attacks are essentially seeking to maximize the loss value.
Since FGSM does not require an iterative operation, when the
highest disturbed threshold is given, perturbation is generated
in the direction of the initial gradient loss maximization, but
the other three methods need to find a new gradient direction
after each iteration. The received signal contains more noise
in low-SNR, which affects the gradient and iterative operation
of the iterative attacks and limits their attack effect, resulting
in better performance of FGSM than iterative attacks after ξ

is greater than 0.003. In addition, the received signal retains
more original information containing adversarial examples in
high-SNR, and high-quality signals will generate more power-
ful perturbation. Therefore, for the same perturbation level, the
identification accuracy for SNR = 15 dB is lower than that for
SNR = 0 dB. In real communication scenarios, we are always
committed to finding a solution that can achieve a higher SNR
at the receiver, which, however, makes the adversarial attacks
more effective.

B. Evaluation of Different Iteration Steps Under Nontargeted
Attacks

Some characteristics of the iterative attacks have been
revealed in the previous experiments. In this experiment, we
study the impact of iteration steps on the attack effect, by com-
paring the iterative methods BIM, PGD, and MIM with FGSM
under the same perturbation level. The experiment results are
presented in Fig. 8, which are obtained when the SNR is 0
and 15 dB, respectively. It can be seen from the figures that
under the same perturbation level ξ , with a larger iteration
step λ (i.e., “iter” in the legend), the identification accuracy
exhibits a downward trend. When λ is 0.0001, the attack effect
of PGD soon maintains a stable trend as ξ is increased when
SNR is low, as shown in Fig. 8(a). However, when λ is larger
than 0.0001, the accuracy of individual identification drops
sharply as ξ is increased, and then it converges to a stable
value as ξ is further increased. In Fig. 8(d), PGD’s accuracy
approaches a stable value more quickly than that in Fig. 8(a)
as ξ is increased. After convergence, the accuracy gap between
the case when λ is 0.0005 and the case when λ is 0.0001 is
about 5%.

Among the three iterative attack methods, PGD achieves a
more significant effect compared to BIM and MIM. We also
find that FGSM demonstrates a superior performance in all the
cases. Its attack effect eventually exceeds the attack effects
of PGD, BIM, and MIM as ξ is increased. It also can be
found from Fig. 8 that when the iteration step is low, accu-
racy tends to start to converge at a lower ξ , which can be
attributed to the iterative attack is a neural network training
process that optimizes the goal is an adversarial perturbation.
The iterative attack is dedicated to increase the value of the
cross-entropy loss function in the process of generating per-
turbation. Generally, when the distance between the original
sample and the decision boundary is large, a larger iteration
step helps to increase the loss function quickly, thereby gener-
ating more powerful adversarial examples. However, when the
iteration step reaches a certain level, the strategy of increas-
ing the iteration step to enhance the attack performance is of
limited effect.

C. Evaluation of Signal Identification Under Targeted
Attacks

The previous experiments are conducted for nontargeted
attacks. There has also been considerable interest in targeted
attacks in more advanced scenarios. Therefore, we study the
attack effects of the adversarial examples in a targeted attack
experiment. In this experiment, we choose eight types of sig-
nals, denoted by PA1, PA2, PA3, PA4, PA5, PA6, PA7, and
PA8, to examine the number of successfully identified sig-
nals when the perturbation level is 0, 0.001, and 0.002, and
the SNR is at 0 and 15 dB, respectively. We generate 200
adversarial examples for each type of signals. The confusion
matrices of classification results are plotted in Fig. 9.

The experimental results show that a high SNR and a high
perturbation level can greatly strengthen the attack effect of
adversarial examples. As shown in Fig. 9(a) and (d), in the
case of no attack, the number of correctly identified signals is
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Effect of nontargeted attacks with the increased perturbation level ξ when SNR is 0 dB for (a)–(c), and SNR is 15 dB for (d)–(f). The effect of
FGSM is compared with that of the three iterative schemes. PGD has the strongest attack effect among the three iterative attacks, and FGSM also achieves a
strong attack effect. (a) PGD, SNR = 0 dB. (b) BIM, SNR = 0 dB. (c) MIM, SNR = 0 dB. (d) PGD, SNR = 15 dB. (e) BIM, SNR = 15 dB. (f) MIM,
SNR = 15 dB.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Confusion matrices for evaluating the impact of adversarial examples on the classification performance of the identification model under the targeted
attacks. (a) and (d) are the cases of not being attacked. We choose BIM as the attack method. The attack effects are more obvious for the cases with a high
SNR and a high perturbation level. (a) No attack, SNR = 0 dB. (b) BIM, ξ = 0.001, SNR = 0 dB. (c) BIM, ξ = 0.002, SNR = 0 dB. (d) No attack, SNR
= 15 dB. (e) BIM, ξ = 0.001, SNR = 15 dB. (f) BIM, ξ = 0.002, SNR = 15 dB.

the largest when the SNR is 15 dB, which is far more than that
when the SNR is 0 dB. This result shows that under no attack,
the receiver’s misclassification of the signal is mainly caused
by the channel noise. As SNR is increased, the noise pertur-
bation decreases, and the accuracy of individual device signal
identification is improved. Fig. 9(b) and (c) show that when
the original signals are attacked, increasing the perturbation

levels greatly strengthens the effectiveness of targeted attacks,
making it much easier for the receiver to misidentify the
signals as the expected target PA2.

The targeted attack experiment has strong practical signifi-
cance in that an excellent attack effects provide us with useful
insights. In summary, increasing the perturbation level is most
effective for strengthening the targeted attack effect. When
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Fig. 10. Targeted attack success rates at different perturbation levels. When
ξ rises to 0.002 from 0.001, the attack success rate on average is increased by
30%. Increasing ξ further, the attack success rate tends to increase as well.

the perturbation level is increased, the original signals contain
more features of the directed target, consequently it is more
likely to be misjudged by the receiver.

D. Evaluation of Attack Success Rate Under Targeted
Attacks

Motivated by the previous experiment, we make an overall
evaluation of the targeted attack effects under different per-
turbation levels. In this experiment, we examine the targeted
attack success rate when ξ is 0.001, 0.002, and 0.003. The
targeted attack success rate, denoted by ASR, is defined as

ASR = Nsum

Ntotal
(26)

where Nsum and Ntotal represent the number of examples clas-
sified into the target class and the total number of examples,
respectively.

The experimental results are presented in Fig. 10, which
show that increasing the perturbation level can significantly
increase the success rate of targeted attacks, especially for
PA1 and other vulnerable signals. When ξ is 0.001, the attack
success rate on PA1 is only 20.0%; when ξ is 0.002, the attack
success rate on PA1 becomes 67.5%. However, we also find
that in this experiment, there are some signals that are robust
to targeted attacks. For example, increasing ξ has a limited
effect on the attack success rate for PA7. This is because that
the structure of these signals is relatively stable and the ability
to resist noise is strong. As a result, they can defend against
attacks from adversarial examples to a certain extent. However,
for most signals, as the perturbation level is increased, the
targeted attack success rate rises sharply.

E. Evaluation With Combined Evaluation Indicators of
Logits

After evaluating the attack effect as indicated by the model
prediction accuracy, we evaluate the logits layer of the data
sets from a micro perspective to measure the inducibility
of these signal samples. From the previous analysis, when
the signal quality is higher, the adversarial perturbation is
less likely to be affected by noise, and the response of

(a)

(b)

Fig. 11. BIM is used to evaluate the change of logits output value of var-
ious categories of individual device signals with ξ when SNR = 15 dB.
Experiments show that with the increase of the disturbance level, the targeted
attack effect is gradually effective with the increase of the perturbation level.
(a) Original category PA2, target category PA3. (b) Original category PA2,
target category PA4.

the model to the targeted attack is strongly related to the
adversarial perturbation. With this consideration, the experi-
ments in this part are all implemented under the condition of
SNR = 15 dB.

Fig. 11 shows the change of the model logits prediction
value of the PA2 signal with increased perturbation level in
the case of different target-oriented types. In Fig. 11(a), when
there is no attack (ξ = 0), the predicted value of the orig-
inal category PA2 is the highest, indicating that the model
can output the correct prediction results most of the time.
As the perturbation level is increased, the model predicted
value of the original category begins to decrease, and the con-
fidence of the target PA3 shows a gradually increasing trend.
As ξ = 0.0018, the curves of PA2 and PA3 cross each other,
and the model begins to predict PA2 as PA3, indicating that
the targeted attack has begun to succeed. It is worth noting
that the adversarial attack is effective when ξ = 0.0002, and
the original category is identified as the wrong category in
Fig. 11(b). However, when ξ = 0.0018, PA2 is recognized as
the target category PA4. Since the targeted attack requires the
loss function to be maximized toward the desired category,
which requires more interaction with the model. Therefore,
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(a)

(b)

Fig. 12. From the source category and the target category, the logits difference
of model prediction under the adversarial attacks is evaluated when SNR =
15 dB. Experiments show that with the increase of the perturbation level, the
target category difference shows an upward trend, indicating that the targeted
attack performance has been strengthened. (a) Original category PA2, target
category PA3. (b) Original category PA2, target category PA4.

the targeted attack requires a stronger perturbation intensity to
shorten the perception gap between the original category and
the target category.

Finally, we evaluate the logits difference predicted by the
model and present the results in Fig. 12. Before ξ reaches
0.0018, the source logits difference is always positive, indi-
cating that the model has a high degree of confidence in the
prediction of signal PA2 in Fig. 12(a). With the increase of
the perturbation level ξ , the logits difference of the source
class continues to decrease, and the confidence of the tar-
get class continues to grow, indicating that the effect of the
targeted attack is becoming stronger. It can be seen from
Fig. 12(b) that the intersection of the two curves is not
at the zero level, indicating that the adversarial attack first
forces the model to misclassify the original signal into other
types, and then successfully induces it to the expected target
type.

As shown above, targeted attacks are more complicated
than nontargeted attacks, but they have a broader development
space and practical uses. By means of the combined evalua-
tion indicators of logits, the anti-perturbation ability of signal
samples can be analyzed.

V. CONCLUSION AND FUTURE WORK

In this article, we examined the security of DL-based device
identification under adversarial examples. We found that DL
models were vulnerable to nontargeted adversarial attacks, as
the misidentification rate could rise sharply with a smaller
perturbations. Our investigation showed that iterative attack
methods were more effective to fool the DL models gener-
ally. Increasing the perturbation level and iterative steps can
increase the success rate of adversarial attacks, but the recogni-
tion accuracy of DL models will converge to a stable value as
the perturbation level is further increased. We also evaluated
the effectiveness of targeted attacks, and the results showed
that DL models were also sensitive to targeted attacks, result-
ing in outputting the categories as expected by the attacker.
Finally, we use the proposed combined evaluation indicators of
logits to quantify the fine-grained classification effect of differ-
ent individual device signals, enriching the evaluation criteria
for signal adversarial examples.

Our study indicates that adversarial attacks pose a great
threat to the security of device identification in the IoT. For
future work, we will explore the following strategies: 1) we
will consider the black-box attack with alternative models to
attack the various targeted models; 2) due to the high real-
time requirements for adversarial attacks in actual scenarios,
we will design simpler and more powerful attack algorithms;
and 3) future researches will be oriented to a more real-
istic physical environment, and the channel effects will be
fully considered to evaluate adversarial attacks initiated by
transmitters.
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