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Abstract—We investigate the resource allocation problem,
including time slot allocation, channel allocation, and power
adaptation, in a millimeter Wave (mmWave) network with
multiple transmission links, multiple channels, and a PicoNet
Coordinator (PNC). Each link has a video session to trans-
mit from the transmitter to the receiver. The objective is
to minimize the number of time slots to finish the video
sessions of all links by jointly optimizing channel allocation
and time slot allocation for links, while considering the possible
interference between different links on the same channel. The
optimal solution for the formulated problem is computationally
prohibitive to obtain due to the exponential complexity. We
developed a column generation based method to reformulate
the original problem into a main problem along with a series of
sub-problems, with greatly reduced complexity. We prove that
the optimal solution for the reformulated problem converges
to the optimal solution of the original problem, and we
derived a lower bound for the performance of the reformulated
problem at each iteration, which will finally converge to the
global optimal solution. The proposed scheme is validated with
simulations with its superior performance over existing work
is observed.

Keywords-5G wireless; column generation; multi-user video
streaming; mmWave communications; resource allocation.

I. INTRODUCTION

Recently, millimeter wave (mmWave) communications
has attracted intense interest in the research community.
mmWave communications is a promising technique to be-
come the core technology for future 5G wireless systems
due to the huge spectrum that is available. Thus it has
a great potential to satisfy the fast growing demand on
wireless network capacity. Significant efforts has been made
on developing mmWave communications and networking
technologies and standardization recently.

However, there are still many challenging problems that
need to be addressed to fully harvest the potential of
mmWave communications. The wireless signal attenuation
in 60 GHz channels is much more serious than that in the 5
GHz or 2.5 GHz channels [1], [2]. To overcome the high
attenuation, beamforming should be used to increase the
signal’s effective power, while the small wavelength does
allow integration of many antenna elements with a small
form factor. When it comes to the outdoor environment,
highly directional links can be regarded as “pseudowired”

with negligible collision probabilities, as shown in [3], [4].
However, when it comes to the indoor environment, the
beamwidth is usually wider than that in outdoor networks
due to smaller transmission distances. In this scenario, the
pseudowired assumption is no longer applicable, and the
interference among neighboring links should be consid-
ered [5], [6].

Furthermore, considering the fact that the available spec-
trum at the mmWave band is large, the fading channel
is expected to be frequency selective [7]. Therefore, it
is necessary to consider optimizing channel allocation to
different links in the network, in order to enhance the overall
capacity. On the other hand, due to the fact that signal
attenuation is high in mmWave channels, spatial reuse of
the mmWave channels should be allowed for multiple links
if the mutual interference is tolerable, thus more concurrent
transmissions in the network can be achieved and the overall
network throughput may be further improved [8].

In this paper we study the problem of supporting multi-
user video streaming/downloading in mmWave networks,
aiming to minimize the overall video streaming/downloading
time for all the links in the mmWave network. We con-
sider the scenario where there are multiple links, multiple
channels, and one PicoNet Coordinator (PNC). The PNC
is the central coordinator for channel assignment, time slot
allocation, and power adaptation for the links. Each link
carries a video session from the transmitter to the receiver,
and our goal is to minimize the number of time slots required
to finish the transmission of all video sessions. Benefited
from the high attenuation of the mmWave channel, for each
channel, spatial reuse by multiple links can be exploited,
as long as they do not cause unacceptable interference to
each other. The PNC decides which links to transmit, on
which channel, at what power level, and for how long the
transmission lasts, so that the time for all links to finish
their video transmissions is minimized. For the formulated
problem, we developed a column generation based solution
method, which greatly reduces the computational complexity
and converges quickly to the globally optimal solution.

The main contributions of this paper include
∙ To the best of our knowledge, this is the first work to

study the problem of minimizing the overall scheduling
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time of video streaming over mmWave networks, with
a rigorous mathematical formulation and analysis.

∙ The previous works [4]–[6], [9]–[11] on link schedul-
ing in mmWave networks consider only one channel.
Here we study the multi-channel case, where frequency
diversity at different links are considered, and the
corresponding channel allocation problem is solved.
Furthermore, unlike prior works [3], [12], we consider
the possible co-channel interference that different links
cause to each other. Thus our formulated problem and
proposed solution are more practical, which can be
generalized to other directional networks.

∙ We formulated an optimization problem that incorpo-
rated link scheduling, channel allocation, and power
adaptation for streaming videos over mmWave links.
Traditional algorithms for the formulated problem has
an exponential computational complexity. We develop
a column generation based algorithm that iteratively
solves the link scheduling, channel allocation, and
power adaptation problems, with greatly reduced de-
cision variables and complexity.

∙ We prove that our proposed algorithm converges to the
globally optimal solution, and derive an upper bound
for the performance of the proposed algorithm at each
iteration. The performance of our proposed algorithm
is validated with extensive simulations and comparison
with benchmark schemes.

In the remainder of this paper, we present the system
model in Section II and the problem formulation in Sec-
tion III. We develop the column generation based algorithm
in Section IV and analyze its performance in in Section V.
Our simulation study is presented in Section VI. Related
works are reviewed in Section VII and Section VIII con-
cludes the paper.

II. SYSTEM MODEL

We consider a mmWave network consisting of multiple
channels, multiple links, and one PNC, which is the central
coordinator of the network that assigns channels and time
slots to the links. Each link contains one transmitter and one
receiver, which can directly communicate with each other on
a channel, and a link can use at most one channel at any
time slot. Different links can spatially reuse a channel as
long as they do not cause unbearable interference to each
other.

It is challenging to coordinate the transmissions of highly
directional links, due to the well-known deafness problem.
To address this problem, we assume a lower frequency
public control channel, such as WiFi, for all nodes in
the network [13]. The PNC and nodes exchange network
state and control information via the public control channel.
Specifically, on the control channel, nodes send their traffic
demands and channel updates to the PNC, and the PNC

sends channel and time slot allocation decisions to the
nodes [14], [15].

Without loss of generality, we assume that each node
works in the half-duplex mode, i.e., a node can either be a
transmitter or a receiver at any time slot. An electronically
steerable antenna array is equipped at each node, so that each
node can beamform at the transmit or receive directions [16].
The co-channel interference among neighboring links is con-
sidered in this paper, since the “pseudowired” assumption
may not hold true [4], [6], [12]. This is due to the fact
that the beamwidth of the directional mmWave transmissions
could be wide (e.g., in the indoor environment) [6].

III. PROBLEM FORMULATION

Let ℒ denote the set of links, and 𝒦 the set of channels
in the mmWave network. Each link 𝑙 supports the stream-
ing/downloading of a stored video from the transmitting
node (dentoed as 𝜎𝑙) to the receiving node (denoted as 𝜈𝑙).
The traffic demand of each link is the data volume of its
video session that needs to be transmitted in the next period
of time (e.g., the next Group of Pictures (GOP) period).
The video sequence is encoded into High-Priority (HP)
data and Low-Priority (LP) to better utilize the interference
and loss resilient nature of the video sequences [17]. By
optimally assigning the resources to the HP data and LP
data, better video quality can be achieved. The quality of
reconstructed Medium-Grain Scalable (MGS) video can be
modeled as [18]

PSNR = 𝛼+ 𝛽 × 𝑟𝑠𝑢𝑚 = 𝛼+ 𝛽 × (𝑟ℎ𝑝 + 𝑟𝑙𝑝), (1)

where 𝑟ℎ𝑝 and 𝑟𝑙𝑝 are the received data rate of the HP data
and LP data, respectively; 𝑟𝑠𝑢𝑚 is the total received data
rate, i.e., the sum of 𝑟ℎ𝑝 and 𝑟𝑙𝑝; 𝛼 and 𝛽 are constants
associated with the specific video sequence and codec.

According to the Shannon Theorem, to achieve a specific
data rate, it is required that the Signal to Interference and
Noise Ratio (SINR) at the receiver exceed a threshold
corresponding to the data rate, as

𝑟 = 𝑤 × log2 (1 + SINR) , (2)

where 𝑤 is the bandwith of allocated spectrum. Given the HP
data, for all the links that spatially reuse the same channel,
the co-channel SINR at the receiver of each link should
exceed a fixed threshold 𝛾𝑙, which means

SINR𝑘
𝑙 (ℎ𝑝) =

𝑃𝑙𝐻
𝑘
𝑙

𝜌𝑙 +
∑

𝑙′ ∕=𝑙,𝑙′∈ℒ 𝐼
𝑘
𝑙′,𝑙
≥ 𝛾𝑙(ℎ𝑝), ∀𝑙 ∈ ℒ, 𝑘 ∈ 𝒦,

(3)

where 𝑃𝑙 is the transmit power at link 𝑙, 𝐻𝑘
𝑙 is the gain on

channel 𝑘 for link 𝑙, 𝐼𝑘𝑙′,𝑙 denotes the interference caused by
link 𝑙′ on link 𝑙 on channel 𝑘, and 𝜌𝑙 is the noise power
at link 𝑙 receiver. Denote 𝜃(𝑙1, 𝑙2) as the angle offset from
the peak channel gain direction from the transmitter of link
𝑙1 to the receiver of link 𝑙2. Then the potential co-channel
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interference caused by link 𝑙1 on link 𝑙2 on channel 𝑘 can be
modeled as 𝐺𝑘

𝑙1,𝑙2
Δ(𝜃(𝑙1, 𝑙2)), where 𝐺𝑘

𝑙1,𝑙2
is the maximum

gain on channel 𝑘 from the transmitter of link 𝑙1 to the
receiver of link 𝑙2, and Δ(𝜃(𝑙1, 𝑙2)) denotes the directional
antenna gain as a function of the offset angle 𝜃(𝑙1, 𝑙2) [5],
[6]. Then we have∑

𝑙′ ∕=𝑙,𝑙′∈ℒ
𝐼𝑘𝑙′,𝑙 =

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐺𝑘
𝑙′,𝑙Δ(𝜃(𝑙′, 𝑙))𝑃𝑙′

=
∑

𝑙′ ∕=𝑙,𝑙′∈ℒ
𝐻𝑘

𝑙′𝑙𝑃𝑙′ , (4)

where 𝐺𝑘
𝑙′,𝑙Δ(𝜃(𝑙′, 𝑙)) ≡ 𝐻𝑘

𝑙′𝑙. The SINR constraint for the
LP video data can be derived and expressed in a similar way,
with a lower SINR threshold 𝛾𝑙(𝑙𝑝) for all 𝑙 ∈ ℒ.

Without loss of generality, we consider the case that each
transmission link can only use up to one channel at a time
slot (the multi-channel access case can be handled similarly).
Define scheduling index 𝑦𝑘𝑙 as

𝑦𝑘,𝑡𝑙 =

{
1, link 𝑙 transmits on channel 𝑘 at time 𝑡
0, otherwise,

∀𝑙 ∈ ℒ, 𝑘 ∈ 𝒦, ∀𝑡. (5)

Then we have ∑
𝑘∈𝒦

𝑦𝑘,𝑡𝑙 ≤ 1,∀𝑙 ∈ ℒ, ∀𝑡. (6)

We define a schedule as a set of channel allocation
decisions for all the links and all the channels in the network,
and a feasible schedule is a schedule that the SINR constraint
for all the active links, i.e., links that are assigned a channel
for transmission in the schedule, are satisfied. Obviously,
there may be a huge number of feasible schedules, and
different feasible schedules may result in different network
throughputs, thus affecting the amount of required time
slots to serve the traffic demands of all the links. Let 𝒮
be the set of feasible schedules. Our objective is to decide
which feasible schedule set 𝒮 to use, and how many time
slots should be assigned for each feasible schedule in 𝒮,
so that the overall required time slots to serve the video
traffic demands of all the links can be minimized. Note that
channel allocation for multiple channels and multiple links
are considered when computing the schedule.

As mentioned previously, a feasible schedule should sat-
isfy the SINR constraints on all channels 𝑘 ∈ 𝒦. Denote the
number of time slots allocated for a feasible schedule 𝑠 ∈ 𝒮
as 𝜏 𝑠. We want to minimize the total transmission time, i.e.,

minimize:
∑
𝑠∈𝒮

𝜏𝑠. (7)

Note that 𝜏 𝑠 can be fractional. Furthermore, only after one
schedule is finished then another schedule can be executed.
Therefore the schedules will not overlap in any time slot.

Denote the HP data rate of link 𝑙 ∈ ℒ during schedule
𝑠 as 𝑟𝑠𝑙 (ℎ𝑝), and the LP data rate as 𝑟𝑠𝑙 (𝑙𝑝). To ensure that

the traffic demand of all links sharing channel 𝑘 ∈ 𝒦 is
satisfied, we have∑

𝑠∈𝒮
𝑟𝑠𝑙 (ℎ𝑝)𝜏

𝑠 ≥ 𝑑𝑙(ℎ𝑝), ∀𝑙 ∈ ℒ (8)

∑
𝑠∈𝒮

𝑟𝑠𝑙 (𝑙𝑝)𝜏
𝑠 ≥ 𝑑𝑙(𝑙𝑝), ∀𝑙 ∈ ℒ, (9)

where 𝑑𝑙(ℎ𝑝) and 𝑑𝑙(𝑙𝑝) are the traffic demand of HP data
and LP data, respectively. Note that 𝑑𝑙(ℎ𝑝) and 𝑑𝑙(𝑙𝑝) do not
change during the entire scheduling period until the traffic
demands of all nodes are served. In fact, if the traffic demand
changes, we just need to update the traffic demand at the
constraint matrix of the optimization problem P1 (which is
given below), and solve the updated problem using the same
method. Note that the HP and LP data of a video session
may be carried on different channels at each time slot.

We have the following optimization problem.

P1: min:
∑
𝑠∈𝒮

𝜏𝑠 (10)

st:
∑
𝑠∈𝒮

𝑟𝑠𝑙 (ℎ𝑝)𝜏
𝑠 ≥ 𝑑𝑙(ℎ𝑝), ∀𝑙 ∈ ℒ (11)

∑
𝑠∈𝒮

𝑟𝑠𝑙 (𝑙𝑝)𝜏
𝑠 ≥ 𝑑𝑙(𝑙𝑝), ∀𝑙 ∈ ℒ (12)

𝜏𝑠 ≥ 0,∀𝑠 ∈ 𝒮. (13)

Note that the SINR constraints (3) for HP data and LP
data are implicitly implied in the above problem in that
all feasible schedules in set 𝒮 should satisfy the SINR
requirement of all active links according to the definition of
𝒮. Solving problem P1 leads to the optimal schedule, which
results in the minimum number of time slots to satisfy the
video traffic demand of all users under the SINR constraint.

IV. COLUMN GENERATION BASED ALGORITHM

Although problem P1 is in the form of integer linear
programming, the main challenge in solving problem P1 is
the huge size of the constraint matrix. It takes 𝒪(2∥ℒ∥),
where ∥⋅∥ denotes the number of elements in a set, times of
checking constraint (3) to enumerate all the feasible sched-
ules for channel 𝑘, for all 𝑘 ∈ 𝒦, which is computationally
expensive. Even if we find all the feasible schedules, since
the number of feasible schedules might be so large that the
constraint matrix would be too huge for the optimization
solver to handle. Therefore, we aim to reduce the number
of times of finding the feasible schedules, as well as the size
of the constraint matrix for problem P1.

A. Column Generation Based Approach

Column generation is an effective method that can achieve
the above two goals [19]–[22]. Column generation decom-
poses the original problem (problem P1 in our case) into a
Master Problem (MP) and a series of Sub-Problems (SP).
The MP starts with a subset of columns and variables
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of problem P1 and thus is much easier to solve. It also
provides a sub-optimal solution to problem P1. The SP
is then solved at each iteration to obtain a new column
and variable to enter the MP. As the number of columns
and variables in the MP increases, the optimal solution
to the MP converges to the optimal solution of problem
P1. The algorithm terminates until the optimal solution or
a sufficiently competitive solution is obtained. Interested
readers can refer to [23] for more details.

B. The Master Problem

The Master Problem (MP) in column generation can be
initialized as follows. First, we obtain a subset of feasible
schedules 𝒮 ′ from set 𝒮, i.e., 𝒮 ′ ⊂ 𝒮, which meets the SINR
requirement for each transmission link. Then we calculate
the corresponding coefficients 𝑟𝑠𝑙 , for all 𝑠 ∈ 𝒮 ′, of the
constraint matrix. With 𝒮 ′, the MP of problem P1 can be
expressed as follows.

MP: min:
∑
𝑠∈𝒮′

𝜏𝑠 (14)

st:
∑
𝑠∈𝒮′

𝑟𝑠𝑙 (ℎ𝑝)𝜏
𝑠 ≥ 𝑑𝑙(ℎ𝑝), ∀𝑙 ∈ ℒ (15)

∑
𝑠∈𝒮′

𝑟𝑠𝑙 (𝑙𝑝)𝜏
𝑠 ≥ 𝑑𝑙(𝑙𝑝), ∀𝑙 ∈ ℒ (16)

𝜏 𝑠 ≥ 0,∀𝑠 ∈ 𝒮 ′. (17)

The active transmission links in each feasible schedule
are different so that the traffic demand of all links 𝑙 ∈ ℒ
will be satisfied. The SINR requirement and traffic demand
for each transmission link will be satisfied, which means we
have found a subset of feasible schedules and it is a feasible
solution to problem P1. Note that the MP only uses a subset
of columns (variables/feasible schedules) of problem P1.

A subset of feasible schedules to initialize the MP can
be obtained as follows. First, we find a subset of feasible
schedules, denoted as 𝒮, 𝒮 ∈ 𝒮 , such that in each feasible
schedule 𝑠, 𝑠 ∈ 𝒮, there is only one active link, and this
link picks the channel that it has the highest throughput
to transmit data (either HP data or LP data). In any two
such feasible schedules, either the links are different, or the
link transmits HP data in one schedule and transmits LP
data in another schedule. We use 𝒮 to initialize MP. This
corresponds to the traditional TDMA schedule.

C. Improving the MP Solution

The optimal Objective Function Value (OFV) of the MP
provides an upper bound for the optimal OFV of problem
P1, and the MP is much more easier than problem P1 to
solve due to a much smaller constraint matrix. Our idea is
to iteratively reduce the optimal OFV of the MP by finding
a better feasible schedule to enter the MP and solve for
the optimal OFV at each iteration, until the optimal OFV
converges to the optimal OFV of problem P1. The optimality

condition can be checked via the Most Negative Reduced
Cost of all the feasible schedules [23].

Before doing so, we need to first check whether the
current solution to the MP is optimal, i.e., whether the
optimal OFV of the MP is already identical to the optimal
OFV of problem P1, or if the current solution is not optimal.
To check the optimality of the current solution is equivalent
to checking whether introducing a new column, i.e., a new
feasible schedule in our problem, into the basis of the MP,
could improve the optimal OFV of the MP. According to the
Simplex Method in Linear Programming, we can check the
Reduced Cost of a feasible schedule to see if it can improve
the current optimal OFV of the MP [23].

After solving the MP, we can obtain a vector of simplex
multipliers [23]

(Λ(ℎ𝑝), Λ(𝑙𝑝)) = (𝜆𝑙(ℎ𝑝), 𝜆𝑙(𝑙𝑝), ∀𝑙 ∈ ℒ, (18)

where Λ(ℎ𝑝) is a 1 × ∥ℒ∥ vector with each entry 𝜆𝑙(ℎ𝑝)
corresponding to a constraint

∑
𝑠∈𝒮′ 𝑟𝑠𝑙 (ℎ𝑝)𝜏

𝑠 ≥ 𝑑𝑙(ℎ𝑝);
Λ(𝑙𝑝) is the corresponding 1×∥ℒ∥ vector for LP. The OFV
of the MP is an upper bound to the OFV of problem P1.

Then the reduced cost 𝜇𝑠 for any feasible schedule 𝑠,
i.e., a column of the constraint matrix of the MP, can be
expressed as

𝜇𝑠 = 1−
∑
𝑙∈ℒ

(𝜆𝑙(ℎ𝑝)𝑟
𝑠
𝑙 (ℎ𝑝) + 𝜆𝑙(𝑙𝑝)𝑟

𝑠
𝑙 (𝑙𝑝)) , (19)

where 1 is the coefficient of schedule 𝑠 in the objective
function of the MP.

To find the column and the corresponding variable with
the greatest potential to improve the OFV of the MP, we
identify the column and the corresponding variable with the
most negative reduced cost. Denote 𝒮 ′ = 𝒮 ∖ 𝒮 ′ as the set
of feasible schedules that are not in set 𝒮 ′. Our objective is
to identify a schedule 𝑠∗ ∈ 𝒮 ′ such that

𝜇𝑠∗ = argmin
𝑠∈𝒮′

{𝜇𝑠}, (20)

which is equivalent to finding a schedule 𝑠∗ ∈ 𝒮 ′ such that∑
𝑙∈ℒ

(
𝜆𝑙(ℎ𝑝)𝑟

𝑠∗
𝑙 (ℎ𝑝) + 𝜆𝑙(𝑙𝑝)𝑟

𝑠∗
𝑙 (𝑙𝑝)

)

= argmax
𝑠∈𝒮′

∑
𝑙∈ℒ

(𝜆𝑙(ℎ𝑝)𝑟
𝑠
𝑙 (ℎ𝑝) + 𝜆𝑙(𝑙𝑝)𝑟

𝑠
𝑙 (𝑙𝑝)) . (21)

Denote Φ = 𝜇𝑠∗ for the ease of later discussions. Once
we identify such a schedule 𝑠∗, we enter it to the MP
and solve the updated MP, to obtain a better solution that
achieves a reduced OFV of the MP. Thus the MP solution is
continuously improved toward the global optimal solution.

D. Reformulating the SINR Constraint

Considering the fact that a link 𝑙 can achieve a higher data
rate with an SINR significantly greater than its threshold
𝛾, power adaptation is applied in our proposed algorithm
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so that each link can optimally tune its transmit power to
further improve the throughput of the entire network. For
a link 𝑙, denote 𝑢𝑞

𝑙 as the data rate that can be achieved
under an SINR threshold 𝛾𝑞

𝑙 , 1 ≤ 𝑞 ≤ 𝑄. Then the finite
set of achievable data rates for link 𝑙 is {𝑢1

𝑙 , 𝑢
2
𝑙 , . . . , 𝑢

𝑄
𝑙 },

∀𝑙 ∈ ℒ corresponding to the finite SINR threshold set
{𝛾1

𝑙 , 𝛾
2
𝑙 , . . . , 𝛾

𝑄
𝑙 }.

Due to the similarity of the SINR constraints for the HP
data and that for the LP data, for simplification we only
discuss the HP data case in the following, while the LP data
case can be addressed in a similar way. Denote 𝑃𝑚𝑎𝑥 as
the maximum allowed transmit power for a link. Then the
transmit power on link 𝑙 must follow 0 ≤ 𝑃𝑙 ≤ 𝑃𝑚𝑎𝑥. If
link 𝑙 transmits on channel 𝑘, the SINR constraint for the HP
data of link 𝑙 to transmit at a data rate 𝑢𝑞

𝑙 can be expressed
as

𝐻𝑘
𝑙 𝑃𝑙 ≥ 𝛾𝑞

𝑙 (ℎ𝑝)

⎛
⎝𝜌𝑙 +

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐻𝑘
𝑙′𝑙𝑃𝑙

⎞
⎠ , ∀𝑙 ∈ ℒ, 𝑘 ∈ 𝒦.

(22)

Note that 𝛾𝑞
𝑙 ≥ 𝛾𝑞

𝑙 (ℎ𝑝) for all 𝑞.
Denote ℐ𝑘𝑙 as the maximum possible interference from all

transmitting links, which can be expressed as follows.

ℐ𝑘𝑙 = 𝛾𝑞
𝑙

⎛
⎝𝜌𝑙 +

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐻𝑘
𝑙′𝑙𝑃𝑚𝑎𝑥

⎞
⎠ , ∀𝑘 ∈ 𝒦. (23)

Define decision variables 𝑥𝑞,𝑘
𝑙 (ℎ𝑝) and 𝑥𝑞,𝑘

𝑙 (𝑙𝑝) as follows.

𝑥𝑞,𝑘
𝑙 (ℎ𝑝) =

⎧⎨
⎩

1, if link 𝑙 transmits HP data at
rate 𝑢𝑞

𝑙 on channel 𝑘
0, otherwise,

(24)

𝑥𝑞,𝑘
𝑙 (𝑙𝑝) =

⎧⎨
⎩

1, if link 𝑙 transmits LP data at
rate 𝑢𝑞

𝑙 on channel 𝑘
0, otherwise.

(25)

Then (22) can be rewritten as the following constraint, which
considers all links in the network.

𝐻𝑘
𝑙 𝑃𝑙 + ℐ𝑘𝑙

(
1− 𝑥𝑞,𝑘

𝑙 (ℎ𝑝)
)

(26)

≥ 𝛾𝑞
𝑙

⎛
⎝𝜌𝑙 +

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐻𝑘
𝑙′𝑙𝑃𝑚𝑎𝑥

⎞
⎠ , ∀𝑘 ∈ 𝒦,

The reason behind (26) is as follows. If link 𝑙 transmits HP
data at data rate 𝑢𝑞

𝑙 , i.e., 𝑥𝑞,𝑘
𝑙 (ℎ𝑝) = 1, then (26) is the

same as (22) by eliminating the term ℐ𝑘𝑙
(
1− 𝑥𝑞,𝑘

𝑙 (ℎ𝑝)
)

.

Otherwise, we have 𝑥𝑞,𝑘
𝑙 (ℎ𝑝) = 0 and the value of ℐ𝑘𝑙 can

guarantee that (26) is redundant.

E. Solving the Sub-problem

As discussed in the previous section, to improve the OFV
of the MP, we need to identify a new column having the
most negative reduced cost, which is equivalent to finding

a feasible schedule 𝑠 ∈ 𝒮 ′ such that
∑

𝑙∈ℒ(𝜆𝑙(ℎ𝑝)𝑟
𝑠
𝑙 (ℎ𝑝) +

𝜆𝑙(𝑙𝑝)𝑟
𝑠
𝑙 (𝑙𝑝)) is maximized. Then our sub-problem of find-

ing the most negative reduced cost, considering the SINR
constraint for a feasible schedule as previously discussed,
can be formulated as

SP: Ψ = max:
∑
𝑘∈𝒦

∑
𝑙∈ℒ

𝜆𝑙(ℎ𝑝)
∑

1≤𝑞≤𝑄

𝑢𝑞
𝑙 𝑥

𝑞,𝑘
𝑙 (ℎ𝑝)+

∑
𝑘∈𝒦

∑
𝑙∈ℒ

𝜆𝑙(𝑙𝑝)
∑

1≤𝑞≤𝑄

𝑢𝑞
𝑙 𝑥

𝑞,𝑘
𝑙 (𝑙𝑝) (27)

s.t.

𝛾𝑞
𝑙

⎛
⎝𝜌𝑙 +

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐻𝑘
𝑙′𝑙𝑃𝑚𝑎𝑥

⎞
⎠𝑥𝑞,𝑘

𝑙 (ℎ𝑝)−𝐻𝑘
𝑙 𝑃𝑙

≤ 𝛾𝑞
𝑙

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐻𝑘
𝑙′𝑙𝑃𝑘 + 𝛾𝑞

𝑙

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐻𝑘
𝑙′𝑙𝑃𝑚𝑎𝑥,

∀𝑙 ∈ ℒ, 𝑘 ∈ 𝒦 (28)

𝛾𝑞
𝑙

⎛
⎝𝜌𝑙 +

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐻𝑘
𝑙′𝑙𝑃𝑚𝑎𝑥

⎞
⎠𝑥𝑞,𝑘

𝑙 (𝑙𝑝)−𝐻𝑘
𝑙 𝑃𝑙

≤ 𝛾𝑞
𝑙

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐻𝑘
𝑙′𝑙𝑃𝑘 + 𝛾𝑞

𝑙

∑
𝑙′ ∕=𝑙,𝑙′∈ℒ

𝐻𝑘
𝑙′𝑙𝑃𝑚𝑎𝑥,

∀𝑙 ∈ ℒ, 𝑘 ∈ 𝒦 (29)∑
𝑘∈𝒦

∑
1≤𝑞≤𝑄

(
𝑥𝑞,𝑘
𝑙 (ℎ𝑝) + 𝑥𝑞,𝑘

𝑙 (𝑙𝑝)
)
≤ 1,∀𝑙 ∈ ℒ (30)

∑
𝑘∈𝒦

∑
1≤𝑞≤𝑄

∑
𝜎𝑙:𝑙∈ℒ

(
𝑥𝑞,𝑘
𝑙 (ℎ𝑝) + 𝑥𝑞,𝑘

𝑙 (𝑙𝑝)
)
+

∑
𝑘∈𝒦

∑
1≤𝑞≤𝑄

∑
𝜈𝑙:𝑙∈ℒ

(
𝑥𝑞,𝑘
𝑙 (ℎ𝑝) + 𝑥𝑞,𝑘

𝑙 (𝑙𝑝)
)
≤ 1 (31)

𝑥𝑞,𝑘
𝑙 (ℎ𝑝) ∈ {0, 1}, 𝑥𝑞,𝑘

𝑙 (𝑙𝑝) ∈ {0, 1},
∀𝑙 ∈ ℒ, 1 ≤ 𝑞 ≤ 𝑄, 𝑘 ∈ 𝒦, (32)

0 ≤ 𝑃𝑙 ≤ 𝑃𝑚𝑎𝑥, ∀𝑙 ∈ ℒ. (33)

In the above formulation, constraints (28) and (29) enforce
that the SINR requirement for the HP data and LP data of
each active link be satisfied. Constraint (30) ensures that
each link can only transmit either HP data or LP data at
a time slot, but not both. In constraint (31), recall that the
transmitter node of link 𝑙 is 𝜎𝑙 and the receiver node of link
𝑙 is 𝜈𝑙; thus (31) indicates that for each node, at most one
incident link is activated. Constraint (32) enforces that each
link can only either transmit or receive at a time, but not
both, since each node operates in the Half-Duplex mode.

V. PERFORMANCE ANALYSIS

A. A Lower Bound on Optimal Performance

At each iteration of the MP computation, the OFV of the
MP is updated and becomes more and more closer to the
OFV of problem P1. Since our problem is a minimization
problem, the OFV of the MP is an upper bound of that
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of problem P1. In the following, we show how to derive a
lower bound on the OFV of problem P1 at each iteration.
Over the iterations, the overall trend is that the upper bound
becomes smaller and the lower bound becomes larger, and
the upper bound is always greater than the lower bound.
After some iterations, the gap between the upper bound and
the lower bound will be sufficiently small, indicating that
we can terminate our algorithm because we’ve found an
OFV for problem P1 that is close enough to its optimal
OFV. Therefore, the lower bound can help us to terminate
our algorithm at some early point once we have found a
competitive solution, without the need of doing a lot of
extra computation to find the exact optimal solution. And
of course, we can also continue the iteration until the gap
between the upper and lower bounds is reduced to 0, which
means we have found the optimal solution for problem P1.

Theorem 1. At each iteration, let (Λ⃗(ℎ𝑝), Λ⃗(𝑙𝑝)) =
(𝜆𝑙(ℎ𝑝), 𝜆𝑙(𝑙𝑝), ∀𝑙 ∈ ℒ), be the dual variable vector
obtained from the MP, (�⃗�(ℎ𝑝), �⃗�(𝑙𝑝)) = (𝑑𝑙(ℎ𝑝), 𝑑𝑙(𝑙𝑝),
∀𝑙 ∈ ℒ), as the link demand vector for all links, and Φ
as the most reduced cost for all feasible schedules obtained
from solving the sub-problem. Then a lower bound for the
MP can be expressed as

1

1− Φ
(Λ⃗(ℎ𝑝)× �⃗�(ℎ𝑝) + Λ⃗(𝑙𝑝)× �⃗�(𝑙𝑝)) (34)

=
1

1− Φ

(∑
𝑙∈ℒ

𝜆𝑙(ℎ𝑝)𝑑(ℎ𝑝) +
∑
𝑙∈ℒ

𝜆𝑙(𝑙𝑝)𝑑(𝑙𝑝)

)
.

Proof: Denote 𝜋 = (1, 1, . . . , 1) as the coefficient vec-
tor of the objective function of the MP, (�⃗�(ℎ𝑝), �⃗�(𝑙𝑝)) =
(𝑟𝑠𝑙 (ℎ𝑝), 𝑟𝑠𝑙 (𝑙𝑝), ∀𝑙 ∈ ℒ). Since (Λ⃗(ℎ𝑝), Λ⃗(𝑙𝑝)) is a dual
variable vector obtained from the MP, it is also a feasible
solution to the dual problem of the MP (denoted as DMP).
According to the relationship between the primal program
and the dual program, it must satisfy

(
�⃗�(ℎ𝑝) �⃗�(𝑙𝑝)

)× (Λ⃗(ℎ𝑝)
Λ⃗(𝑙𝑝)

)
≤ 𝜋, (35)

which means

�⃗�(ℎ𝑝)× Λ⃗(ℎ𝑝) + �⃗�(𝑙𝑝)× Λ⃗(𝑙𝑝) (36)

=
∑
𝑙∈ℒ

𝑟𝑠𝑙 (ℎ𝑝)𝜆𝑙(ℎ𝑝) +
∑
𝑙∈ℒ

𝑟𝑠𝑙 (𝑙𝑝)𝜆𝑙(𝑙𝑝) ≤ 1,

∀𝑠 ∈ 𝒮 ′𝜆𝑙(ℎ𝑝) ≥ 0, 𝜆𝑙(𝑙𝑝) ≥ 0,∀𝑙 ∈ ℒ.

Since Φ is the most reduced cost for all the feasible
schedules, and we have (Λ⃗(ℎ𝑝), Λ⃗(𝑙𝑝)) as the dual variable
vector obtained by solving the MP, we have

Φ = min𝑠∈𝒮′

(
1−

∑
𝑙∈ℒ

𝑟𝑠𝑙 (ℎ𝑝)𝜆𝑙(ℎ𝑝)−
∑
𝑙∈ℒ

𝑟𝑠𝑙 (𝑙𝑝)𝜆𝑙(𝑙𝑝)

)

⇒
∑
𝑙∈ℒ

𝑟𝑠𝑙 (ℎ𝑝)𝜆𝑙(ℎ𝑝) +
∑
𝑙∈ℒ

𝑟𝑠𝑙 (𝑙𝑝)𝜆𝑙(𝑙𝑝) ≤ 1− Φ,∀𝑠 ∈ 𝒮 ′

⇒
∑
𝑙∈ℒ

𝑟𝑠𝑙 (ℎ𝑝)
𝜆𝑙(ℎ𝑝)

1− Φ
+
∑
𝑙∈ℒ

𝑟𝑠𝑙 (𝑙𝑝)
𝜆𝑙(𝑙𝑝)

1− Φ
≤ 1,∀𝑠 ∈ 𝒮 ′,

where Φ ≤ 0; and 𝜆𝑙(ℎ𝑝) ≥ 0, 𝜆𝑙(𝑙𝑝) ≥ 0,∀𝑙 ∈ ℒ.
According to (36), we have that(

𝜆𝑙(ℎ𝑝)

1− Φ
,
𝜆𝑙(𝑙𝑝)

1− Φ
, ∀𝑙 ∈ ℒ

)

is a feasible solution to the DMP. By duality, the corre-
sponding dual LP of a minimization LP is a maximization
LP. Therefore, the DMP is a maximization LP, with the
following feasible solution.(

Λ⃗(ℎ𝑝)

1− Φ
,
Λ⃗(𝑙𝑝)

1− Φ

)
=

(
𝜆𝑙(ℎ𝑝)

1− Φ
,
𝜆𝑙(𝑙𝑝)

1− Φ
, ∀𝑙 ∈ ℒ

)
.

Let the optimal solution to the DMP be

(Λ⃗∗(ℎ𝑝), Λ⃗∗(𝑙𝑝)) = (𝜆∗𝑙 (ℎ𝑝), 𝜆
∗
𝑙 (𝑙𝑝), ∀𝑙 ∈ ℒ).

It follows that

(
Λ⃗(ℎ𝑝)
1−Φ

Λ⃗(𝑙𝑝)
1−Φ

)
×
(
�⃗�𝑙(ℎ𝑝)

�⃗�𝑙(𝑙𝑝)

)

≤ (
Λ⃗∗(ℎ𝑝) Λ⃗∗(𝑙𝑝)

)× (�⃗�𝑙(ℎ𝑝)

�⃗�𝑙(𝑙𝑝)

)
= Ω, (37)

where Ω is the optimal OFV of the DMP. Due to Strong
Duality, Ω is also the optimal OFV of the MP. Therefore,

(
Λ⃗(ℎ𝑝)
1−Φ

Λ⃗(𝑙𝑝)
1−Φ

)
×
(
�⃗�𝑙(ℎ𝑝)

�⃗�𝑙(𝑙𝑝)

)
(38)

is a lower bound for the MP according to (37).

B. Computational Complexity

The MP is a linear optimization problem and is initialized
with a small subset of feasible schedules, and only one col-
umn is added to the MP at each iteration. We can infer that
the MP is easy to solve using traditional linear optimization
techniques such as the Simplex Method. The major difficulty
of solving for the optimal solution lies in solving the sub-
problems, which are Mixed Integer Linear Programming
(MILP) problems. However, the size of the sub-problem is
small, and the number of decision variables of the MILP sub-
problem is ∣∣ℒ∣∣+𝑄 ⋅ ∣∣ℒ∣∣ ⋅ ∣∣𝒦∣∣. There are effective solvers,
such as the Gorubi MIP solver and the Matlab Intlinprog
function (which implements the Branch and Bound algo-
rithm), for solving the MILP. Prior works [24], [25] have
effectively solved such kind of problems, especially when
the solution space is relatively small.
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Table I
SIMULATION PARAMETERS

Parameter Value

∥ℒ∥ 30
∥𝒦∥ 5
𝑃𝑚𝑎𝑥 1 W
𝜌 0.1 W
w 200 MHz
Time slot duration 1 s
𝐺𝑘

𝑙 , ∀𝑙 ∈ ℒ, 𝑘 ∈ 𝒦 random ∈ [0, 1]
Δ(𝜃(𝑙1, 𝑙2)), ∀𝑙1, 𝑙2 ∈ ℒ, 𝑙1 ∕= 𝑙2 random ∈ [0, 1]

VI. SIMULATION RESULTS

A. Simulation Configuration

In this section we evaluate the performance of our pro-
posed algorithm with Matlab simulations. Here we carry out
our simulation based on the H.264 video traces available
from [26]. The video traces are High Definition videos with
a resolution of 4096 × 1744 and the frame rate is 24 frames
per second. Therefore, by a simple calculation the bit rate
for this video sequence is 171.44 MHz. The division of HP
and LP video data follows the same approach as in [17].

Our simulation parameters for network configuration [4],
[5] are as in Table I unless otherwise specified, and the SINR
threshold vector Γ = {0.1, 0.2, 0.3, 0.4, 0.5}. The error
bars in the simulation figures represent the 95% confidence
interval obtained by repeating each simulation 50 times with
different random seeds.

We compare our algorithm with two benchmark schemes.
The first benchmark scheme (termed Benchmark 1 in the
simulation figures) is proposed in [17], where the authors
aim to minimize the distortion of the received video se-
quence by optimal channel assignment to the HP data and
LP data in 60 GHz networks. The second benchmark scheme
(termed Benchmark 2) is proposed in [9], [10], where the
objective is to minimize the total scheduling time in a 60
GHz network but it does not consider channel allocation.
Furthermore, the authors use a heuristic algorithm to solve
the minimum scheduling time problem, which results in a
sub-optimal solution. Since the channel allocation problem
is not considered in the Benchmarks, we combine the
channel allocation algorithm proposed in [8] with these
two algorithms, for a fair comparison with our proposed
algorithm. The basic idea of the channel allocation algorithm
proposed in [8] is introduced in Section VII.

B. Simulation Results

Fig. 1 shows the performance comparison of our proposed
algorithm and the benchmark algorithms under different
network sizes, where the number of links ∥ℒ∥ is varied.
The performance metric is the length of scheduling time
to satisfy the traffic demands. We can see that the length
of scheduling time of all the three algorithms increases as
the number of links increases, which is as expected since
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Figure 1. Overall scheduling time versus number of links in the network.

more time slots will be needed to clear the increasing traffic
demand. Besides, our proposed algorithm outperforms the
benchmarks. The main reason is that, for Benchmark 1,
different links may transmit on the same channel. Since
there is no coordination for the transmission of multiple
links while each link tries to minimize its own distortion,
thus they may cause intolerable interference to each other
and the data rate for each link will be lower. For Benchmark
2, the authors only considers the minimization of the total
scheduling time for all links in a single 60 GHz channel,
but does not consider the channel gain diversity among
links and the corresponding channel assignment problem
for all the links. Thus the schedule would be sub-optimal.
Furthermore, Benchmark 2 does not consider transmission
power allocation, and thus the links cannot adjust their
transmission power when channel conditions varies, and thus
further reduces Benchmark 2’s throughput performance.

In Fig. 2, we compare the average network delay per-
formance of our proposed algorithm and the benchmark
schemes under various link traffic demand. The delay of
a link is the duration from the time that the PNC starts to
schedule traffic and the time that the traffic demand of the
link is served. We can see that as traffic demand is increased,
all the three algorithms has a higher average delay, and our
proposed algorithm can always achieve a smaller average
delay than the benchmark algorithms do. Benchmark 1
does not consider coordinating the concurrent transmissions
among multiple links. Therefore different links may select
the same channels which have the best channel gain to them
while the channels that have lower channel gain are not
selected, which may results in low data rate on the selected
channels which become crowded. Benchmark 2 does not
consider channel diversity among different links and thus
its schedules may be sub-optimal. This comparison also
demonstrates that channel allocation has a serious negative
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Figure 2. Average delay versus number of links in the network.

effect on delay performance.
The fairness performance comparison of our proposed

algorithm and the benchmark algorithms, in terms of average
delay of the links, is demonstrated in Fig. 3. The Jains fair-
ness index 𝑓({𝑒1, 𝑒2, . . .}) =

(∑
𝑙∈ℒ 𝑒𝑙

)2
/
(∥ℒ∥∑𝑙∈ℒ 𝑒

2
𝑙

)
is adopted here, where 𝑒𝑙 is the average delay of all the
video sessions transmitted on link 𝑙, for all 𝑙 ∈ ℒ. A
fairness index of 1.0 means the best case, while 0 means the
worst case. We can see that the fairness performance of our
proposed algorithm is consistently better than that of the two
benchmark schemes. The main reason is that since we aim to
minimize the total scheduling time, which is dominated by
the maximum delay among all links, so our algorithm will
try to shorten the maximum delay among all links, which
means there is a minmax property in our algorithm. Thus
our algorithm achieves fairness of delay among the links.
The confidence interval has a trend of decreasing, due to an
increasing number of samples, i.e., an increasing number of
links in the network.

Fig. 4 shows the convergence of the proposed column
generation based algorithm. It should be noted that the
lower bound as shown in Fig. 4 need not be monotone,
and one should therefore maintain the best (highest) value
of the lower bounds through the iterations. There are some
interesting observations from the two figures.

∙ The most negative reduced cost Φ has a trend of
increasing to 0 over iterations, and the optimal solution
is found when Φ reaches 0, which means that we
cannot find a schedule that further reducing the total
scheduling time. The main reason for the trend is
that column generation algorithm chooses the feasible
schedule having the most negative reduced cost from
the set of candidate feasible schedules to update the
MP at each iteration.

∙ At each iteration, the improvement of the OFV and
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Figure 3. Fairness performance versus number of links in the network.

0 10 20 30 40 50 60 70 80 90
−10

0
10

30

50

70

90

110

130

150

170

190
200

Iterations

C
on

ve
rg

en
ce

 

 

upper bound
lower bound
Φ

Figure 4. Convergence performance of the column-generation based
algorithm.

the most negative reduced cost Φ at this iteration are
positively correlated. This is because the most negative
reduced cost has the greatest potential to improve the
current OFV of the MP.

∙ The lower bound of the OFV of the MP converges
quickly, and is also positively correlated with Φ. From
Theorem 1, the lower bound at each iteration is a
negative function of Φ. Thus the lower bound will
increase as Φ increases from a negative value to 0.
Since Φ drops quickly and becomes very close to 0,
the lower bound also converges quickly to the optimal
value, which is the intersection of the lower bound and
the upper bound.
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VII. RELATED WORK

In this section we briefly review the key related work on
mmWave networks and video streaming. We first examine
the interference model in mmWave networks. The authors
in [3] claim that due to high signal strength attenuation in the
mmWave channel, the interference between different links is
negligible and thus a link connecting the transmitting node
and receiving node can be regarded as pseudo-wired. On
the contrary, the authors in [27] found that the interference
between two links is closely related with their relative geo-
location and the antenna angel between the links, and thus
the concept of exclusive region is proposed. The concept
divides the interference between two links into several levels
according to their relative geo-location and antenna angle.
The authors in [28] conducted measurements at the 38 GHz
frequency and found that there are very few unique antenna
angles for creating a pseudo-wired link, which suggests that
a pseudo-wired link is difficult to find in mmWave networks,
especially when the beamwidth is large.

In [5], [6], 60GHz links are modeled as a Partially
Observable Markov Decision Process (POMDP), which dy-
namically switches between two states. The objective is
to minimize the overall scheduling time of all the links
under the traffic demand constraint. The formulated problem
is NP-hard and the authors propose a heuristic algorithm,
which tries to maximize the instant network throughput at
each time slot. However, performance may not be optimal
due to the sub-optimality of the heuristic algorithm and
there is no performance bound for the heuristic algorithm.
In [4], the authors study the problem of link and relay
selection in dual-hop 60 GHz Networks. The dynamic link
blockage model adopted in this work is similar to that in [5],
[6]. The objective is to find the optimal link and relay
selection for each link to minimize the maximum expected
delivery time among all links. A decomposition principle
is proposed to transform this problem, which is NP-hard,
into two sub-problems, one for link selection and the other
for relay selection. It is proved that compared with the
optimal solution, the proposed algorithm can achieve very
competitive performance with a tight performance bound,
while the computational complexity is greatly reduced. How-
ever, the links are regarded as pseudo-wired in this paper,
which means that the interference between different links is
negligible, and thus may not be applicable to the scenario
where the interference cannot be neglected, such as indoor
60 GHz networks. Besides, the authors consider the single
channel case and thus channel allocation is not taken into
account in [4].

There are also some interesting work on spatial reuse
in mmWave networks. The authors in [8] investigate the
problem of channel allocation in 60 GHz indoor WLANs in
order to maximize throughput. Two SDMA (Spatial Division
Multiple Access) algorithms are proposed, for the single-

channel case and the multiple-channel case, respectively, to
exploit the propagation properties so that data rates to end
users can be improved. The authors propose that the multiple
channels should be aggregated together for transmission in
order to further improve the data rate, and it is proposed that
links that are at least a certain distance apart can spatially
reuse a channel. However, there is no analysis of how large
the distance should be and no discussion on how the channel
assignment should be optimized in this paper. In [29], the
authors developed a scalable heuristic spatial time division
multiple access (STDMA) time-slot scheduling algorithm for
mmWave network with SDMA through directional antenna
system. The main idea of the proposed scheduling algorithm
is that all links in the network are assigned a priority, and
time slot are allocated to the links based on their respective
priority in a descending order. However, the authors only
consider the single channel case and only provide a heuristic
algorithm for assigning priorities to the links.

In a recent work [30], multiple description coding was
used to transmit uncompressed HD video over a mmWave
network. However, only a single link with fixed transmit
power and a single channel is considered in this work.

VIII. CONCLUSIONS

We developed an efficient algorithm for the problem of
resource allocation, including time slot allocation, channel
allocation, and power adaptation for transmission links, to
support multiple video streaming sessions over mmWave
networks. The objective was to minimize the overall schedul-
ing time to finish the video transmissions for all links via
joint optimization of channel allocation, time slot allocation,
and power allocation. We developed a column generation
based method to reformulate the original problem into a
new main problem along with a series of sub-problems,
with greatly reduced problem size, and thus greatly reduced
computational complexity. We proved that optimal solution
to the original problem can be obtained by solving the
reformulated problem iteratively, and derived a lower bound
for the performance of the reformulated problem at each
iteration, which will finally converge to the global optimal
solution. The proposed scheme is validated with simulations.
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