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Abstract—With outbreak of the COVID-19 pandemic, contact
tracing has become an important problem. It has been proven
that maintaining social distance and isolating affected people
are highly beneficial for curbing the spread of COVID-19,
which all depend on identifying people’s trajectories. However,
the current interview-based approach is costly, and the exist-
ing mobile app-based schemes rely on complete and accurate
data. In this paper, we propose a transformer encoder-based
approach with spatial position embedding extracted using a
graph Combinatorial Laplacian matrix to interpolate incomplete
human trajectories. To model human trajectory, we propose a
graphical embedded module to extract spatial features based on
predefined location clusters. The incomplete trajectory sequences
are first preprocessed into matrices and then used to train a
deep transformer encoder network for trajectory completion.
Our experiments using a real world Bluetooth Low Energy (BLE)
dataset validate the efficacy of our proposed approach, which
outperforms several baseline methods.

Index Terms—COVID-19, Contact Tracing, Human Trajectory
Completion, Graph Embedding, Transformers.

I. INTRODUCTION

The outbreak of Coronavirus Disease 2019 (COVID-19)
pandemic has become a serious threat since it spread rapidly
worldwide. COVID-19 has been declared a Public Health
Emergency of International Concern (PHEIC) by the World
Health Organization (WHO) due to the dire situation. It has
impacted everyone’s daily life and forced governments to
enforce strict administrative policies, including travel restric-
tions, city or district lockdown, quarantine, restraining order of
work-from-home, and rapid responses for health emergencies.
Worldwide the total number of cases reached 252M and 5.08M
lives have lost by Nov. 12, 2021. The global economy has been
contracted by 3.5 percent in 2020.

COVID-19 is more infectious than most other viruses and
the carrier could be contagious without showing symptoms.
Thus other people who have physical contact with, or even
in close proximity to the carrier have a high risk of infection
before the carrier has tested positive. Therefore, it is com-
pelling to perform the so-called Contact Tracing procedure
to prevent the virus transmission [1]. The current practice
is to ask an individual who is tested positive about all the
recently contacted people and identify who has a risk of
being infected. Contact tracing [2] is usually accomplished
by highly participant-depended manual interviews such as
phone screening and questionnaires. With the detailed and
accurate human mobility trajectory reported, individual contact
information can be accessible and contact tracing will be easily
performed. However, there exist many practical challenges

in acquiring accurate and complete contact information. It
is normally challenging for people to recall the person they
have met, talked with, or stayed with in the last two or three
weeks. For example, we can not identify everyone in the same
restaurant a few weeks ago at a specific time, since most
people there were unknown to you. In some cases, the situation
is even worse; they cannot even identify where they have been.
With the development of wireless technology and smartphone
apps, localization-based methods are being used to extract
human trajectories from the Global Positioning Systems (GPS)
data, WiFi [3], Radio-frequency identification (RFID) [4],
Bluetooth proximity detection [2], and fusion models [5].
However, such techniques’ performance is heavily dependent
on the completeness and accuracy of human trajectory data [1].

The human mobility trajectory completion problem is usu-
ally considered similar as the trajectory prediction problem
in practice. Most human mobility trajectory studies focus on
predicting a future location, which has been shown effective
for human mobility [6]. Several classic approaches, such as
matrix factorization [7] and Markov chain [8], have been first
introduced. The Markov model approach is to built a transition
matrix to model the action probability between locations from
historical data. The authors in [9] proposed a model to predict
locations and human movement dynamics by combing short
mobility trajectory with social network structure. With the
recent advances in deep learning, Recurrent Neural Networks
(RNNs) [10], Long Short Term Memory (LSTM) [11], Gated
Recurrent Unit (GRU) [12], Generative Adversarial Network
(GAN) and Graph Convolutional Network (GCN) [13] have
been applied to deal with the temporal sequence of trajectory
prediction, with satisfactory performance demonstrated. In re-
cent years, researchers have successfully exploited the popular
attention mechanism [14] based transformer as a sequence-to-
sequence model to learn the semantic contexts [15]. Graph has
been used as a universal tool to describe complex networks,
while the geographic features have been integrated with tem-
poral trajectory sequence [16]–[18]. Some recent works have
jointly explored the influence of temporal, semantic, social,
and geographical contexts [19].

The human mobility trajectory completion problem bares
certain resemblance to the trajectory prediction problem in
practice. However, trajectory prediction only focuses on pre-
dicting a future location based on historical information.
To solve the completion or recovery problem, it is usually
necessary and helpful to learn the missing locations jointly
from both past and future information. Note that, although in
such an open world, people do have a wide range of possible
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locations, for this specific problem, i.e., the COVID tracing
issue, we are only interested in collecting people’s contacts
during the COVID incubation period [2], which is the past
14-21 days. With the limited tracing period and restricted
mobility, it is preferable to narrow down the tracing range and
consider it as a problem with temporal and spatial constraints.
In this paper, we propose a graph embedding transformer
encoder based deep neural network to address the human
mobility trajectory completion problem, which can be useful
for contact tracing to curb the spread of COVID-19. The
proposed approach consists of a data preprocessing module
to extract segmented human mobility trajectory and cluster
the locations based on pair similarity. We then exploit a graph
embedding scheme to extract the geographical features to be
integrated with the position encoded semantic. We further
randomly mask one location in each trajectory segment to
create incomplete human mobility trajectories. In the super-
vised training phase, we incorporate a five-layer transformer
encoder based feature extractor, a five-layer deep convolution
neural network (DCNN) decoder, and a softmax classifier,
which employs the cross-entropy as loss function to measure
the difference between true labeled data and the model output.

The main contributions of this work include the follows:
• To the best of our knowledge, this is the first attempt to

tackle the human trajectory completion problem with a
graph embedding transformer encoder approach.

• We develop the graph embedding scheme to extract the
spatial features from the trajectory data to assist the
training process.

• We implement the proposed approach and test it on
a real world Bluetooth low energy (BLE) dataset for
performance evaluation. The proposed scheme exhibits
superior performance over several baseline schemes.

The reminder of this paper is organized as follows. In
Section II, we discuss the motivation and challenges and
provide the problem formualtion. In Section III, we present
the proposed solution that is based on transformers. Our
experimental study is provided in Section IV, and Section V
concludes this paper.

II. MOTIVATION, CHALLENGES AND PROBLEM
FORMULATION

In this section, we first examine the characteristics of the hu-
man trajectory completion problem, especially its significance
for controlling COVID-19 spreading. Then the challenges in
exacting complete human trajectories are discussed. Finally
we formulate the trajectory completion problem.

A. Human Trajectory Tracing

As an important task in a variety of location-based social
network (LBSNs) applications [9], human trajectory study has
drawn increasing attention. It is widely used in applications
such as personalized recommendations and contact tracing.
Specifically, it is extremely helpful in the epidemic inves-
tigation related to the COVID-19 pandemic. Human mobil-
ity trajectories provide detailed information about locations
visited together with the visiting time. With such temporal-
spatial mobility trajectories of users, techniques such as spatial

granularity can be applied to proximity analysis. Then a graph-
liked proximity map could be derived to perform automatic
contact tracing.

With the historical proximity map, if a person is reported
to have COVID infection, we can use the proximity map to
identify other people who have visited the same locations
at the same time as the patient in the past one or two
weeks The tracing time window could be determined by
the corresponding health organization/authority based on the
pandemic situation. We can find all the exposed individuals
and prevent COVID from spreading to a larger population.
Moreover, we can also use the human trajectory to find some
locations that are frequently visited for further control actions
such as sensitization or lockdown.

B. Technical Challenges

There are various types of data formats of human trajecto-
ries, such as GPS trajectory, urban camera monitoring system
trajectory, and spatial-temporal check-in trajectory [5]. Many
commonly collected human trajectories in the real world are
based on GPS data, since it is a comprehensive satellite-based
system that provides good accuracy. With the technological
revolution of the Internet of things (IOT), the data collection
of GPS trajectory becomes much easier by ubiquitous sensor
devices. The more sensors such as smart-phones are deployed,
the more diverse human trajectories could be recorded. An-
other widely deployed approach is utilizing the urban camera
system, which is able to partially monitor human trajectory.
It is convenient to recognize human identities by a camera
and the entire trajectory could be reconstructed with abundant
extracted snapshots. The state-of-the-art approach for human
trajectory analysis is also based on the spatial-temporal check-
in data. The advances in data collection have been driven
by the developments in the worldwide cellular and WiFi
networks.

In general, most human trajectory data suffers from the
problem of incompleteness due to three main reasons. First,
it is not every person that is willing to share his/her privacy,
and therefore, only incomplete trajectory data is reported in
many cases. Second, it is also common that people just forget
to carry the GPS tracker or smartphone, resulting in partially
measured trajectory data. Last is the technical limitation,
such as poor GPS reception indoors and smartphones could
temporally lost connection to the base station.

The problem of data incompleteness can exacerbate infer-
ence inaccuracy. For example, although many cities deploy
large-scale traffic camera systems, not all roads are covered,
resulting in incomplete historical trajectories. Considering the
potentially poor quality of recorded images, it would be
challenging to infer the correct trajectories. Such incomplete
data introduces considerable uncertainties in recovering the
missing trajectories over those uncovered areas.

In the contact tracing scenario, human trajectories are criti-
cal information for health officials to perform risk evaluation
and decide whether further actions are to be taken. The
existing approach for contact tracing is to manually interview
the infected individuals. The data completeness and accuracy
could be much lower compared with those approaches with
automated recorded data (e.g., GPS or smartphones).
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C. Problem Formulation
Considering the human mobility pattern as a spatial-

temporal check-in sequence, we can define a trajectory T as:

Tuser : (l1, t1)→ (l2, t2)→ · · · → (li, ti), (1)

where li contains the location information (e.g., longitude and
latitude in GPS data) and ti is the corresponding check-in
timestamp. Unlike traditional interview-based methods, the lo-
cations here are determined by specific localization techniques
and represent a dense and accurate map. Each tuple within the
trajectory sequence refers to a single check detection.

In general, a continuous spatial-temporal human trajectory
in chronological order is generated by each user during a
time window from t1 to ti. More specifically, the trajectory
sequence is usually temporally sparse [20] in real-world sce-
narios due to two main reasons. First, the user actually is not in
the detection area, and she might leave the previously detected
location. We cannot capture her trajectory until she comes
back to locations that are covered by pre-installed sensors.
The second reason is the data incompleteness issue that we
already discussed. In this case, it would be desirable to recover
the missing data segments, e.g., an unknown tuple (lk, tk).

A more challenging problem is what about multiple missing
check-ins in the trajectory. One solution is to perform trajec-
tory segmentation based on the holes in the long sequence.
The assumption, in this case, is that the missing element is
also sparse, meaning the majority of the trajectory has been
captured. Moreover, the certain length of the trajectory prior
to and after timestamp tk are both known. Then it is possible
to infer the unknown element in a segmented trajectory.
Moreover, we transform a long sequence trajectory to mul-
tiple continuous subsequnces. This is to better feed the long
sequence into the proposed transformer based neural network
architecture. Details of such processing will be elaborated in
the experimental study section. Thus, a trajectory sequence T
can be represented in a matrix format, as:

Tuser =


(l1,1, t1,1) (l1,2, t1,2) · · · (l1,n, t1,n)
(l2,1, t2,1) (l2,2, t2,2) · · · (l2,n, t2,n)

...
...

. . .
...

(lm,1, tm,1) (lm,2, tm,2) · · · (lm,n, tm,n)

 .
where m is the index of the subsequences and n is the length
of each subsequence.

To better understand the trajectory matrix, spatial grouping
can be applied to map a trajectory from the high-dimensional
location space to a coarser labeled cluster space [21]. It helps
to mitigate the dimensionality problem, which causes con-
siderable complexity in modeling and computation. Further,
it is reasonable to assume that the adjacent locations could
influence each other within a specific cluster due to the high
infectiousness of COVID. Unlike traditional representation
methods (e.g., one-hot), the spatial grouping or clustering
aims to find the potential link between different locations. We
perform clustering on the trajectory check-ins space, as:

T ∈ Rn×m×d V T ∈ Rn×m×c, (2)

where n is the trajectory segment length, m is the dimensions
of segmentation in one trajectory, d is the location dimension

and c is the cluster dimension. The location dimension c
is pre-determined at the beginning based on the physical
distribution of the location space. For location clustering, we
employ a fused similarity estimation from spatial similarity
and detection similarity.

For most human trajectories, it is reasonable to consider
two adjacent locations as highly correlated [20]. Therefore,
the spatial similarity can be modeled as:

Sspa(la, lb) =
1

dist(la, lb)
, (3)

where dis(la, lb) is the Euclidean distance between the two
different location identities a and b. The reason for using
Euclidean distance is that the spatial clustering is performed in
a closed and relatively small map in this study. We assume that
the risks of infectiousness for healthy subjects are inversely
proportional to their distance to the potential virus carriers.

The locations’ reception similarity is modeled as the simul-
taneous check-ins at different locations for the same user. Due
to overlapping coverage, it is possible to detect the same user
in different locations (e.g., in the overlapping coverage of two
WiFi access points). We model the reception similarity as:

Srec(la, lb) = Pr(∃(la, ta) ∈ Tuser, (lb, tb) ∈ Tuser|ta = tb),

where Pr(·) indicates the probability of mutual detection of
two different location identities a and b. We can compute the
inter-location similarity score σa,b as:

σa,b = Sspa(la, lb) ∗ Srec(la, lb). (4)

Based on the computed similarity score, clustering can
be performed on the location space. Location clusters are
generated as: α ∈ L|c|. We obtain the cluster label represented
trajectory matrix as follows.

Tuser =


(α1,1, t1,1) (α1,2, t1,2) · · · (α1,n, t1,n)
(α2,1, t2,1) (α2,2, t2,2) · · · (α2,n, t2,n)

...
...

. . .
...

(αm,1, tm,1) (αm,2, tm,2) · · · (αm,n, tm,n)

 .
Therefore, our trajectory completion problem is to determine a
missing element (αi,j , ti,j) in the label represented trajectory
matrix Tuser.

III. TRANSFORMER-BASED SOLUTION

We propose a transformer-based deep neural network ap-
proach to tackle the human trajectory completion problem.
This solution is composed of two key components, including
(i) the graph embedding representation process, and (ii) the
transformer-based deep learning model. Our transformer-based
model for trajectory completion is illustrated in Fig. 1.

A. Graph Embedding
Graph embedding has attracted great attention recently due

to its high efficiency for many tasks such as link prediction and
community detection. Human trajectory sequence is usually
formed in a high-dimensional space, which is difficult for us
to extract useful features. Graph embedding model is able to
map the node-set from a high-dimensional domain into a flat
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Fig. 1. The proposed graph embedding transformer model architecture.

low-dimension domain [7]. By establishing a cluster labeled
trajectory representation, we will be able to leverage a graph
embedding approach to extract the underlying spatial features
in the vector space.

Consider a Graph G(V, E) consisting of node set V =
{v1, v2, ..., vn} and edge set E = {eij}ni,j=1, where n denotes
the number of vertices or nodes. Each edge eij describes
the connection between two adjacent nodes vi and vj . Our
model leverages an undirected binary static graph architecture
to preserve structural properties. As normal graph embedding,
our model is to encode nodes into a latent vector, which
encodes a pre-determined location cluster into a label vector
dimension [7].

Graph adjacency matrix A(G)n×n is a 2-D square matrix
that indicates whether two nodes are connected in a graph.
If two nodes vi and vj are connected, A(G)ij is equal to 1;
Otherwise, A(G)ij = 0. Graph degree matrix D(G)n×n is
also a 2-D diagonal matrix that represents how many other
nodes are attached to a node. Then the Graph Combinatorial
Laplacian matrix L(G)n×n is computed as:

L(G)n×n = D(G)n×n −A(G)n×n. (5)

Similar to the conventional Laplacian operator, a normalized
graph Laplacian matrix is modeled as a graph structural
representation. We further model each row {x1, x2, ..., xn} of
the graph Laplacian matrix as the graph node linear embedding
vector. In general, two nodes close in the graph always have a
smaller Cosine distance between the corresponding embedding
vectors.

B. Deep Learning Model for Supervised Training
The structure of our transformer-based deep neural network

is shown in Fig. 1. It consists of a transformer encoder [14]
and a deep convolution neural network (CNN) [3] to perform
a classification task. We leverage the transformer encoder as a
feature extractor and the multi-layer CNN to estimate missing
elements in the trajectory [15]. The major component in the
transformer is the Multi-head Self-attention [14], given by:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V, (6)

where the K matrix are the keys, the V matrix are the values,
and the Q matrix is the query that maps against the keys to
the output.

The attention mechanisms come from the basic idea that
the human brain always focuses on the most significant part
when facing abundant information, while the other parts are
processed as irrelevant components. It is widely used in the
natural language processing tasks such as speech recognition
and machine translation [15]. The self-attention mechanism
aims at relating elements at different positions in a sequence
to generate the sequence representation. Moreover, multi-head
self-attention is to perform self-attention in parallel that com-
bines multiple self-attention results to produce the final self-
attention score [14]. Thus, the transformer is more powerful in
dealing with multiple relationships and positions in a sequence.
By leveraging the multi-head self-attention mechanism, the
transformer has been proved to achieve a good performance
as a sequence-to-sequence model.

Our transformer model is carefully designed for capturing
the trajectory pattern of a specific user. We employ a multi-
layer transformer encoder to encode the features in the graph-
embedded segmented trajectory matrix, formulated as:

ht = TransformerEncoder(Tuser → L(G)), (7)

where L(G) is the graph-embedded trajectory matrix which is
in three dimensions, and ht is the transformer encoder layer’s
cell hidden state.

In the supervised training process, we randomly mask a
single element in each embedded trajectory segment with a
vector: (ξ1, ξ2, ..., ξn), to create incomplete trajectories. This
mask is to let the transformer learn the position of the missing
part in the trajectory. Historical trajectories are important
for estimating future mobility patterns [20]. However, the
temporal location sequence is not sufficient to extract the entire
mobility trajectory pattern and the spatial features of locations
need to be determined. Together with the graph embedding,
not only the spatial features are captured, but also we consider
the time sequence of a human mobility trajectory to perform
the complete task.

After feature extraction, we then utilize a deep CNN to
train for optimal weights [3]. We design a four-layer CNN
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to obtain a strong learning and representation ability for the
output vector.

Next, we transfer the output of the last CNN layer’s final
cell hidden state hfinalcnn : (z1, z2, ..., zn) to a softmax function
and obtain the output vector ŷ : (y1, y2, ..., yn), as:

ŷi =
ezi∑n
i=1 e

zi
, for i = 1, 2, ..., n. (8)

We adopt the cross-entropy to evaluate the difference be-
tween the estimated label ŷ and the original embedded label
vector y before masking. To obtain the optimal weights, we
would like to minimize the following training loss function:

min
ε
Γ (ε) = −

n∑
i=1

y log(ŷ). (9)

IV. EXPERIMENTAL STUDY

A. Dataset Description

We evaluate the performance of our proposed approach
with experiments using an open-source human mobility dataset
[22]. To get closer to the reality of contact tracing, a relatively
small scenario was preferred. It is a real world dataset created
from a collection of BLE data packets generated by people-
carried beacons to record human mobility. The participating
human subjects carry the beacon device in their daily routine
inside a building on campus. There are about 32 signal receiver
deployed in this three-floor facility, continuously gathering the
BLE packets sent by beacons [22]. Fig. 2 shows the layout of
one of the three floors. When a packet is received by the edge
device, the message is stored. The individual message contains
the beacon ID, the Received Signal Strength Indicator (RSSI),
the timestamp of receiving, and the receiver ID. Basically,
the location information within the trajectory is dependent on
the continuous detection of the receiver. Since the receiver
locations are known and stationary, trajectories are formalized
with sufficient detecting messages. The data was collected with
46 participants in one month from September to October 2016.
The BLE beacon devices were carried by the participants all
the time during their occupancy in the building. The trace data
was utilized in our experiment to evaluate the performance of
the proposed transformer-based approach.

B. Data Processing

To obtain clean data for training, we selected the appropriate
subject’s data that contains sufficient check-ins. Based on the
trial scenario and characteristics of human mobility, we further
performed down-sampling in the temporal domain. So the
final results of the preprocessed trajectory data are segmented
as 5-minute continuous check-ins sequence with 10 seconds
temporal-even sampling. Specifically, we generated 19,195
human trajectory segments for the entire dataset, and each
segment contains a sequence of 30 locations. We acknowledge
that the possible noise in location data has not been taken into
consideration in this case, but will be address in our future
work. Based on the Bluetooth receiver deployment layout, we
calculated the inter-receiver similarity scores and grouped all
the receiver locations into six clusters. The last step is to mask
the trajectory and perform a classification estimation task. Due

Fig. 2. Layout of one floor: signal receivers are marked by yellow dots.

TABLE I
ACCURACY PERFORMANCE COMPARISON OF DIFFERENT METHODS

Model Accuracy Precision Recall F1-score ROC

MLP 59.92% 0.478 0.599 0.481 0.557
LSTM 56.47% 0.433 0.565 0.420 0.832
Trans 64.43% 0.653 0.644 0.637 0.842

GE-Trans 86.49% 0.868 0.865 0.865 0.960

to the difficulty of determining the ground truth of the missing
trajectory, to balance the trade-off between uncertainty and
accuracy, only one check-in per segment was masked with an
extremely valued vector. The preprocessed dataset was further
divided into train and test sets with ratio of 9:1.

C. Results and Discussions

We use the metrics of model training loss and prediction
accuracy to evaluate the proposed scheme. We also perform
the same experiment with several baseline schemes for com-
parison, including (i) Transformer only (i.e, without graph
embedding) termed as Trans, Multi-layer Perception (MLP)
[5], and LSTM [11]. The proposed scheme is termed GE-Trans
in the results. The exactly same dataset and data preprocessing
procedure were applied for a fair comparison.

We find our proposed graph embedded transformer model
achieves the highest training accuracy. Then, the trained
models were executed on the test dataset for ten times and
the averaged accuracy results are computed and presented in
Table I. As the table shows, our proposed graph embedded
transformer model achieves the highest accuracy of 86.49%,
representing 26.57%, 30.02%, and 22.06% gains over MLP,
LSTM, and Trans, respectively, which is also higher than the
75% accuracy of human mobility trajectory prediction reported
in a recent work [19].

Fig. 3 presents the training accuracy curves for all the tested
models over episodes. The curves show that transformer-based
models, even without graph embedding, have a relatively better
training accuracy performance compared with the traditional
MLP and LSTM models. Our GE-Transformer model reaches
95% training accuracy after 100 episodes and all other baseline
schemes cannot achieve an accuracy above 80% even after
300 episodes. Moreover, the LSTM and MLP models only
achieve a stable train accuracy below 60%. On one hand, this
is because these two models are not effective in learning the
graphical feature of mobility trajectories. On the other hand,
the attention mechanism based transformer models are more
powerful when dealing with such spatial-temporal sequences,
which bare certain resemblance to natural language with a
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semantic context. In general, the graph embedded transformer
model achieves the highest stable training accuracy in the first
300 episodes when compared with the other baseline models.

The detailed classification results based on our graph em-
bedding transformer model are presented in the form of a
confusion matrix in Fig. 4. It shows our model has a high
positive rate overall in six location cluster categories.

V. CONCLUSIONS

In this paper, we proposed a graph embedding assisted
transformer deep neural network model to address the human
trajectory completion problem. We embedded the intrinsic
spatial characteristics in the temporal location sequence to
better understand the human mobility trajectory. Experimental
study using real world BLE data was performed to validate our
proposed deep learning model. The results demonstrated the
superiority of the transformer-based approach. With the high
efficiency and accurate classification, our proposed approach
can be useful for contact tracing to combat the pandemic.
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