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ABSTRACT

Millimeter Wave (mmWave) communications, as a core tech-
nique of 5G, can be leveraged for outdoor localization be-
cause of its large bandwidth and massive antenna array.
Fingerprinting based mmWave outdoor localization methods
using deep learning are highly suitable for non-line-of-sight
(NLOS) environments. In this paper, we propose a deep
convolutional Gaussian process (DCGP) based regression
approach to achieve high robustness for fingerprinting-based
mmWave outdoor localization, which exploits the convo-
lutional structure for deep Gaussian process to allow un-
certainty estimation on location predictions. Specially, we
present a system architecture of mmWave based outdoor lo-
calization, including beamforming image construction and
DCGP training, where DCGP model can effectively learn the
location features from mmWave beamforming images. Our
experimental results show that the proposed DCGP method
can achieve higher outdoor localization accuracy than a CNN-
based baseline method.

Index Terms— Outdoor Localization, 5G mmWave,
Beamforming, Convolutional Neural Network, Deep Convo-
lution Gaussian Process.

1. INTRODUCTION

With the rapid growth of wireless communications and net-
works, new wireless applications such as location based ser-
vices (LBS) are quickly growing, which can greatly improve
user’s experience and impact people’s lives [1]. Currently,
outdoor location information is mostly obtained by the global
positioning system (GPS), which can achieve a localization
accuracy at about 5 m in line-of-sight (LOS) conditions for
civilian use [1]. However, the GPS performance could be poor
in rich-scattering environments and urban canyons, and does
not work indoors. Alternative outdoor localization techniques
such as long term evolution (LTE) and LoRa with received
signal strength (RSS) [2] usually does not achieve high out-
door localization accuracy. For example, the median error of
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network-based localization with LTE is 80 m in urban envi-
ronments [3].

Millimeter Wave (mmWave) communications, as a core
technique of 5G, can not only provide high data rates, but also
have high temporal resolution and high directivity. Various
mmWave-based localization methods have been proposed,
which mainly leverage geometric methods (e.g., angle-of-
arrival (AOA) and time-of-arrival (TOA)) for theoretical
study of mmWave localization [4]. For example, in LOS
environments, fundamental limits of position and rotation an-
gle estimation from a single transmitter in 2D and 3D space
are derived in [5]. Moreover, in multipath scenarios, the
strongest RSS is regarded as the LOS. However, this assump-
tion will not hold true in outdoor cluttered environments.
Recent mmWave experimental work shows that geometry-
based methods cannot be directly applied to accurately locate
devices in non-line-of-sight (NLOS) environments, because
of the non-linear mmWave propagation [6].

Fingerprinting solutions with deep learning have been
proposed recently, which is highly suitable for NLOS envi-
ronments and can achieve better performance than traditional
machine learning based schemes. This is because the re-
ceived signal from NLOS can be used as features for location
estimation with deep learning. Our indoor localization works
focus on using different deep learning (e.g., deep autoen-
coder, convolutional neural network (CNN), deep residual
sharing learning) with WiFi channel state information (CSI)
data [7–9]. There are several recent work on applying deep
learning to mmWave fingerprinting. For example, multi-
ple access points are used to create a location fingerprint
database of received powers and AOA in [10], and CNN has
been applied to mmWave outdoor fingerprinting in [11, 12].
Meanwhile, other machine learning methods have been em-
ployed for single user [13, 14] and multi-user [15] indoor
localization with commodity 60 GHz mmWave devices.

Motivated by the above works, we study the problem of
mmWave fingerprinting based outdoor localization in this pa-
per. Although the existing deep learning based approaches
(e.g., CNN) can achieve acceptable outdoor localization ac-
curacy for mmWave networks in some cases, there is no guar-
antee on their robustness, because of the black-box approach
of the deep learning models. In this paper, we propose a
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deep convolutional Gaussian process (DCGP) based regres-
sion approach for mmWave outdoor localization, which is dif-
ferent from the original DCGP method [16] that is focused on
image classification problems. In addition, compared with
CNN, DCGP is a fully Bayesian kernel method with no neu-
ral network component, which can provide uncertainty esti-
mation on location predictions [16]. Also, DCGP leverages
the convolutional structure for deep Gaussian process, which
can detect hierarchical combinations of local features in the
mmWave dataset, especially in NLOS environments.

In particular, we present the system design for mmWave-
based localization, including beamforming image construc-
tion and DCGP training, where the DCGP model can effec-
tively extract the features of mmWave beamforming images.
Then, we introduce the mmWave system model and show
how to construct mmWave beamforming images. We then
examine how to effective train the DCGP model with beam-
forming images. Finally, we evaluate the localization perfor-
mance of the proposed scheme, and compare its performance
with a CNN-based baseline scheme, using an open-source
mmWave dataset for outdoor experiments. The experimen-
tal results show that the proposed DCGP method can achieve
better localization performance than the CNN-based method.

The remainder of this paper is organized as follows. We
discuss the system design in Section 2 and our performance
study in Section 3. Section 4 summaries this paper.

2. SYSTEM DESIGN

2.1. System Architecture

The system architecture of mmWave based outdoor localiza-
tion is shown in Fig. 1. We consider a mobile device that can
receive mmWave power delay profile (PDP) data from a base
station (BS). The BS can send short pulses with a sequence
of beamforming patterns that cover all transmission angles in
a measured area. The system needs to create a beamforming
image in each location that captures the features of PDP data
in mmWave transmission. Then, the collected beamforming
images from all locations can be leveraged to train a DCGP in
the offline stage, which estimates the mobile device location
with a measured beamforming image in the online stage.

In addition, a mmWave ray-tracing simulation on accurate
3D maps can generate the propagation dataset and location
labels. Specially. the Wireless InSite ray-tracking software
with a highly accurate open-source 3D map in the NYU area
is used to generate the outdoor mmWave dataset. Compared
with the model-based mmWave localization methods, the pro-
posed method can be more effective in outdoor NLOS cases.
In addition, the proposed DCGP can improve the robustness
of outdoor localization with beamforming images compared
with CNN. Compared with our previous work DeepMap, that
uses a deep Gaussian process for indoor location estimation
with WiFi RSS data sequence (i.e., 1-D dataset) [17], this

Fig. 1. System architecture of mmWave based localization.

work considers 2D beamforming image dataset with DCGP,
which is more effective for mmWave outdoor localization.

2.2. Constructing Beamforming Images

We focus on data-driven beamforming based mmWave fin-
gerprinting for outdoor localization. Motivated by our prior
work on CSI image-based localization [11,17], we also create
mmWave beamforming images as fingerprints, which can be
effectively handled by the DCGP model [16] to estimate loca-
tion. DCGP integrates the convolutional structure and Gaus-
sian process in a Bayesian framework, which can effectively
extract hierarchical features from 2-D beamforming images to
improve the robustness of localization performance. Before
we discuss DCGP based localization, we first introduce the
mmWave system model and then construct mmWave beam-
forming images.

We consider a mmWave system with phase-shifter based
analog beamforming, which has a low hardware require-
ment [18]. Assume a fixed codebook CT with BT beam
patterns for a BS with NB antennas, which covers all possi-
ble angles of mmWave transmissions. The BS can transmit a
28GHz mmWave signal with BT beam patterns sequentially.
We also consider a mobile device with NR antennas. The
received signal yi at the mobile device for the ith transmitting
beam pattern in the frequency-domain is given by

yi = WTHFis+WT z, (1)

where the superscript T represents a matrix transpose, W is
the beamforming vector at the mobile device, H is the chan-
nel matrix, Fi is the ith transmitting beam pattern, s is the
transmitted signal, and z is the additive Gaussian white noise.
Because analog beamforming is based on a codebook design,
the current beam pattern is Fi ∈ CT = {F1, F2, ..., FBT

}.

8324

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2023 at 06:05:25 UTC from IEEE Xplore.  Restrictions apply. 



We assume that the receiver also employs a beamforming
codebook CR with BR beam patterns to include all AoA val-
ues with a similar gain, where CR = {W1,W2, ...,WBR

}.
Because there are BR beam patterns at the mobile device, it
will sample the original transmission BR times. To create the
beamforming image data, only the maximum measured value
is stored for each transmitting beam pattern. Thus, the stored
data mi(n) in the nth sample from the ith transmitting beam
pattern is calculated as

mi(n) = max
k∈{1,2,...,BR}

yki (nT0), n = 1, ..., N, (2)

where yki (·) is the received signal using the ith transmitting
beam pattern and the kth receiving beam pattern, andN is the
number of samples and T0 is the sampling period in seconds.
Note that for each transmitting beam pattern, the received
PDP values can be obtained based on mi(n), n = 1, 2, ..., N .
Thus, using all the transmitting BT beam patterns, we can
create a 2-D beamforming image M with the received PDP
values in all transmitting beam patterns, which is defined as

M =


m1(1) m2(1) . . . mBT

(1)
m1(2) m2(2) . . . mBT

(2)
...

...
. . .

...
m1(N) m2(N) . . . mBT

(N)

 . (3)

The created 2-D beamforming image is illustrated in
Fig. 2, where the x-axis represents the index of the trans-
mitting beam pattern of the BS, and the y-axis represents
the sample index of the received PDP in a given beam pat-
tern. Using the Wireless InSite ray-tracking software with the
highly accurate 3D map in the NYU area, a dataset is created
with 160,801 beamforming images, which will be used to
train the DCGP model in the following.

2.3. Training Deep Convolutional Gaussian Process

We use the 2D beamforming images to train the DCGP for lo-
cation estimation, which iteratively convolutes several Gaus-
sian process (GP) functions over the images. We formulate
the mmWave localization problem as a supervised DCGP re-
gression problem with input beamformng imageM and a out-
put vector y that represents the 2-D locations, as shown in
Fig. 2. The details on DCGP training are discussed below.

Consider an image representation f lc = RHl×Wl of width
Wl and height Hl (i.e., number of pixels) at layer l for chan-
nel c. We then create a 3D tensor f l = (f l1, f

l
2, ..., f

l
C) ∈

RHl×Wl×Cl at the lth layer, where C is the number of chan-
nels. We have C0 = 1 for the input image at layer 0 using
a 2-D beamforming image M generated as before. We could
create a sequence of layers f l to map the input image M to
the output y that is M → f1... → fL = y, where L = 3
for the proposed method. To implement the convolutional op-
eration on the GP layers, a 3D tensor f l can be divided into

Fig. 2. Training the DCGP model.

several patches f l[p] ∈ Rhl×wl×Cl , where p is the patch in-
dex, hl and wl are the height and width of the patch at the lth
layer, respetively.

In addition, we construct the layers by using convolutions
of patch response functions glc : Rhl−1×wl−1×Cl−1 → R over
the input one patch at a time, which can build the next layer
representation. The C patch responses at each of the first
L − 1 layers are considered as independent GPs with shared
prior [16], where each patch response is defined by

glc(f
l−1[p]) ∼ GP(0, k(f l−1[p], f

′l−1[p′])), c = 1, 2, ..., C,
(4)

The kernel k(·, ·) represents the similarity of two image
patches. We adopt the radial basis function (RBF) kernel in
DCGP. For two patches x1 and x2, it is defined as [17]

k(x1, x2) = σ2
f exp

(
− 1

2γ2
|x1 − x2|2

)
, (5)

where σf and γ are the hyper-parameters; σ2
f represents the

variance and γ is a length scale.
To augment each patch response function, we use a set

of I inducing patches zl in the patch space Rhl−1×wl−1×Cl−1

with the corresponding response rlc [16]. Then, we obtain
I inducing patches Zl = (zl1, z

l
2, ..., z

l
I) that are shared

among the C patch response functions. In fact, each patch
response function has different inducing responses Rl

c =
(rlc1, r

l
c2, .., r

l
cI). The conditional patch response probability

is defined by

Pr(glc|f l−1, Rl
c, Z

l) = N(glc;µ,Σ) (6)

µ = Kf l−1ZlK−1
Zl,ZlR

l
c (7)

Σ = Kf l−1f l−1 −Kf l−1ZlK−1
Zl,ZlKZlf l−1 , (8)

whereKf l−1Zl is the covariance matrix between the input and
the inducing variables that can estimate the similarity of all
the patches.
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In the last regression layer, a GP with a weighted convo-
lutional kernel is used to aggregate the convolutional layer
outputs. We adopt the doubly stochastic variational infer-
ence [19] to learn the DCGP model, where all the parame-
ters (i.e., RBF kernel parameters and the patch weights in the
last layer) in the DCGP are trained by the Adam optimizer.
In the online stage, the trained DCGP model will be used for
location predication with a measured beamforming image.

3. EXPERIMENTAL STUDY

3.1. Dataset and System Configuration

In this paper, we use the open-source mmWave dataset using
the ray-tracking software (i.e., Wireless InSite 3.0.0.1) at New
York university of a 400 × 400 m2 area [18]. The dataset
includes beamforming images from 160,801 bidimensional
positions. The ray-tracking simulation parameters are based
on experimental measurements [20]. Specially, the mmWave
carrier frequency is set to 28 GHz, the codebook size is 32,
the number of samples for each beam pattern at the transmit-
ter is 82, the received PDP is sampled at 20 MHz, the antenna
gains of transmitter and receiver are 24.5 dBi and 10 dBi, re-
spectively, the noise level is 6dB, and the detection threshold
is 100 dBm.

This localization experiments were performed on a lab
machine using TensorFlow-GPU version 1.15. The lab
machine has a NVIDIA GTX 1080 GPU, 6 GB of RAM,
and 64-bit windows 10 operating system. The benchmark
method is CNN-based mmWave localization [18]. Specifi-
cally, TFLearn is used to speed up the computations in the
CNN model. In addition, we use the GPflow framework
to implement the proposed DCGP model, where the Adam
learning rate is set to 0.01, the convolution filter size is 3×3,
and the number of inducing points is 384 at each layer.

3.2. Experimental Results

Fig. 3 presents the cumulative distribution functions (CDFs)
of location errors achieved by DCGP and CNN. The 95th per-
centile errors for DCGP and CNN are 7.018 m and 14.289 m,
respectively, while the median errors for DCGP and CNN are
2.559 m and 5.885 m, respectively. We can see that the pro-
posed DCGP model achieves higher robustness than CNN.
Using the same device with a 1080 GPU, the training time
for DCGP and CNN are 533 minutes and 376 minutes, re-
spectively. The higher training time of DCGP is due to more
calculations for optimizing the kernel functions.

We also evaluate the impact of number of epochs on mean
distance error. Fig. 4 shows the average distance errors over
different numbers of epochs using CNN and DCGP, respec-
tively. The range of number of epochs is from 50 to 550. It
can be seen that for both CNN and DCGP models as the num-
ber of epochs is increased from 50 to 550, the distance error
decreases. Specially, when the number of epochs is 50, the

Fig. 3. CDFs of distance error achieved by the DCGP and
CNN models.
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Fig. 4. Average distance errors over different numbers of
epochs using CNN and DCGP.

mean distance errors for CNN and DCGP are 11.49 m and
8.35 m, respectively. At the 550th epoch, the mean distance
errors of CNN and DCGP become 4.46 m and 2.79 m, re-
spectively. The proposed DCGP model outperforms the CNN
model for mmWave outdoor localization.

4. CONCLUSIONS

In this paper, we proposed a DCGP based approach for out-
door localization with mmWave beamforming image dataset.
We presented the system architecture of mmWave based out-
door localization, including beamforming image construction
and DCGP training, where the DCGP model is used to extract
the features of mmWave beamforming images. Our experi-
mental results demonstrated that the proposed DCGP method
can achieve better outdoor localization accuracy using the 28
GHz mmWave beamforming image dataset, compared with
the CNN-based baseline method.
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López-Salcedo, and Gonzalo Seco-Granados, “Survey
of cellular mobile radio localization methods: From 1G
to 5G,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp.
1124–1148, Secondquarter 2018.

[2] Jait Purohit, Xuyu Wang, Shiwen Mao, Xiaoyan Sun,
and Chao Yang, “Fingerprinting-based indoor and out-
door localization with LoRa and deep learning,” in Proc.
IEEE GLOBECOM 2020, Taipei, Taiwan, Dec. 2020,
pp. 1–6.

[3] Avik Ray, Supratim Deb, and Pantelis Monogioudis,
“Localization of LTE measurement records with miss-
ing information,” in Proc. IEEE INFOCOM 2016, San
Francisco, CA, Apr. 2016, pp. 1–9.

[4] Arash Shahmansoori, Gabriel E Garcia, Giuseppe Des-
tino, Gonzalo Seco-Granados, and Henk Wymeersch,
“Position and orientation estimation through millimeter-
wave MIMO in 5G systems,” IEEE Trans. Wireless
Commun., vol. 17, no. 3, pp. 1822–1835, Mar. 2017.

[5] Zohair Abu-Shaban, Xiangyun Zhou, Thushara Ab-
hayapala, Gonzalo Seco-Granados, and Henk Wymeer-
sch, “Error bounds for uplink and downlink 3D local-
ization in 5G millimeter wave systems,” IEEE Trans.
Wireless Commun., vol. 17, no. 8, pp. 4939–4954, Aug.
2018.

[6] Ojas Kanhere, Shihao Ju, Yunchou Xing, and
Theodore S Rappaport, “Map-assisted millimeter wave
localization for accurate position location,” in Proc.
IEEE GLOBECOM 2019, Waikoloa, HI, Dec. 2019, pp.
1–6.

[7] Xuyu Wang, Lingjun Gao, and Shiwen Mao, “CSI-
based fingerprinting for indoor localization: A deep
learning approach,” IEEE Trans. Veh. Technol., vol. 66,
no. 1, pp. 763–776, Jan. 2017.

[8] Xuyu Wang, Xiangyu Wang, and Shiwen Mao, “Deep
convolutional neural networks for indoor localization
with CSI images,” IEEE Trans. Netw. Sci. Eng., vol.
7, no. 1, pp. 316–327, Jan./Mar. 2020.

[9] X. Wang, X. Wang, and S. Mao, “Indoor fingerprint-
ing with bimodal CSI tensors: A deep residual sharing
learning approach,” IEEE Internet of Things Journal, to
appear, DOI: 10.1109/JIOT.2020.3026608.

[10] Zhiqing Wei, Yadong Zhao, Xinyi Liu, and Zhiyong
Feng, “DoA-LF: A location fingerprint positioning al-
gorithm with millimeter-wave,” IEEE Access J., vol. 5,
pp. 22678–22688, Sept. 2017.

[11] João Gante, Gabriel Falcão, and Leonel Sousa, “Beam-
formed fingerprint learning for accurate millimeter wave
positioning,” in Proc. IEEE VTC-Fall 2018, Chicago,
IL, Aug. 2018, pp. 1–5.

[12] João Gante, Gabriel Falcão, and Leonel Sousa, “En-
hancing beamformed fingerprint outdoor positioning
with hierarchical convolutional neural networks,” in
Proc. IEEE ICASSP 2019, Brighton, UK, May 2019, pp.
1473–1477.

[13] Toshiaki Koike-Akino, Pu Wang, Milutin Pajovic, Hai-
jian Sun, and Philip V Orlik, “Fingerprinting-based in-
door localization with commercial MMWave WiFi: A
deep learning approach,” IEEE Access J., vol. 8, pp.
84879–84892, Apr. 2020.

[14] Guillermo Bielsa, Joan Palacios, Adrian Loch, Daniel
Steinmetzer, Paolo Casari, and Joerg Widmer, “Indoor
localization using commercial off-the-shelf 60 GHz ac-
cess points,” in Proc. IEEE INFOCOM 2018, Honolulu,
HI, Apr. 2018, IEEE, pp. 2384–2392.

[15] Chenshu Wu, Feng Zhang, Beibei Wang, and KJ Ray
Liu, “mmTrack: Passive multi-person localization us-
ing commodity millimeter wave radio,” in Proc. IEEE
INFOCOM 2020, Toronto, Canada, July 2020, pp. 1–9.

[16] Kenneth Blomqvist, Samuel Kaski, and Markus
Heinonen, “Deep convolutional Gaussian processes,” in
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Würzburg, Ger-
many, Sept. 2019, pp. 582–597.

[17] Xiangyu Wang, Xuyu Wang, Shiwen Mao, Jian Zhang,
Senthilkumar CG Periaswamy, and Justin Patton, “In-
door radio map construction and localization with deep
gaussian processes,” IEEE Internet of Things Journal,
vol. 7, no. 11, pp. 11238–11249, 2020.

[18] João Gante, Gabriel Falcão, and Leonel Sousa, “Deep
learning architectures for accurate millimeter wave po-
sitioning in 5G,” Neural Processing Letters, vol. 51, no.
1, pp. 487–514, Aug. 2020.

[19] Michalis Titsias and Miguel Lázaro-Gredilla, “Dou-
bly stochastic variational Bayes for non-conjugate infer-
ence,” in Proc. ICML 2014, Beijing, China, June 2014,
pp. 1971–1979.

[20] Yaniv Azar, George N Wong, Kevin Wang, Rimma
Mayzus, Jocelyn K Schulz, Hang Zhao, Felix Gutier-
rez, DuckDong Hwang, and Theodore S Rappaport,
“28 GHz propagation measurements for outdoor cellular
communications using steerable beam antennas in New
York City,” in Proc. IEEE ICC 2013, Budapest, Hun-
gary, June 2013, pp. 5143–5147.

8327

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2023 at 06:05:25 UTC from IEEE Xplore.  Restrictions apply. 


		2022-08-25T01:06:53-0400
	Preflight Ticket Signature




