
13028 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

GPU-Free Specific Emitter Identification Using
Signal Feature Embedded Broad Learning

Yibin Zhang , Student Member, IEEE, Yang Peng , Jinlong Sun , Member, IEEE,
Guan Gui , Senior Member, IEEE, Yun Lin , Member, IEEE, and Shiwen Mao , Fellow, IEEE

Abstract—Emerging wireless networks may suffer severe secu-
rity threats due to the ubiquitous access of massive wireless
devices. Specific emitter identification (SEI) is considered as one
of the important techniques to protect wireless networks, which
aims to identifying legal or illegal devices through the radio
frequency (RF) fingerprints contained in RF signals. Existing
SEI methods are implemented with either traditional machine
learning or deep learning. The former relies on manual fea-
ture extraction which is usually inefficient, while the latter
relies on the powerful graphics processing unit (GPU) com-
puting power but with limited applications and high cost. To
solve these problems, in this article, we propose a GPU-free
SEI method using a signal feature embedded broad learning
network (SFEBLN), for efficient emitter identification based on
a single-layer forward propagation network on the central pro-
cessing unit (CPU) platform. With this method, the original
RF data is first preprocessed through external signal processing
nodes, and then processed to generate mapped feature nodes and
enhancement nodes by nonlinear transformation. Next, we design
the internal signal processing nodes to extract effective features
from the processed RF signals. The final input layer consists
of mapped feature nodes, enhancement nodes, and internal sig-
nal processing nodes. Then, the network weight parameters are
obtained by solving the pseudo inverse problem. Experiments
are conducted over the CPU platform and the results show
that our proposed SEI method using SFEBLN achieves a supe-
rior identification performance and robustness under various
scenarios.

Index Terms—GPU-free, radio frequency (RF) signals, signal
feature embedded broad learning network (SFEBLN), specific
emitter identification (SEI).

Manuscript received 13 January 2023; revised 23 February 2023; accepted
12 March 2023. Date of publication 15 March 2023; date of current version
7 July 2023. This work was supported in part by the National Key Research
and Development Program of China under Grant 2021ZD0113003; in part
by the Jiangsu Provincial Key Research and Development Program under
Grant BE2020084-5; in part by the National Natural Science Foundation of
China under Grant 61901228; and in part by the Postgraduate Research and
Practice Innovation Program of Jiangsu Province under Grant KYCX22-0948
and Grant KYCX21-0736. (Corresponding author: Guan Gui.)

Yibin Zhang, Yang Peng, Jinlong Sun, and Guan Gui are with
the College of Telecommunications and Information Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210003,
China (e-mail: 2021010208@njupt.edu.cn; 2020010210@njupt.edu.cn;
sunjinlong@njupt.edu.cn; guiguan@njupt.edu.cn).

Yun Lin is with the College of Information and Communication
Engineering, Harbin Engineering University, Harbin 150009, China (e-mail:
linyun@hrbeu.edu.cn).

Shiwen Mao is with the Department of Electrical and Computer
Engineering, Auburn University, Auburn, AL 36849 USA (e-mail: smao@
ieee.org).

Digital Object Identifier 10.1109/JIOT.2023.3257479

I. INTRODUCTION

W ITH the rapid development of wireless communica-
tions, existing wireless networks are able to support

the access of massive user terminals, including many wire-
less edge devices. At the network layer and data link layer,
device identification usually depends on the Internet protocol
(IP) address or media access control (MAC) address identifier.
However, the IP address is not unique, and the MAC address
is easy to be tampered with, which provide attack opportu-
nities to hackers. Hence, to further improve the security of
wireless communications, many specific emitter identification
(SEI) [1], [2], [3] methods based on radio frequency finger-
printing (RFF) have been proposed. Thanks to the reliability
and uniqueness of RFF, SEI can ensure the wireless com-
munications security for Internet of Things (IoT) for smart
homes [4], intelligent vehicle networks [5], Industrial IoT
(IIoT) communications [6], [7], etc.

In recent years, some scholars discovered the radio
frequency (RF) defects of signal transmitters. Scanlon et al. [8]
attempted to extract a unique identifier from wireless signal
transmissions in order to perform automated device identifi-
cation. From the unique characteristics of the electromagnetic
wave emitted by the transmitter, the RFF is unique [9]. The
typical structure of wireless digital transmitter and its cor-
responding receiver is shown in Fig. 1. The RF signals are
usually generated from baseband signals through raw in-
phase/quadrature (I/Q) digital modulation. The I/Q signals
are going through digital/analog (D/A) modules, intermediate
frequency (IF), up-converters, and a public nonlinear ampli-
fier, respectively. The D/A module will introduce quantization
error and nonlinear integral effect, and the IF will generate
filter noise. In addition, the up-converter utilizing an oscilla-
tor will lead to frequency offset and the amplifier is usually
nonlinear. Hence, the RF signals generated by different trans-
mitters contain their own hardware features, which are termed
as RFF.

In the past decade, artificial intelligence (AI), including tra-
ditional machine learning (ML) and deep learning (DL), have
achieved great success in the field of signal processing, e.g., for
automatic modulation recognition [10], [11], [12], [13], chan-
nel state information prediction and feedback [14], [15], fast
beamforming design [16], intrusion detection [17], malware
traffic classification [18], flight delay prediction [19], indoor
localization [20], and other applications. However, these tech-
nologies based on ML or DL all need the support of a graphics

2327-4662 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6988-7592
https://orcid.org/0000-0003-1782-2492
https://orcid.org/0000-0002-3373-2203
https://orcid.org/0000-0003-3888-2881
https://orcid.org/0000-0002-4002-1282
https://orcid.org/0000-0002-7052-0007

ZHANG et al.: GPU-FREE SPECIFIC EMITTER IDENTIFICATION 13029

Fig. 1. Illustration of the structure of wireless digital transmitter and its
corresponding receiver.

processing unit (GPU) for its huge computing power, which
limits their use in practice. Hence, this article proposes to
leverage the novel broad learning system (BLS) proposed
in [21], [22], [23], and [24]. The BLS is a single-layer forward
propagation network, which does not need back propagation
to adjust the network weight. Furthermore, the BLS is capa-
ble of fast and efficient training due to its special architecture,
which provides a promising solution for online learning tasks.

Broad learning has been widely applied in signal processing,
e.g., for image recognition [25], Internet of Vehicles [26], [27],
fault diagnosis [28], etc. The core advantage of broad learn-
ing is to save computing overheads. In other words, it is a
lightweight solution. For the IoT system composed of edge
devices with low computational power, lightweight design is
a way to provide real-time solutions [30], [31]. In this arti-
cle, we focus on the BLS and apply broad learning to SEI,
aiming to develop efficient methods with limited computing
overhead. The main contributions of this article are highlighted
as follows.

1) We propose a GPU-free SEI method using the signal fea-
ture embedded broad learning network (SFEBLN). The
proposed method utilizes massive nonlinear transforma-
tion nodes to approximate the fingerprinting features
of RF signals. In addition, all the computation of the
proposed SFEBLN are excuted on the central processing
unit (CPU) platform.

2) According to the characteristics of RF signals, we
design external and internal signal processing nodes to
preprocess the original signals and extract statistical fea-
tures. The processed signal features are embedded into
the broad learning network for achieving a better SEI
performance.

3) We conduct experiments to validate the proposed
SFEBLN method on large-scale real-world open data
sets of source automatic dependent surveillance-
broadcast (ADS-B) signals [29]. The comparison results
of computing overhead prove the feasibility of the
proposed SFEBLN method for edge devices and online
learning. Furthermore, the simulation results show that
the proposed SFEBLN method achieves the state-of-the-
art identification performance.

The remainder of this article is organized as follows. In
Section II, we give a survey about existing SEI researches in
recent years, including ML-based, DL-based, and BLS-based
SEI methods. Section III shows the system model and the cor-
responding mathematical problem model. In Section IV, we
discuss our proposed SEI method in detail, including basic

knowledge, the network architecture, and the algorithm flow
chart. The experimental results and some comparative analy-
sis are given in Section V. Finally, Section VI conclude this
article.

II. RELATED WORKS

In this section, we review the existing SEI methods in recent
years, including the conventional methods based on combina-
tion of signal features and ML, the methods based on DL,
and the latest methods based on BLS. Some of the algo-
rithms described in this section are adopted in our subsequent
comparative experiments as benchmark schemes.

A. ML-Based SEI Methods

The ML-based methods have been developed in early years.
For example, Bertoncini et al. [32] proposed three meth-
ods to extract RFF for RFID labels, called dynamic wavelet
fingerprint, wavelet packet decomposition, and higher order
statistics, respectively. Then the authors utilized four con-
ventional classification methods to verify the performance,
which are linear and quadratic discriminant classifiers, k-
nearest neighbor (kNN), and support vector machine (SVM).
Huang et al. [33] proposed to utilize the permutation entropy
of received signals as RF fingerprints, and used the kNN as
the classifier. The authors verified their methods with steady-
state signals from four wireless network cards and three digital
radios. Zhang et al. [34] proposed to rely on the energy
entropy, and first- and second-order moments of the Hilbert
spectrum as RF fingerprints. Meanwhile, this article adopts
SVM as the classifier. Satija et al. [35] explored variational
mode decomposition (VMD) to decompose RF signals into
specific numbers as RF fingerprints. The kNN was used to
complete the SEI task. Gok et al. [36] employed the VMD to
real radar signals and also achieved a great success.

B. DL-Based SEI Methods

In recent years, DL has achieved great success in com-
puter vision (CV). Therefore, many scholars try to apply
CV algorithms to the field of signal processing. For exam-
ple, Merchant et al. [37] designed a convolutional neural
network (CNN) to detect physical features for identification
of cognitive radio devices. And, the method achieved great
identification accuracy and robustness. Yin et al. [38] applied
the RF fingerprint identification technique to LTE terminal
identification, and proposed a multichannel CNN to extract
the differential constellation trace figures to identify LTE ter-
minals. Ramasubramanian et al. [39] claimed that the I/Q
signals showed a “helical” structure and encoded the intrinsic
signal features into short-term variations. Then, a 3-D CNN
was used to extract the short-term space-time characteristics
of I/Q signals. Qian et al. [40] proposed a multilevel sparse
representation-based identification algorithm for SEI, which
combined neural networks with sparse representation-based
classification. In the multiscale CNN, the channel attention
mechanism was introduced to extract low-dimensional and
high-dimensional signal features. Du et al. [41] introduced a

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

13030 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

variable network architecture search (NAS) mechanism for SEI
to automatically search for the optimal models.

Furthermore, there are researches proposed that the RF
signals should be preprocessed for adaptation to the DL-
based algorithms. They coincidentally convert RF signals into
picture signals. Lin et al. [42] designed a framework to trans-
form complex-valued signals into the so-called contour stellar
image, which extracted deep statistical information from raw
wireless signals and presented it in the form of images.
Peng et al. [43] employed heat constellation trace figures to
replace the I/Q samples, which reduced the cost of training and
avoided complex feature extraction. A slice integration coop-
eration method constellation are also proposed to improve the
accuracy of RFF identification.

The above researches proved that DL-based algorithms are
able to achieve good performance in SEI tasks. Therefore,
more and more researches are carried out with DL-based SEI
methods. For example, incremental learning (IL) strategy, nar-
rowband system, channel robust problem, and so on. He and
Wang [44] proposed cooperative identification by multiple dis-
torted receivers, which achieved high diversity gain in the iden-
tification performance. In addition, they considered multiple
fingerprints to simulate a practical emitter. Xiao and Yan [45]
utilized the short-time Fourier transform (STFT) and k-means
algorithm to obtain the time-frequency spectrograms of radar
emitter signals. And, then used the CNN for emitter identifi-
cation based on the time-frequency images. Liu et al. [46]
explored the application of IL in noncryptographic device
identification. To better understand the internal mechanisms
of DNNs, the degree of conflict and conflict of fingerprints
were proposed to analyze DNN models. Finally, the enhanced
channel separation-enabled IL strategy was proposed for wire-
less device identification. Zhang et al. [47] comprehensively
modeled the impairments of transmitter and receiver in nar-
rowband systems, including oscillator imperfections, phase
and gain imbalances of the mixer, and power amplifier nonlin-
earity. In addition, the authors further explored their effects on
RF fingerprint identification and proposed a CNN-based RFFI
protocol. Yang et al. [48] proposed a data-independent RFF
extraction scheme using random data segments. The proposed
LAFS scheme computed converged tap coefficients as RFF
by minimizing the divergence between the desired signal and
the demodulated reference signal. Shen et al. [49] proposed a
deep metric learning-based scalable RFF identification frame-
work, which enabled devices flexibly join and leave RFF
database. Furthermore, a novel channel-independent spectro-
gram and data augmentation were utilized to achieve channel
robustness. Chatterjee et al. proposed a deep neural network-
based system extremely robust and secure at low cost, called
RF-PUF [50]. The key idea of RF-PUF was based on the phys-
ical unclonable functions (PUFs). Furthermore, RF-PUF made
lightweight design for wireless nodes to save costs as much
as possible.

C. BLS-Based SEI Methods

BLS is a relatively new network architecture, and some
scholars have recently applied it to SEI, for example,

Fig. 2. Illustration of the rapid authentication system of civil aircrafts.

Xu et al. [51] proposed a lightweight SEI method called adap-
tive broad learning network (ADBLN), which incorporates
an adaptive node expansion strategy to adjust the network
structure according to RF signals. The proposed ADBLN is
evaluated using the real world data collected from aircrafts
and achieved a great identification performance.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Wireless devices will be affected by many factors in the pro-
cess of production. Each device in different transmitters has a
certain device tolerance, or hardware defect [52]. Considering
the transmitter structure shown in Fig. 1 and the multiple
effects of transmitter hardware defects, the RF fingerprint can
be modeled as the following:

RFF(·) = Aγ

0 (1 + hPA(ãtx)) × exp
{
iθ + ht

(
σm

TIE

)

+ h�(�n,�INL) + hm(ξ) + hp(ρh, ρv)
}

(1)

where Aγ

0 and θ are amplitude and phase information of
received signal, respectively. Furthermore, hPA(ãtx), ht(σ

m
TIE),

h�(�n, �INL), hm(ξ), and hp(ρh, ρv) are nonlinear parame-
ters introduced by amplifier, digital signal processing, DAC,
mixer, and antenna, respectively.

Without loss of generality, this article focuses on the rapid
authentication of civil aircraft based on ADS-B signals (a rep-
resentative SEI application), aiming to quickly detect illegal
aircraft [29]. As shown in Fig. 2, there are three parts of
the authentication system: 1) data acquisition; 2) SFEBLN;
and 3) aircraft identification. First, the aircrafts are considered
as specific emitters in the system and the signal acquisition
device is deployed near the airport. Then, the received ADS-
B signals are the input of SFEBLN, which includes external
and internal signal processing nodes. Finally, the SFEBLN is
able to identify different aircrafts and discover unauthorized

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GPU-FREE SPECIFIC EMITTER IDENTIFICATION 13031

illegal aircraft. The SFEBLN architecture shown in the fig-
ure is only a schematic diagram. The feature mapping nodes,
enhancement nodes, and signal processing nodes are explained
in detail in the following text. Meanwhile, the output nodes
can be dynamically adjusted according to different tasks.

B. Problem Formulation

This article aims to propose a fast and efficient SEI method
to identify the legitimacy of aircrafts. We utilize ADS-B sig-
nals collected at the airport in this study. The received RF
signals can be expressed as follows:

xi(t) = si(t) ∗ hi(t) + ni(t), i = 1, 2, . . . , N (2)

where xi(t) is the received time series signal, si(t) and hi(t)
denote the transmitted ADS-B signal and the propagation
channel, respectively, and ni(t) represents the additive noise.

Actually, the SEI is to solve the matching problem between
the received RF signals and the corresponding aircraft labels.
Assume that the data set is defined as D{xi, yi}N

i=1, where yi
is the label of the corresponding aircraft. Then, the problem
to be solved can be defined as follows:

ŷi = fSEI
(
xi(t), W̃

)
, i = 1, 2, . . . , N (3)

where fSEI(·) represents the mapping function used to identify
the received signals, ŷi is the predict aircraft label of xi, and
W̃ denotes the optimal weight coefficient. We define the prob-
ability of a group of signals being identified correctly as the
accuracy rate, given by

α =
{

N∑

i=1

(
ŷi = yi

)
}

/N (4)

and the corresponding error rate is ε = 1 − α. Therefore, we
have the objective function to be optimized, that is, for the
highest accuracy and the lowest error, i.e.,

W̃ = arg min
W

ε
{
ŷi = fSEI(xi,W)yi

}
(5)

where the optimal weight W̃ and the framework of fSEI(·) are
the solutions to the SEI problem.

IV. OUR PROPOSED SEI METHOD USING SFEBLN

In this section, we introduce the proposed SEI method
using SFEBLN, including its external signal processing nodes,
internal signal processing nodes, feature mapping nodes, and
enhancement nodes. First, in order to better understand the
proposed SFEBLN in this article, we provide the prelim-
inaries of the BLS. Then, the structure and workflow of
SFEBLN are discussed. Finally, we introduce several classical
signal-processing algorithms can be used within SFEBLN.

A. Preliminaries

Almost all data-driven AI models proposed in recent years
can be described as in Fig. 3. For SEI problems, the RF signals

Fig. 3. Illustration of the basic structure of BLS.

are 1-D I/Q samples. Hence, the data matrix {X|X ∈ R
n×l} for

SEI can be defined as follows:

X = [x1, x2, . . . , xn]T =

⎡

⎢⎢⎢
⎣

x11 x12 · · · x1l

x21 x22 · · · x2l
...

xn1 xn2 · · · xnl

⎤

⎥⎥⎥
⎦

(6)

where n and l are the number of data samples and the length of
each sample, respectively. The real labels of the corresponding
devices {Y|Y ∈ R

n×c} can be similarly defined as follows:

Y = [
y1, y2, . . . , yn

]T =

⎡

⎢⎢⎢
⎣

0 0 1 · · · 0
1 0 0 · · · 0

...

0 1 0 · · · 0

⎤

⎥⎥⎥
⎦

(7)

where n and c represent the number of samples and the number
of the corresponding emitter categories. Then, the simplest SEI
problem can be expressed as follows:

Y = XWxy. (8)

For known data and the corresponding labels, the weight Wxy

can be solved by the inversion operation as follows:

Wxy = X−1Y. (9)

Finally, Wxy shall be applicable to the identification problem
under the same data distribution. That is, if the RF signals to
be identified Xtest and the known data X come from the same
specific domain D = {X , PX }, the corresponding labels of
Xtest can be identified as follows:

Ytest = XtestWxy (10)

where X (X∗ ∈ X) is the sample domain and PX is the
marginal probability distribution of the sample domain.

However, there still exist two serious flaws making this
simple solution ineffective.

1) The matrix X could be huge, and it will be very difficult
to find the corresponding inverse operation, and maybe
X−1 does not exist.

2) The lack of nonlinear operations makes it unable to fit
complex problems.

For the first problem, we usually solve for X−1 by pseudo-
inverse or ridge regression. The pseudo-inverse operation is
written as follows:

Ŵxy = arg min
Wxy

∥∥XWxy − Y
∥∥2

2. (11)

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

13032 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

Fig. 4. Illustration of the RVFLNN.

If X is full column rank, then X† = (XTX)−1XT , and the
optimal weight is

Ŵxy = X†Y = (
XTX

)−1
XTY (12)

where the pseudo-inverse Ŵxy can be regarded as the optional
weight. The ridge regression is a supplement to the least
square regression, which has lost the unbiased property in
exchange for high numerical stability, and thus obtaining
high calculation accuracy. The ridge regression methods and
the approximate solution of pseudo-inverse are expressed as
follows:

Ŵxy = arg min
Wxy

∥∥XWxy − Y
∥∥2

2 + λ
∥∥Xxy

∥∥2
2 (13)

X† = lim
λ→0

(
XTX + λI

)−1
XT (14)

and then the weight can be solved as Ŵxy = X†Y.
Furthermore, the second problem can be solved as in Fig. 4.

It is obvious that linear operations cannot fit all mathe-
matical models. Pao et al. [53], [54] proposed a random
vector functional-link neural network (RVFLNN) to solve this
problem. The authors proved the universal approximation theo-
rem in [55], which provides a theoretical basis for the BLS and
the SFEBLN proposed in this article. The enhancement nodes
are obtained by a nonlinear transformation of input data X,
which is defined as follows:

Z = ξ(XWh + β) (15)

where ξ(·) represents the nonlinear transformation function,
Wh and β are the transformation weight and bias for func-
tion ξ(·), respectively. Then, the input layer of RVFLNN is
composed of data X and enhancement nodes Z, which is
expressed as A = [X|Z]. Finally, the goal of RVFLNN is
to obtain the network weight Wxy through pseudo-inverse or
ridge regression. Theoretically, as long as there are enough
enhancement nodes, the network can have enough nonlinear
ability to approximate any function.

B. Proposed SFEBLN Algorithm

Since both DL and BLS are designed for CV problems,
here we propose SFEBLN to handle RF signals for SEI tasks.
The structure of the proposed SFEBLN method is shown in
Fig. 5. It is composed of two signal processing nodes (external
and internal), mapped feature nodes, and enhancement nodes.
The key idea of SFEBLN is the external and internal signal
processing nodes, which are used to extract the interpretable

features of input signals. The four parts of SFEBLN are
introduced as follows.

1) External Signal Processing Module: The external signal
processing module is used to preprocess the original input RF
signals, aiming at data cleaning, smoothing, augmentation, and
so on, which can be defined as follows:

X̃ex = fex(X,�) (16)

where X̃ex is the output of external signal processing nodes,
X and � are the input data and operator may be used in fex(·).
It should be noted that the external signal processing nodes
apply to each sample xi of input data X. Here, three classical
external signal processing methods for a signal sequence with
l length are expressed as follows:

x̃i
ex(k) =

l−1∑

n=0

xi(n)λ(k − n), 0 ≤ n, k ≤ l − 1 (17)

x̃i
ex(k) = λ

[
xi(n), win

]
, 0 ≤ n, k ≤ l − 1 (18)

x̃i
ex = (xl−k+1, . . . , xl, |x1, . . . , xl−k), 0 ≤ k ≤ l − 1. (19)

The above (17)–(19) show signal convolution, windowed pool-
ing, and signal shifting methods, respectively. Where λ(·)
represents the convolution function in (17) and the max or
average function in (18).

2) Mapped Feature Nodes: The mapped feature nodes Z
are linear transformation of the input data X, which is
expressed as follows:

Z = [Z1, Z2, . . . , Zm] (20)

where Z is composed of m mapped feature windows. Zi (i =
1, 2, . . . , m) represents the ith mapped feature windows, which
is defined as follows:

Zi = ζ
(

X̃exWzi + βzi

)
(21)

where ζ(·) is the activation function for linear transformation,
X̃ex is the output of the external signal processing nodes, and
Wzi and βzi

are the corresponding weight and bias of func-
tion ζ(·), respectively. Here, two adjustable hyper-parameters
include the length of the mapped feature window m̃ and the
number of mapped feature windows m. The parameter m̃ will
affect the shape of Wzi ∈ R

l×m̃. And, the output shape of
Zi is defined as {Zi ∈ R

n×m̃|i = 1, 2, . . . , m}. The other
parameter m determines the shape of the mapped feature nodes
Z ∈ R

n×(m̃m). For the broad learning network, both the weight
Wzi and the bias βzi

are randomly initialized. In addition, the
broad learning network is a one-layer forward network, which
also leads to randomness in the results.

3) Enhancement Nodes: The enhancement nodes are used
to further improve the fitting ability of the network. As men-
tioned before, theoretically, as long as there are unlimited
nonlinear transformation nodes, the single-layer feedforward
network can fit any problem. The enhancement nodes are
designed to further broaden the network, which can be
expressed as follows:

H = [
H1, H2, . . . , Hp

]
(22)

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GPU-FREE SPECIFIC EMITTER IDENTIFICATION 13033

Fig. 5. Illustration of the proposed SFEBLN method for SEI applications.

where Hj(j = 1, 2, . . . , p) denotes the jth enhancement nodes
window, which is defined as follows:

Hj = ξ
(

ZWhj + βhj

)

= ξ
(

[Z1Z2, . . . Zm]Whj + βhj

)
(23)

where ξ(·) is the activation function for the enhancement
nodes’ transformation function, Z = [Z1Z2 . . . Zm] is the out-
put of the mapped feature nodes, and Whj and βhj

are the
corresponding weight and bias of function ξ(·), respectively.
Similarly, there are two adjustable hyper-parameters that need
to be determined: 1) the size of each enhance nodes window p̃
and 2) the number of enhance nodes windows p. The parame-
ter p̃ will affect the shape of Whj ∈ R

(m̃m)×̃p. And, the output
shape of Hj is defined as {Hj ∈ R

n×̃p|j = 1, 2, . . . , p}. The
other parameter p will determine the final output shape of the
enhancement nodes H ∈ R

n×(̃pp).
4) Internal Signal Processing Nodes: As shown in Fig. 2,

the internal signal processing nodes are generated after two
steps: internal signal transformation and nonlinear transfor-
mation. The internal signal transformation usually chooses
discrete signal transformation algorithms, which are expressed
as follows:

X̃in = gin(X,�) (24)

where X̃in is the output after internal signal transformation,
X and are the input data and operator that may be used in
gin(·). Hence, X̃in is considered as the transform domain signal
of RF signals. As the same as external nodes, internal signal
processing nodes apply to each sample xi of input data X.
Here, we just show some classical internal signal processing
methods as follows:

x̃i
in(k) =

N−1∑

n=0

xi(n)e−j 2πnk
N , 0 ≤ k ≤ N − 1 (25)

x̃i
in(k) =

⎧
⎨

⎩

√
1
N

∑N−1
n=0 xi(n) cos (2n+1)kπ

2N , k = 0
√

2
N

∑N−1
n=0 xi(n) cos (2n+1)kπ

2N , 1 ≤ k ≤ N − 1

(26)

x̃i
in(k) =

N−1∑

n=0

xi(n)φ(n − k)e−j2π fn, 0 ≤ k ≤ N − 1 (27)

where N is the number of transformation points of finite
length, and φ(·) in (27) represents the windows function.
The above equations (25)–(27) show discrete Fourier trans-
form (DFT), discrete cosine transform (DCT), and STFT.
However, the X̃in cannot be the input to the network nodes
before processing. We define internal signal processing nodes
as follows:

S = [
S1, S2, . . . , Sq

]
(28)

where S is composed of q mapped feature windows and Sk

(k = 1, 2, . . . , q) represents the kth internal signal processing
windows, which is defined as follows:

Sk = γ
(

X̃inWsk + βsk

)
(29)

where γ (·) is the activation function for the enhancement
nodes transformation function, Wsk and βsk

are the corre-
sponding weight and bias of function γ (·), respectively. In this
part, we need to set two hyper-parameters: the width of each
internal signal processing window q̃ and the number of win-
dows q. The randomly initialized weights for internal signal
processing nodes follow the shape Wsk ∈ R

N×̃q. Then, internal
signal processing nodes of the kth window is obtained as
{Sk ∈ R

n×̃q|k=1,2,...,q}. And, the final internal signal processing
nodes are expressed as S ∈ R

n×(̃qq).
5) Nonlinear Activation Functions: We briefly introduce

several classical activation functions that can be chosen as
ζ(·), ξ(·), and γ (·) in the proposed SFEBLN

out = tan sig(a) = 2

1 + e−2a
− 1 (30)

out = sigmoid(a) = 1

1 + e−a
(31)

out = tanh(a) = ea − e−a

ea + e−a
(32)

out = leakyRelu(a) = max(0, a) + α min(0, a). (33)
Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

13034 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

Algorithm 1: Workflow of the Proposed SFEBLN for Fast
SEI

Input: RF signals for training and testing: Xtrain, Xtest;
Corresponding real labels for training: Ytrain;
Hyper-parameters of the network: m̃, m, p̃, p, q̃, q;

Output: Identification results: Yid;
1 [Training stage]:
2 Load Xtrain ∈ R

n×l, Ytrain ∈ R
n×c;

3 if external signal processing module then
4 Switch appropriate function from (17)∼(19);
5 Compute X̃ex ∈ R

n×l′ by (16);
6 end
7 if mapped feature nodes then
8 Randomly initialize Wzi ∈ R

l′×m̃ and βzi
;

9 Compute nodes Z ∈ R
n×(m̃m) by (20) and (21);

10 Save all Wz and βz;
11 end
12 if enhancement nodes then
13 Randomly initialize Whj ∈ R

(m̃m)×̃q and βhj
;

14 Compute nodes H ∈ R
n×(̃pp) by (22), (23);

15 Save all Wh and βh;
16 end
17 if internal signal processing module then
18 Switch appropriate function from (25)∼(27);
19 Computer X̃in ∈ R

n×N by (24);
20 Randomly initialize Wsk ∈ R

N×̃q and βsk
;

21 Compute nodes S ∈ R
n×(̃qq) by (28) and (29);

22 Save all Ws and βs;
23 end
24 Concatenate all nodes as input layer A = [Z|H|S];
25 Establish the equation to be solved Ytrain = AWay;
26 Obtain the solution of pseudo-inverse Way=A†Ytrain;
27 [Testing stage]:
28 Load Xtest, Wz, βz, Wh, βh, Ws, βs, Way;
29 Input Xtest and compute mapped feature nodes Zt,

enhancement nodes Ht and internal signal processing
nodes St using the corresponding weights Wz, Wh, Ws

and bias βz, βh, βz, respectively;
30 Concatenate all nodes as input layer At = [Zt|Ht|St];
31 Get the identification results by Yid = AtWay;

The above (30)–(33) describe four commonly used nonlinear
activation functions, which have been built into the proposed
SFEBLN method in this study.

C. Summary and Workflow

In summary, the proposed SFEBLN has a single-layer for-
ward propagation only network architecture. Furthermore, the
SFEBLN does not need to iteratively update network weights.
SFEBLN only needs to generate a large number of computing
nodes and complete a pseudo-inverse operation. These char-
acteristics make SFEBLN an efficient network structure. The
most important thing is that all its operations can be executed
on the CPU platform, rather than the dedicated and expensive
GPU. The workflow of SFEBLN can be found in Algorithm 1.

Furthermore, the computing complexity of SFEBLN can be
denoted as follows:

O(SFEBLN) = (X + 1) × (m̃m) + [
(m̃m) + 1

] × (p̃p)

+ [
(p̃p) + 1

] × (q̃q) + (m̃m + p̃p + q̃q + 1) × C

(34)

where X is the number of sampling points for each signal
sample, m̃m, p̃p, and q̃q are the number of mapped feature
nodes, enhancement nodes, and signal processing nodes, and
C is the number of identification tasks.

V. EXPERIMENTAL RESULTS

This section presents our experiment study of the proposed
SFEBLN and the corresponding comparison methods. We will
introduce the data sets, the simulation platform, the parameter
settings, and simulation results. And then we will provide our
analysis and discussion of the results, including performance
and overhead, robustness analysis, and stability analysis. The
data sets used in this article and the simulation codes can be
found at Github [56].

A. Data Set and Experiment Setup

1) Data Set: We choose the open source ADS-B data
set [29] in our study. The ADS-B system is widely used to
monitor the status of aircrafts, which is very important for the
safety. The ADS-B signals are collected by a universal soft-
ware radio peripheral (USRP) SM200B device, equipped with
a 1090-MHz omnidirectional antenna. The sampling frequency
is 50 MHz, center frequency and bandwidth are 1090 and
10 MHz, respectively, and the gain of signals is 30 dB. More
details of the data set can be found in paper [29] and Github.
Considering that the original data provided 26 613 ADS-B sig-
nal samples of 1713 different aircrafts in total, this article
randomly selects C = {10, 20, 30, 50, 100, 200} aircraft cate-
gories from the data set as six different SEI tasks. The size
of each ADS-B signal sample is xi ∈ C

6000×1. In order to
adapt to the input layer of SFEBLN, we reshape each ADS-B
sample to xi ∈ R

12000×1. Then, we define the input data set of
SFEBLN as {X|X ∈ R

n×12000}, where n represents the total
number of ADS-B signal samples of c categories of aircrafts.
And, the corresponding label matrix is {Y|Y ∈ R

n×c}. In addi-
tion, the ratio of training, validation, and testing data is set as
6:2:2 for each method.

2) Simulation Platform: All the simulations and experi-
ments are carried out on a workstation with CentOS 7.0. The
workstation is equipped with two Intel Xeon Silver 4210R
CPUs and four Nvidia RTX 2080Ti GPUs. It also has 256-GB
random access memory (RAM).

3) Hyper-Parameter Setting: As mentioned above, there
are six critical hyper-parameters need to be set manually
(excluding the selections of operator function and activa-
tion function). Through many attempts, we directly give the
optimal parameter selection here. It should be noted that this
does not mean that we provide an optimal solution of the entire
problem, but the subsequent experimental results are presented
in part from these parameter settings.

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GPU-FREE SPECIFIC EMITTER IDENTIFICATION 13035

1) Mapped Feature Nodes: m̃ = 10 and m = 15.
2) Enhancement Nodes: p̃ = 300 and p = 10.
3) Internal Signal Processing Nodes: q̃ = 100 and q = 1.

Meanwhile, we choose the average pooling function (18) as
external signal processing nodes and the DFT function (25)
with N = 2048 as the internal signal transformation.

4) State-of-the-Art SEI Methods: To validate the
performance and advantages of the proposed SFEBLN
method, we carry out extensive comparative experiments with
state-of-the-art SEI algorithms. The selected SEI solutions
include one broad learning-based method, three DL-based
methods, and two ML-based methods.

1) ABLN [51]: This is a BLS-based method called
ADBLN. Actually, we choose it as our benchmark in
all the experiments.

2) RVCNN [58]: This is a DL-based algorithm called
real-valued CNN (RVCNN). It is composed of nine con-
volutional layers and three fully connected layers. The
detailed hyper-parameters of RVCNN can be found in
the original paper.

3) CVCNN [58]: This is the complexed-value version of
RVCNN, called complexed-valued CNN (CVCNN). The
structure of both CVCNN and RVCNN are the same, but
CVCNN only utilizes the complex convolutional layers.

4) MSCNN [57]: This is a DL-based method, which is
composed of three branches of convolutional layers with
different kernel size. As in RVCNN/CVCNN, three fully
connected layers are used as classifier for MSCNN.

5) RForest: This is a traditional ML-based method called
random forest (RForest). It is a commonly used classifier
in ML, with fast computing speed and high efficiency.

6) SVM: This is a traditional ML-based method called
SVM. It is also a common classifier in ML.

B. Advantages of Performance and Overhead

In this part, we will show the advantages of iden-
tification performance and computation overhead of the
proposed SFEBLN. We select six different tasks with C =
{10, 20, 30, 50, 100, 200}, and choose three DL-based meth-
ods, MSCNN, RVCNN, and CVCNN, in this experiments.
Considering that SFEBLN and ABLN just need CPU as a
computing platform, we run MSCNN and RVCNN with both
CPU and GPU for a better contrast effect. First, we compare
the identification accuracy of the four methods. Then, we com-
pare the computing overhead of the four algorithms. For the
DL-based methods, we provide the overhead based on both
GPU and CPU.

As shown in Fig. 6, the proposed SFEBLN is able to achieve
100% identification accuracy in task C = {10, 20}, more than
99% accuracy in tasks C = {30, 50, 100}, and more than
98% accuracy in the most difficult task C = {200}. From
the figure, we find that the results of ABLN, RVCNN, and
MSCNN are worse than SFEBLN in all the tasks. However, the
CVCNN shows a better identification accuracy than SFEBLN
in tasks C = {50, 100, 200}. CVCNN is an improved version
of RVCNN, which not only improves its performance, but also
leads to a huge computing overhead.

Fig. 6. Illustration of the identification accuracy of different SEI methods.
SFEBLN versus ABLN versus RVCNN versus MSCNN.

In addition to the SEI performance, we should also pay
attention to the computing efficiency. Therefore, this article
provides a comparison of the corresponding training time and
testing time, both in seconds. It should be noted that all the
comparison experiments in this article use the same comput-
ing platform (in Section V-A2). And for a better comparison,
we have conducted the training and testing using both GPU
and CPU for the DL methods. The computation overhead of
CVCNN is almost four times that of RVCNN, and it runs very
slowly on the CPU. This part does not compare CVCNN, and
we can refer to the results of RVCNN to calculate CVCNN.
The computing overhead experimental results are shown in
Fig. 7, where Fig. 7(a) and (b) show the training and testing
times of different methods, respectively. It should be noted
that the training times of different methods have exponential
difference, the time axis in Fig. 7(a) uses the logarithmic coor-
dinate. It is not difficult to find from Fig. 7 that SFEBLN
exhibits a huge time advantage in all the SEI tasks. Except
the task C = 200, the training time of SFEBLN in any
other tasks is less than 10 s, slightly improved over ABLN.
Meanwhile, with the increase of task number C, SFEBLN
shows more and more advantages in training time. In the
task C = 10, the training time of SFEBLN is only 2.18%
of RVCNN (GPU), 0.96% of MSCNN (GPU), 0.148% of
RVCNN (CPU), and 0.063% of MSCNN (CPU). In the task

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

13036 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

Fig. 7. Illustration of the computation overhead of different SEI methods:
SFEBLN versus ABLN versus RVCNN (GPU) versus MSCNN (GPU) versus
RVCNN (CPU) versus MSCNN (CPU). (a) Training time. (b) Testing time.

C = 200, the training time of SFEBLN is 2.13‰ of RVCNN
(GPU), 0.904‰ of MSCNN (GPU), 0.204‰ of RVCNN
(CPU), and 0.071‰ of MSCNN (CPU). As for testing time,

SFEBLN also shows its advantages. Because the proportion
of data used for testing is small, we analyze the advantages of
SFEBLN from the perspective of mathematical statistics. The
testing time of SFEBLN is about 17.75% of RVCNN (GPU),
12.64% of MSCNN (GPU), 9.52% of RVCNN (CPU), and
4.72% of MSCNN (CPU). We can conclude that SFEBLN has
excellent computing advantages, especially in the CPU plat-
form. The advantages of SFEBLN in computing overhead and
its independence from the GPU platform provide a promissing
solution for online learning.

C. Robustness Analysis

In this part, we will introduce additive white Gaussian noise
(AWGN) to simulate SEI tasks in imperfect environments. The
model robustness is tested at different signal-to-noise ratios
SNR = {−10,−5, 0, 5, 10, 15} dB. The SNR and AWGN are
defined as follows:

SNR = 10 · log

(
Px

Pn

)
(dB) (35)

noise ∼ N(0, Pn) = 1√
2πPn

· exp

(
− x2

2Pn

)
(36)

where Px and Pn are the respective power of ADS-B sig-
nals and noise, N(0, Pn) represents a normal distribution with
mean = 0 and variance = Pn. The comparison methods we
selected in this part are ABLN, RVCNN, CVCNN, MSCNN,
RForest, and SVM. All DL-based methods in this part are
executed on GPU.

As shown in Fig. 8, the experimental results compare the
robustness of SEI methods under different tasks and noises.
The red solid line in the figures represents the performance of
the proposed SFEBLN under different SNRs, and the rest of
the dotted lines are the performance curves of the baseline SEI
methods. The small window in the figure shows the enlarged
local results of SNR = {5, 10, 15} dB. The x-axis represents
the SNR range [−10, 15] dB, with an interval of 5 dB. The y-
axis is the identification accuracy with testing data of different
task C. It is easy to see from the figure that the performance
of SFEBLN remains superior under different noise conditions.
Only for the C = 200 task, when SNR = −10 dB, the
performance of SFEBLN is lower than that of CVCNN. When
SNR = {−10,−5, 0} dB, the classical ML-based algorithms
RForest and SVM are completely ineffective, while the algo-
rithms based on DL and broad learning are still applicable,
and the SFEBLN proposed in this article still maintains its
advantages in worse environments. In extremely harsh environ-
ments, such as SNR = −10 dB, the proposed SFEBLN shows
a huge decline in identification accuracy, but it is still better
than the benchmark algorithm ABLN. However, the CPU-
based algorithms, RForest and SVM, show complete failure
under extremely harsh conditions. There is no denying that in
harsh communication environments, and on the devices with-
out GPU support, the broad learning-based methods will be the
best choice. Furthermore, the proposed SFEBLN achieves a
superior performance and high robustness. In different commu-
nication environments, SFEBLN can provide fast and accurate
identification for SEI tasks.

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GPU-FREE SPECIFIC EMITTER IDENTIFICATION 13037

Fig. 8. Identification performance of different SEI methods with six identification tasks. SFEBLN versus ABLN versus RVCNN versus CVCNN versus
MSCNN versus RForest versus SVM. (a) C = 10. (b) C = 20. (c) C = 30. (d) C = 50. (e) C = 100. (f) C = 200.

Fig. 9. Illustration of the box plots of identification accuracy, training time, and testing time for SFEBLN. (a) Accuracy versus class. (b) Training time
versus class. (c) Testing time versus class.

D. Stability Analysis

In the previous analysis, we mentioned that the core mech-
anism of SFEBLN is to generate calculation nodes through
nonlinear transformation, then find the single-layer weights,
and finally obtain a feasible SEI method. All nonlinear trans-
form nodes are generated by randomly initialized weight
and offset calculation, which leads to certain randomness in
SFEBLN’s performance. At the same time, CPU-based com-
puting may be affected by temperature, dominant frequency,
multithreading, and other factors, which will lead to instabil-
ity in SFEBLN’s training time and testing time. Therefore,
we conduct a Monte Carlo simulation based on six different
SEI tasks C = {10, 20, 30, 50, 100, 200}, and each task is exe-
cuted for 1000 times. We analyze and discuss the stability of
SFEBLN through such Monte Carlo simulation results. Here,
the detailed results of the 1000 Monte Carlo simulations are

shown by the box plots in Fig. 9. The red “+” represents the
outlier, the value of the red horizontal line is the median, the
two black horizontal lines, respectively, mean the maximum
and minimum values in the case of removing outliers, and the
upper horizontal line of the blue box is the upper quartile,
while the lower one represents the lower quartile. The x-axis
in the figure represents different SEI tasks C. Fig. 9(a)–(c)
show the accuracy, training time, and test time of Monte Carlo
simulation, respectively.

From the box plot of accuracy, when C = 10, there are
many discrete points in the results, showing strong random-
ness. This problem does not occur in C = {20, 30, 50}. When
C = {100, 200}, the identification performance becomes unsta-
ble again, but it is still more stable compared with C = 10.
As for the box plot of training time and testing time, the time
consumed increases with the increase of C. We observe that

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

13038 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

when C = {100, 200}, there are more outliers in the graph,
showing stronger randomness. This phenomenon shows the
randomness of SFEBLN, which is caused by randomly gener-
ated weights and offsets. However, through 1000 Monte Carlo
simulations, we found that the presence of randomness does
not affect the stability of SFEBLN, because most experimental
results are stable within an acceptable range.

VI. CONCLUSION

In this article, we proposed a fast and efficient SEI method
called SFEBLN, which is suitable for the CPU platform. The
proposed SFEBLN method is a single-layer forward propaga-
tion network, which mainly relies on nonlinear transformation
of feature mapping nodes, enhancement nodes, and signal
processing nodes to solve complex classification problems.
Different from DL, the proposed SFEBLN method does not
need to adjust the network weight through multiple rounds
of back-propagation, thus it can reduce the computation over-
head. Different from traditional broad learning, our proposed
SFEBLN method introduces external and internal signal pro-
cessing nodes to make it suitable for RF signal data, and
improves the identification accuracy through signal process-
ing algorithms. From our experimental results, we concluded
that the proposed SFEBLN method achieved an excellent
performance in different SEI tasks, and had robustness advan-
tage in a poor electromagnetic environment. Compared with
the state-of-the-art, SFEBLN achieved an exponential effi-
ciency improvement in computing overhead, and it got rid of
the GPU dependency. Finally, we verified the stability of the
SFEBLN performance through Monte Carlo simulation exper-
iments, addressing the concern of system instability caused by
randomly initialized weights. Our research have been proved
to be fast, efficient, and easy to deploy. It is able to be deployed
on SEI platforms with limited computing source.

REFERENCES

[1] J. M. Hamamreh, H. M. Furqan, and H. Arslan, “Classifications and
applications of physical layer security techniques for confidentiality: A
comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1773–1828, 2nd Quart., 2019.

[2] Y. Lu and L. D. Xu, “Internet of Things (IoT) cybersecurity research:
A review of current research topics,” IEEE Internet Things J., vol. 6,
no. 2, pp. 2103–2115, Apr. 2019.

[3] J. Zhang, S. Rajendran, Z. Sun, R. Woods, and L. Hanzo, “Physical layer
security for the Internet of Things: Authentication and key generation,”
IEEE Wireless Commun. Mag., vol. 26, no. 5, pp. 92–98, Oct. 2019.

[4] H. Zhao, Y. Zhang, X. Huang, Y. Xiang, and C. Su, “A physical-layer key
generation approach based on received signal strength in smart homes,”
IEEE Internet Things J., vol. 9, no. 7, pp. 4917–4927, Apr. 2022.

[5] X. Luo, Y. Liu, H.-H. Chen, and Q. Guo, “Physical layer security in
intelligently connected vehicle networks,” IEEE Netw., vol. 34, no. 5,
pp. 232–239, Oct. 2020.

[6] X. Zhou, W. Liang, S. Shimizu, J. Ma, and Q. Jin, “Siamese neural
network based few-shot learning for anomaly detection in industrial
cyber-physical systems,” IEEE Trans. Ind. Informat., vol. 17, no. 8,
pp. 5790–5798, Aug. 2021.

[7] Y. Chen, W. Hu, M. Alam, and T. Wu, “FIDEN: Intelligent fingerprint
learning for attacker identification in the Industrial Internet of Things,”
IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 882–890, Feb. 2021.

[8] P. Scanlon, I. O. Kennedy, and Y. Liu, “Feature extraction approaches
to RF fingerprinting for device identification in femtocells,” Bell Labs
Tech. J., vol. 15, no. 3, pp. 141–151, Dec. 2010.

[9] N. Soltanieh, Y. Norouzi, Y. Yang, and N. C. Karmakar, “A review of
radio frequency fingerprinting techniques,” IEEE J. Radio Freq. Identif.,
vol. 4, no. 3, pp. 222–233, Sep. 2020.

[10] W. Su, “Feature space analysis of modulation classification using
very high-order statistics,” IEEE Commun. Lett., vol. 17, no. 9,
pp. 1688–1691, Sep. 2013.

[11] Y. Wang, J. Wang, W. Zhang, J. Yang, and G. Gui, “Deep learning-based
cooperative automatic modulation classification method for MIMO
systems” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4575–4579,
Apr. 20202.

[12] Y. Wang, L. Guo, Y. Zhao, J. Yang, B. Adebisi, H. Gacanin, and G. Gui,
“Distributed learning for automatic modulation classification in edge
devices,” IEEE Wireless Commun. Lett., vol. 9, no. 12, pp. 2177–2181,
Dec. 2020.

[13] Y. Tu, Y. Lin, C. Hou, and S. Mao, “Complex-valued networks for
automatic modulation classification,” IEEE Trans. Veh. Technol., vol. 69,
no. 9, pp. 10085–10089, Sep. 2020.

[14] Y. Yang, F. Gao, C. Xing, J. An, and A. Alkhateeb, “Deep multimodal
learning: Merging sensory data for massive MIMO channel prediction,”
IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 1885–1898, Jul. 2021.

[15] J. Guo, C.-K. Wen, and S. Jin, “Deep learning-based CSI feedback for
beamforming in single- and multi-cell massive MIMO systems,” IEEE
J. Sel. Areas Commun., vol. 39, no. 7, pp. 1872–1884, Jul. 2021.

[16] H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast beamforming
design via deep learning,” IEEE Trans. Veh. Technol., vol. 69, no. 1,
pp. 1065–1069, Jan. 2020.

[17] R. Zhao et al., “A novel intrusion detection method based on lightweight
neural network for Internet of Things” IEEE Internet Things J., vol. 9,
no. 12, pp. 9960–9972, Jun. 2022.

[18] J. Ning et al., “Malware traffic classification using domain adaptation
and ladder network for secure Industrial Internet of Things,” IEEE
Internet Things J., vol. 9, no. 18, pp. 17058–17069, Sep. 2022.

[19] G. Gui, F. Liu, J. Sun, J. Yang, Z. Zhou, and D. Zhao, “Flight delay
prediction based on aviation big data and machine learning,” IEEE Trans.
Veh. Technol., vol. 69, no. 1, pp. 140–150, Jan. 2020.

[20] Z. Gao, Y. Gao, S. Wang, D. Li, and Y. Xu, “CRISLoc: Reconstructable
CSI fingerprinting for indoor smartphone localization,” IEEE Internet
Things J., vol. 8, no. 5, pp. 3422–3437, Mar. 2021.

[21] C. Chen and Z. Liu, “Broad Learning System: An effective and efficient
incremental learning system without the need for deep architecture,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 10–24,
Jan. 2018.

[22] C. Chen, Z. Liu, and S. Feng, “Universal approximation capability of
broad learning system and its structural variations,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 4, pp. 1191–1204, Apr. 2019.

[23] S. Feng and C. Chen, “Fuzzy broad learning system: A novel neuro-
fuzzy model for regression and classification,” IEEE Trans. Cybern.,
vol. 50, no. 2, pp. 414–424, Feb. 2020.

[24] X. Gong, T. Zhang, C. Chen, and Z. Liu, “Research review for broad
learning system: Algorithms, theory, and applications,” IEEE Trans.
Cybern., vol. 52, no. 9, pp. 8922–8950, Sep. 2022.

[25] H. Zhao, J. Zheng, W. Deng, and Y. Song, “Semi-supervised broad
learning system based on manifold regularization and broad network,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 3, pp. 983–994,
Mar. 2020.

[26] X. Yuan, J. Chen, N. Zhang, X. Fang, and D. Liu, “A federated bidi-
rectional connection broad learning scheme for secure data sharing in
Internet of Vehicles,” China Commun., vol. 18, no. 7, pp. 117–133,
Jul. 2021.

[27] X. Wang, Y. Zhu, S. Han, L. Yang, H. Gu, and F. Y. Wang, “Fast
and progressive misbehavior detection in Internet of Vehicles based on
broad learning and incremental learning systems,” IEEE Internet Things
J., vol. 9, no. 6, pp. 4788–4798, Mar. 2022.

[28] S. Han, K. Zhu, M. Zhou, and X. Liu, “Evolutionary weighted broad
learning and its application to fault diagnosis in self-organizing cel-
lular networks,” IEEE Trans. Cybern., early access, Feb. 3, 2022,
doi: 10.1109/TCYB.2021.3126711.

[29] Y. Tu et al., “Large-scale real-world radio signal recognition with deep
learning,” Chin. J. Aeronaut., vol. 35, no. 9, pp. 35–48, Sep. 2022.

[30] J. Bian et al., “Machine learning in real-time Internet of Things
(IoT) systems: A survey,” IEEE Internet Things J., vol. 9, no. 11,
pp. 8364–8386, Jun. 2022.

[31] A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, N. Guan, and Z. Guo,
“Energy-efficient parallel real-time scheduling on clustered multi-core,”
IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 9, pp. 2097–2111,
Sep. 2020.

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCYB.2021.3126711

ZHANG et al.: GPU-FREE SPECIFIC EMITTER IDENTIFICATION 13039

[32] C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet finger-
printing of radio-frequency identification (RFID) tags,” IEEE Trans. Ind.
Electron., vol. 59, no. 12, pp. 4843–4850, Dec. 2012.

[33] G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter iden-
tification based on nonlinear dynamical characteristics,” Can. J. Elect.
Comput. Eng., vol. 39, no. 1, pp. 34–41, Jan. 2016.

[34] J. Zhang, F. Wang, O. A. Dobre, and Z. Zhong, “Specific emitter
identification via Hilbert–Huang transform in single-hop and relay-
ing scenarios,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 6,
pp. 1192–1205, Jun. 2016.

[35] U. Satija, N. Trivedi, G. Biswal, and B. Ramkumar, “Specific emitter
identification based on variational mode decomposition and spectral fea-
tures in single hop and relaying scenarios,” IEEE Trans. Inf. Forensics
Security, vol. 14, no. 3, pp. 581–591, Mar. 2019.

[36] G. Gok, Y. K. Alp, and O. Arikan, “A new method for specific emitter
identification with results on real radar measurements,” IEEE Trans. Inf.
Forensics Security, vol. 15, pp. 3335–3346, 2020.

[37] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning for
RF device fingerprinting in cognitive communication networks,” IEEE
J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 160–167, Feb. 2018.

[38] P. Yin, L. Peng, J. Zhang, M. Liu, H. Fu, and A. Hu, “LTE device
identification based on RF fingerprint with multi-channel convolutional
neural network,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Feb. 2021, pp. 1–6.

[39] M. Ramasubramanian, C. Banerjee, D. Roy, E. Pasiliao, and
T. Mukherjee, “Exploiting spatio-temporal properties of I/Q signal data
using 3D convolution for RF transmitter identification,” IEEE J. Radio
Freq. Identif., vol. 5, no. 2, pp. 113–127, Jun. 2021.

[40] Y. Qian, J. Qi, X. Kuai, G. Han, H. Sun, and S. Hong, “Specific
emitter identification based on multi-level sparse representation in auto-
matic identification system,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 2872–2884, 2021.

[41] M. Du, X. He, X. Cai, and D. Bi, “Balanced neural architecture search
and its application in specific emitter identification,” IEEE Trans. Signal
Process., vol. 69, pp. 5051–5065, 2021.

[42] Y. Lin, Y. Tu, Z. Dou, L. Chen, and S. Mao, “Contour stella image and
deep learning for signal recognition in the physical layer,” IEEE Trans.
Cogn. Commun. Netw., vol. 7, no. 1, pp. 34–46, Mar. 2021.

[43] Y. Peng, P. Liu, Y. Wang, G. Gui, B. Adebisi, and H. Gacanin, “Radio
frequency fingerprint identification based on slice integration coopera-
tion and heat constellation trace figure,” IEEE Wireless Commun. Lett.,
vol. 11, no. 3, pp. 543–547, Mar. 2022.

[44] B. He and F. Wang, “Cooperative specific emitter identification via
multiple distorted receivers,” IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 3791–3806, 2020.

[45] Z. Xiao and Z. Yan, “Radar emitter identification based on novel time-
frequency spectrum and convolutional neural network,” IEEE Commun.
Lett., vol. 25, no. 8, pp. 2634–2638, Aug. 2021.

[46] Y. Liu, J. Wang, J. Li, S. Niu, and H. Song, “Class-incremental learning
for wireless device identification in IoT,” IEEE Internet Things J., vol. 8,
no. 23, pp. 17227–17235, Dec. 2021.

[47] J. Zhang, R. Woods, M. Sandell, M. Valkama, A. Marshall, and
J. Cavallaro, “Radio frequency fingerprint identification for narrow-
band systems, modelling and classification,” IEEE Trans. Inf. Forensics
Security, vol. 16, pp. 3974–3987, 2021.

[48] Y. Yang, A. Hu, Y. Xing, J. Yu, and Z. Zhang, “A data-independent radio
frequency fingerprint extraction scheme,” IEEE Wireless Commun. Lett.,
vol. 10, no. 11, pp. 2524–2527, Nov. 2021.

[49] G. Shen, J. Zhang, A. Marshall, and J. R. Cavallaro, “Towards scalable
and channel-robust radio frequency fingerprint identification for LoRa,”
IEEE Trans. Inf. Forensics Security, vol. 17, pp. 774–787, Feb. 2022.

[50] B. Chatterjee, D. Das, S. Maity, and S. Sen, “RF-PUF: Enhancing IoT
security through authentication of wireless nodes using in-situ machine
learning,” IEEE Internet Things J., vol. 6, no. 1, pp. 388–398, Feb. 2019.

[51] Z. Xu, G. Han, L. Liu, H. Zhu, and J. Peng, “A lightweight spe-
cific emitter identification model for IIoT devices based on adaptive
broad learning,” IEEE Trans. Ind. Informat., early access, Sep. 13, 2022,
doi: 10.1109/TII.2022.3206309.

[52] Y. Li, X. Chen, Y. Lin, G. Srivastava, and S. Liu, “Wireless transmit-
ter identification based on device imperfections,” IEEE Access, vol. 8,
pp. 59305–59314, 2020.

[53] Y.-H. Pao and Y. Takefuji, “Functional-link net computing:
Theory,system architecture, and functionalities,” Computer, vol. 25,
no. 5, pp. 76–79, May 1992.

[54] Y. H. Pao, G. H. Park, and D. J. Sobajic, “Learning and gen-
eralization characteristics of the random vector functional-link net,”
Neurocomputing, vol. 6, no. 2, pp. 163–180, 1994.

[55] B. Igelnik and Y. H. Pao, “Stochastic choice of basis functions in adap-
tive function approximation and the functional-link net,” IEEE Trans.
Neural Netw., vol. 6, no. 6, pp. 1320–1329, Nov. 1995.

[56] “SEI-SFEBLN.” [Online]. Available: https://github.com/CodeDwan/SEI-
SFEBLN

[57] Y. Zhang, Y. Peng, B. Adebisi, G. Gui, H. Gacanin, and H. Sari,
“Specific emitter identification based on radio frequency fingerprint
using multi-scale network,” in Proc. IEEE 96th Veh. Technol. Conf.
(VTC-Fall), London, U.K., 2022, pp. 1–5.

[58] Y. Wang, G. Gui, H. Gacanin, T. Ohtsuki, O. A. Dobre, and H. V. Poor,
“An efficient specific emitter identification method based on complex-
valued neural networks and network compression,” IEEE J. Sel. Areas
Commun., vol. 39, no. 8, pp. 2305–2317, Aug. 2021.

Authorized licensed use limited to: Auburn University. Downloaded on July 07,2023 at 07:57:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TII.2022.3206309

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

