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Abstract—Artificial intelligence (AI) has emerged as the most
promising solution expected to overcome the high degree of
abstraction of radio signals and achieve accurate automatic mod-
ulation classification (AMC). To further improve the classification
performance of the AMC model and enhance its interpretability,
the network output layer is modeled as a decision space into
which the input data is projected. In this paper, we expand the
inter-class angle between the classes with the largest confusion
rate to increase the decision space. In addition, we extend the
perspective to the softmax layer and evaluate the negative impact
of the output distribution range on the confidence difference
in the AMC problem. We further propose constraining the
norm of the input data to the output layer in combination with
prior knowledge of the distribution of modulation signal data.
Combining the above two aspects, a Maximum Focal Inter-Class
Angular Loss with Norm Constraint (MFICAL-NC) scheme is
proposed. The experimental results show that the method can
guide the model to obtain a better fitting state and a stronger
generalization ability.

Index Terms—Automatic modulation classification, maximum
confusion class, inter-class angular, confidence difference, norm
constraint.

I. INTRODUCTION

Automatic modulation classification (AMC) is a critical
component for applications such as spectrum monitoring,
cognitive radio networks, and electromagnetic management,
to enable efficient, reliable, and secure applications in future
mobile and wireless communication networks [1]. Due to the
openness of the electromagnetic space and the dynamic nature
of channel propagation effects, the form of received elec-
tromagnetic signals is extremely abstract. The classification
problem becomes particularly complex and difficult to model.
Artificial intelligence (AI) technology has been recognized by
both academia and industry as the most promising solution
for many electromagnetic field problems, including spectrum
sensing, radio resource assignment, and electromagnetic signal
classification, due to its powerful feature extraction capabilities
and low prior requirements [2].

AI has been widely adopted in many prior works to address
the AMC problem. As the basis for applying AI techniques
to the AMC problem, modulation signal datasets has been

created [3], [4]. Drawing on the experience in the field of
computer vision (CV), a method of preprocessing signals into
images and classifying them with AI technology is proposed
in [5]. Further, end-to-end AMC models for classifying time-
domain waveforms has been studied [6]. In order to improve
the applicability in different scenarios, few-shot [7], zero-
shot [8], transfer learning [9], attention mechanism [10] and
the adversarial attack problem [11], [12] have been studied.
In addition, lightweight techniques such as network quantiza-
tion [13] have proposed to reduce model complexity and make
it more suitable for industrial applications.

In the field of CV, the earliest and fastest-growing field
of AI, a variety of novel network structures are proposed.
Additionally, various loss functions are designed and proposed
to guide the network training process. For example, the center
loss is proposed in [14], which improves the intra-class
compactness by learning the center of deep features for each
class and penalizing the distance between deep features and
class centers. The Large-Margin softmax loss is proposed
in [15], which defines an adjustable margin in the softmax
loss function to expand the decision margin among classes.
Under clear intuition and geometric interpretation, the weights
of the last layer of the model are considered as the decision
vector space. The Inter-class Angular loss (ICAL) function
that increases the angle between classes to expand the decision
space is proposed to improve the inter-class variability [16].
Further, Focal Inter-Class Angular loss (FICAL) is proposed
in [17], which focuses more on the angle between two classes
that have a higher confusion rate.

Inspired by the design concepts of ICAL and FICAL loss
functions, this paper aims to identify their hidden defects and
propose mitigation solutions by increasing the maximum focal
angle. Further, the domain characteristic data distribution of
the modulated signal in the AMC model is analyzed. The
maximum Focal Inter-Class Angular Loss function with Norm
Constraint (MFICAL-NC) is proposed to guide the model to
converge towards a better state. We also evaluate the proposed
MFICAL-NC with extensive experiments.

The remainder of this paper is organized as follows. In
Section II, we present the system model. In Section III,978-1-6654-3540-6/22 © 2022 IEEE
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we introduce the proposed algorithm, MFICAL-NC, in detail
based on the two algorithms. In Section IV, we designed
extensive experiments to prove the effectiveness of the pro-
posed algorithm and verify the rationality. Finally, Section V
concludes this paper with a discussion of future work.

II. SYSTEM MODEL

The research perspective of this paper falls on the output
layer of the deep learning model, which is composed of a fully
connected layer and a softmax function. The input-output
relationship of the output layer is given by:

Y = WTX+B

O = softmax(Y),
(1)

where, X ∈ RM×1 represents the input to the layer; w ∈
RM×N represents the weights; B represents the bias; M is
the width of the input to the layer; N is the number of neurons,
as well as the number of classes. To facilitate subsequent
discussions, suppose A = WT. The output of the neuron
corresponding to the i-th class, yi, is given in (2), and which
can be rewritten as in (3).

yi = A(i,)X =
m∑
j=1

ai,jxj (2)

yi =
∥∥A(i,)

∥∥
2
‖X‖2 cos (θi) , (3)

where, A(i,) represents the i-th row of the transposed weight
matrix; ai,j is the element in the i-th row and j-th column of
the weight matrix; and ‖·‖2 represents the norm of a vector.
θi represents the angle between A(i,) and X. The diagram of
the above calculation process is illustrated in Fig. 1.

Fig. 1. Diagram illustration of the computations in output layer of the deep
learning model.

Therefore, the classification process is to project the input
vector X to the vector space composed of the weight vectors
corresponding to different classes, and obtain the highest inner
product value. Similarly, the inner product operation can also
be performed between the weight vectors corresponding to the
two classes, and the cosine value of the angle between them
can be calculated as:

cos (θij) =
AT

(i,)A(j,)∥∥A(i,)

∥∥
2

∥∥A(j,)

∥∥
2

. (4)

Obviously, increasing the angle between the weight vectors
corresponding to the two classes in the vector space can reduce
the similarity of the two classes in the decision space, open up
the decision space, and then improve the distinction between
the two classes.

III. THE PROPOSED METHODOLOGY

Based on the above model in Section II, ICAL [16] and
its improved version FICAL [17] are proposed. The method
in this paper is an improved and supplemental version to the
existing methods after our detailed analysis.

A. ICAL

In the ICAL algorithm, the average sum of cosine similarity
(termed AverageSim) loss function is proposed as an additional
regularization term to the original loss function. The expres-
sion of the joint loss function is given by:

LICAL =
1

B

B∑
i=1

− log

(
eyi∑N
j=1 e

yj

)

+ α
1

N2

N∑
i=1

N∑
j=1

cos (θij) ,

(5)

where the first term is the original loss function, B represents
the number of samples in the training batch, and the second
term is the AverageSim loss function is the regularization term.
During the training process, the loss value gets smaller and
the angle between the classes gets larger. In (5) α is the
hyperparameter of the penalty strength of the regular term,
which reflects the degree to which AverageSim is valued.

B. FICAL

In [17], the authors showed that the ICAL algorithm had the
same expansion effect for the angle between all class pairs,
without providing giving a stronger expansion for the angle
between the two classes with higher confusion. To address
this problem, the FICAL algorithm is proposed, in which a
dynamic penalty strength parameter is designed according to
the confusion rate between two classes. The dynamic penalty
strength parameter dij between the i-th and j-th class is given
as:

dij =
√
cijcji, (6)

where cij = nij/
∑N
k=1 nik is the confusion rate at which the

i-th class of data is incorrectly classified as the j-th class, nik
is the number of samples in the i-th class that is incorrectly
classified as the k-th class. Therefore, the expression of the
regular term LFICAL in the FICAL algorithm is given as:

LFICAL =
1

N2

N∑
i,j=1

dβij cos (θij) , (7)

where β is the control factor for the confusion rate.
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C. MFICAL-NC

The FICAL algorithm makes greater efforts to expand the
angle between classes with high confusion rates. However, it
can be shown that the algorithms based on cosine value have a
huge defect. The derivative function of the cos(x) function is
− sin(x). The update direction of the optimization algorithm is
the opposite direction of the gradient. The expansion strength
coefficient of the inter-class angle is the sin(x) function as
shown in Fig. 2. Therefore, these algorithms have inherently
a limited expansion strength for smaller angles than larger
angles.

Fig. 2. The trend and the gradient of the ICAL and FICAL algorithms.

To mitigate this defect, this paper proposes to find the angle
between the current class and some class that the data in the
current class is misclassified as the most. This class is called
the maximum confusion class for the current class. We then
find the largest confusion class of all classes and only expand
these inter-class angles. This algorithm removes the presence
of other larger inter-class angles in each calculation, which
overcomes the hindrance of the expansion of smaller angles.
The maximum focal inter-class loss function is given by:

LMFICAL =
1

N

N∑
i=1

dβij cos (θij) , s.t. j = max
j;j 6=i

cij . (8)

Inaddition, this paper further extends the analysis from the
output layer weight to the softmax function. In order to
explore the impact of the output layer decision space on the
softmax layer, the statistical results of the norm value of the
input data X, the class weight A(i,), and the value of the
output yi are shown in Table I. From the table, it can be seen
that the norm value of the input data X is much larger than
the class weight.

TABLE I
THE STATISTICAL RESULTS OF THE INPUT DATA, THE CLASS WEIGHT

AND THE VALUE OF THE OUTPUT

Item Maximum Minimum Mean Variance
Input data X 254.40 0.07 58.36 1829.31

Class weight A(i,) 1.01 0.75 0.82 0.01
Output yi 31.59 -45.74 -2.72 66.68

Although this does not affect the output value weighting
relationship, it does result in a wider distribution range or
larger values of the output yi. Due to the ex function as
shown in Fig. 3, confidence differences are magnified after
the softmax layer when yi has a wide distribution or takes
large values.

Fig. 3. The curve of the ex function.

During model training, it is possible that some points have
not been adequately fitted and are in an ambiguous situation.
However, because softmax magnifies the confidence differ-
ence, it presents the illusion of a good fit. As a result, the entire
network will not be adequately fitted to the data. Aiming at this
problem, this paper designs an algorithm of norm constraint
on the input data X, in order to narrow down the distribution
range of the output data yi, or reduce their value as given in
(9). In this way, the distribution difference of the data passing
through the ex function will be reduced, thereby reducing
the confidence difference and making the network a good fit.
Because adding a constraint to the output data will affect the
inter-class angles in the output layer, the norm constraint is
applied to the input data, instead of the output data, as

LNC =
B∑
i

‖Xi‖2 . (9)

The performance of a network is dependent on multiple
factors. This paper designs a combination of the maximum
focal inter-class angle loss and the norm value constraint.
Algorithm 1 presents the detailed steps of the algorithm.

IV. EXPERIMENT

In this paper, the AMC problem is chosen as the target
application for evaluating the effectiveness of the proposed
algorithm. The dataset RML2016.10a [3] is used, which
contains 8 types of digital modulation and 3 types of analog
modulation. The signal-to-noise ratio (SNR) of the data is from
-20dB to 18dB in 2dB intervals. The dataset is divided into
the training set, the cross-validation set, and the test set with
a ratio of 8:1:1. The AMC model with the softmax loss is set
as the baseline model, and the ICAL, FICAL, and MFICAL-
NC loss functions will be used. The front end of the model
is designed to be wide to extract more features. As the level
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Fig. 4. The network structure diagram of the AMC model.

Algorithm 1 MFICAL-NC
Input: The AMC model fθ(·); validation dataset (dv, lv); the origi-

nal loss function L; class set C; update function U(·, ·); the total
number of iterations T;

Output: The AMC model fθ(·);
1: Initialize fθ(·);
2: for epoch t = 0 to T− 1 do
3: Input dv into fθ(·), get the input of the last layer x and predict

labels lp;
4: Calculate the norm values of x and sum them up to LNC;
5: Get the confusion matrix with lp and lv;
6: Set LMFICAL = 0;
7: for epoch c in C do
8: Get The maximum confusion class m of c and calculate

the cos(θcm):

cos (θcm) =
AT

(c,)A(m,)∥∥A(c,)

∥∥
2

∥∥A(m,)

∥∥
2

. (10)

9: Add cos(θcm) to LMFICAL;
10: end for
11: LMFICAL-NC = L+ LMFICAL + LNC;
12: Update the model: fθ(·) = U(fθ(·), LMFICAL-NC);
13: end for
14: return fθ(·);

of feature abstraction increases, the network is subsequently
narrowed down to facilitate network fitting. Finally, stacked
fully connected layers are used as classifiers. The network
structure diagram of the AMC model is shown in Fig. 4.
Next, the effectiveness of the algorithm will be analyzed from
different aspects.

A. Comparison of classification accuracy

Classification accuracy is the most straightforward indicator
to measure the effectiveness of the proposed algorithm. For
a fair comparison, the learning rate scheme, loss function
hyperparameters and optimization algorithms of the different
algorithms evaluated in the experiment are consistent. The
classification accuracies under different SNRs for different
algorithms are shown in Fig. 5.

It can be seen from Fig. 5 that with the improvement of
SNR, the classification accuracies of the four algorithms all
exhibit an upward trend. When the SNR is lower than 14dB,

Fig. 5. Classification accuracy curves of the four algorithms under different
SNRs.

none of the four models can effectively classify the modulation
classes, and the results exhibits considerable randomness.
When the SNR is increased to about -2dB, the proposed
MFICAL-NC algorithm stands out from other algorithms
and achieves the highest classification accuracy. When the
SNR is increased to about 6dB, the classification accuracy
tends to be stable. From the baseline network, to ICAL, to
FICAL, and finally to the proposed MFICAL-NC algorithm,
the classification accuracy increases in turn. A series of
algorithms for expansion of the inter-class angle improves the
classification accuracy, which implies the correlation between
the classification accuracy and the inter-class angle, and the
reasonable expansion of the inter-class angle helps to improve
the model’s classification performance. Especially, the result
shows that MFICAL-NC can guide the model training process
to achieve a better fit and generalization ability.

B. Comparison of Angle Expansion Effect

Further, the angle expansion effect, as a validation indicator,
is used to verify whether the proposed MFICAL-NC algorithm
can effectively expand the angle of the decision space. The
confusion matrix is a commonly used indicator to present the
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degree of confusion between classes. Since the data at an SNR
lower than -14dB is overwhelmed by noise and cannot be
classified, we plot the confusion matrix for signals at an SNR
from -14dB to 18dB as shown in Fig. 6. The confusion matrix
will serve as a reference for analyzing the inter-class angle
matrix of the four algorithms. The inter-class angle matrix of
the four algorithms shown in Fig. 7.

Fig. 6. Confusion matrix for data at SNR from -14dB to 18dB under obtained
by the baseline model.

As can be seen in Fig. 6, the most severe confusion occurs
between QAM16 and QAM64. Higher-order modulations are
less distinguishable. QAM16 and QAM64 both belong to the
same broad category, so it is reasonable to have a more
serious confusion between the two. In addition, WBFM is
misclassified as AM-DSB with a high probability, both of
which are analog modulations. Further, modulation methods
including PSK8, AM-DSB, BPSK, GPFSK, and QPSK, have
also been misclassified as AM-SSM to a certain extent.

The inter-class angle matrix will be analyzed with the
confusion matrix. From the inter-class angle matrix of the
baseline model, it can be seen that the inter-class angle
between the two classes where obvious confusion occurs is
generally small, such as (QAM16, QAM64), (WBFM, AM-
DSB) and (PSK8, AM-SSM). With the ICAL model, all the
inter-class angles are generally improved, but the accuracy is
significantly lower than that of the FICAL model and the
MFICAL-NC model. Therefore, all the inter-class angles in
a model are strongly correlated. Some inter-class angles are
greatly expanded, which negatively affects some classes whose
inter-class angles are slightly expanded. This phenomenon is
due to the cos(x) function, which introduces unfairness. In
the FICAL model and the MFICAL-NC model, since the
expansion of angles is based on the inter-class confusion rate,
the expansion behavior is more selective and targeted. The
baseline model, FICAL model, and MFICAL-NC model are

(a) Baseline (b) ICAL

(c) FICAL (d) MFICAL-NC

Fig. 7. The inter-class angle matrices obtained by the four algorithms.

continuously improved with respect to the expansion effect
on the inter-class angles of (QAM16, QAM64), (WBFM,
AM-DSB), and (PSK8, AM-SSM). Further more, MFICAL-
NC narrows down the inter-class angle for some classes that
are highly separable, unlike the ICAL algorithm, which is a
desirable phenomenon. This implies that the model assigns
redundant fitting power among other classes to more difficult-
to-discriminate classes.

C. Comparison of Output Data Distribution

Finally, the output data distribution is also a verification
indicator. It is used to verify whether constraining the norm
value of the input data of the output layer can narrow down
the distribution range or reduce the distribution location of the
output data. We next collect the test set output yi of the models
under the four algorithms, and draw their data distribution in
Fig. 8.

The location of the output data distribution of the baseline
model and the ICAL model is larger than that of the FICAL
model and the MFICAL-NC model. Due to the ex function in
the softmax layer, the larger the data distribution position,
the larger the confidence difference, which hides the truth that
the model has not been well fitted. In this paper, by explicitly
adding the norm constraint loss term to constrain the data
distribution range, this problem is exposed and the network can
be fully trained for a stronger generalization ability. It can be
seen that the FICAL network without this loss term also shows
a similar effect that the location of data distribution is smaller,
which proves the correctness of the assumption made in this
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Fig. 8. The distribution of the output data obtained by different models.

paper. It is reasonable that the MFICAL-NC model obtains
the best classification performance among the four algorithms
under the joint action of the two loss terms, the maximum
focal inter-class angle and the norm constraint.

V. SUMMARY AND FUTURE WORK

Automatic modulation classification based on artificial in-
telligence is playing an increasingly important role in electro-
magnetic applications such as spectrum monitoring, cognitive
radio networks, and electromagnetic management. Inspired by
the design concepts of ICAL and FICAL, this paper proposed
a Maximum Focal Inter-Class Angular Loss function with
Norm Constraint scheme, MFICAL-NC, to guide the model
to converge towards a better state and generalization ability.
Specifically, the output layer of the network is regarded as the
decision space composed of the vectors corresponding to the
classes. The classification process is viewed as a projection
of the input data points of the output layer to the decision
space. On one hand, the mathematical mechanisms underlying
the inherent defect of the ICAL and FICAL algorithms that
attempt to expand the decision space to obtain classification
performance are explained. This paper addressed this problem
by only expanding the angle between the classes with the
largest confusion rate per epoch. On the other hand, this paper
studied the influence of data distribution on the confidence
difference after the softmax layer, and proposed a norm
constraint, so that the network could be fully trained. The
experimental results proved the effectiveness of the MFICAL-
NC algorithm and verified the correctness of the assumption.

The AMC model based on deep learning is a black-box
approach and uninterpretable, which is a hindrance to further
improving the model performance for secure and trusted appli-
cations. Based on the prior knowledge of the data distribution
of the modulated signal data in the model, this paper analyzed
the model training and decision process, and designed a loss
function to guide the model training. The rapid development
of deep learning technology in the fields of computer vision
and natural language processing is inseparable from the deep

understanding of data characteristics and the combination of
its prior knowledge. Therefore, combining prior knowledge,
analyzing models, and designing constraints to guide model
training will become an important way to improve model
performance and interpretability.
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