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Abstract: Integrating the blockchain technology into
mobile-edge computing (MEC) networks with mul-
tiple cooperative MEC servers (MECS) providing a
promising solution to improving resource utilization,
and helping establish a secure reward mechanism
that can facilitate load balancing among MECS. In
addition, intelligent management of service caching
and load balancing can improve the network utility
in MEC blockchain networks with multiple types of
workloads. In this paper, we investigate a learning-
based joint service caching and load balancing pol-
icy for optimizing the communication and computa-
tion resources allocation, so as to improve the re-
source utilization of MEC blockchain networks. We
formulate the problem as a challenging long-term net-
work revenue maximization Markov decision process
(MDP) problem. To address the highly dynamic and
high dimension of system states, we design a joint ser-
vice caching and load balancing algorithm based on
the double-dueling Deep Q network (DQN) approach.
The simulation results validate the feasibility and su-
perior performance of our proposed algorithm over
several baseline schemes.
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load balancing; deep reinforcement learning (DRL)

I. INTRODUCTION

Mobile edge computing (MEC), deployed in prox-
imity to mobile devices (MD), is a promising tech-
nology to deal with latency-critical and computing-
intensive workloads in the prospective Internet of
Things (IoT) [1]. Establishing trust among multi-
ple parties (e.g., edge/cloud providers) in MEC net-
works utilizing multiple servers (MECS) is a chal-
lenge because these parties often have conflicts of in-
terest [2]. Blockchain, as an emerging decentralized
security system [3, 4] and a public ledger of vari-
ous types of transactions [5], has been incorporated
in numerous applications, e.g., bitcoin, IoT, and smart
grid, etc. [6]. Integrating the blockchain technology,
with their advantages of decentralization, trust, and
anonymity, into MEC systems has attracted great in-
terest [7]. Compared with the traditional cooperative
MEC system with a single central authority, the MEC
system empowered by blockchain can enable decen-
tralized, secure communications among cooperative
MECS [8]. Because the MECS have the reputation
records in the MEC Blockchain network, which mo-
tivates the MECS to process more workloads while
meeting the requirements of MDs. This promotes load
balancing among multiple MECS and full utilization
of network computing resources.
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In order to satisfy the service requests for delay-
sensitive workloads and achieve high utilization
of resources in MEC blockchain networks, edge
caching [9, 10] and load balancing among cooperative
MECS [11] were proposed. Edge caching can prestore
the necessary application data at MECS for computing
service, which can reduce the backhaul transmission
delay to the core network and better utilize the ser-
vice capability of MECS [12, 13]. In addition, MEC
blockchain networks usually carry highly dynamic, di-
verse, and computation intensive workloads, which
are difficult for a single MEC server to process [14].
Load balancing can reshape the workload distribution
in MEC blockchain networks and facilitate the appro-
priate use of their limited computing resources [11]. In
addition, the cooperative MEC networks empowered
by blockchain can establish a secure reward mecha-
nism to facilitate load balancing among MECS.

Most existing works are focused on secure work-
load offloading schedules [15, 16], credible data
transmission schemes [17], the cooperation among
MECS [18], and allocation of the limited commu-
nication and computation resources [19–21] in MEC
blockchain networks, which attempted to improve the
service capabilities or maximize the long-term sys-
tem profits. Due to the complex process of solving
these problems, it usually takes a long time for the
iterative procedure to converge to the optimal solu-
tion [22]. In addition, the basis for the blockchain
mechanism is a computing process called mining.
Nevertheless, the mining process (e.g., performing
Delegated Proof of Stake (DPoS)) [23] and workload
computing in MEC systems are generally complicated
and require considerable storage and computing re-
sources [24]. Therefore, developing an intelligent and
self-organizing resource allocation scheme is critical
in MEC blockchain networks with limited service ca-
pabilities. To this end, deep reinforcement learning
(DRL) was introduced to obtain optimal strategies and
maximize long-term rewards [25, 26]. In [27], the
DRL was introduced to optimize the energy alloca-
tion and minimize the system cost under highly dy-
namic and high-dimensional system states. The recent
work in [28] performed task scheduling to maximize
the long-term mining reward with the minimum cost
on resources by leveraging DRL.

In this paper, we investigate the problem of joint
service caching and load balancing for blockchain-

authorized MEC networks with multiple cooperative
MECS and multiple types of workloads. We aim to
establish a secure load balancing mechanism to maxi-
mize the utilization of service resources in the MECS,
and to jointly optimize service caching, workloads of-
floading, and service resources allocation strategies to
achieve a high network revenue as well as meet the
workload requirements. In particular, we present the
main contributions of this work as follows. Firstly,
we consider an MEC blockchain network with mul-
tiple cooperative MECS and MDs, as well as multiple
types of workloads. We establish a secure load bal-
ancing mechanism based on blockchain to improve the
service capability, and maximize the utilization of ser-
vice resources of the network by optimizing the allo-
cation of communication and computation resources.
Secondly, we formulate the long-term network rev-
enue maximization in MEC blockchain networks as an
MDP problem. We then design a double-dueling DQN
based joint service caching and load balancing algo-
rithm to solve the formulated problem, which is char-
acterized by the highly dynamic and high dimensional
system states. Lastly, we analyze the convergence and
performance of the proposed scheme through exten-
sive simulations. Compared with several benchmark
algorithms, the proposed algorithm achieves a greater
network revenue while better satisfying the require-
ments of workloads.

The remainder of this work is organized as follows.
In Sections II and III, we introduce the system model
and problem formulation, respectively. In Section IV,
we present the double-dueling DQN based joint ser-
vice caching and load balancing algorithm. In Sec-
tion V, we discuss the simulation results and perfor-
mance analysis. We conclude the paper in Section VI.

II. SYSTEM MODEL

2.1 MEC Blockchain Networks

As depicted in Figure 1, we propose a blockchain-
enabled mobile edge computing network with multi-
ple cooperative MECS and MDs, which consists of an
MEC system and a blockchain system. We consider
that the MEC blockchain network has M MEC servers
denoted by a set M ≜ {1, 2, ...,M}, and N MDs de-
noted by a set N ≜ {1, 2, ..., N}. The data traffic
between MDs and MECS is transmitted through wire-
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Figure 1. Architecture of the MEC blockchain network considered in this paper.

less channels, and its transmission mechanism is based
on Orthogonal Frequency-Division Multiple Access
(OFDMA) [29]. The cooperative MECS communicate
over a wireline Local Area Network (LAN).

In the MEC system, we denote Nm ⊆ N as the
subset of MDs associated with MEC server m (e.g.,
MD n is the subscribe of the MEC server m, which
is termed the “associated relationship” between MD n

and MEC server m in this paper), and the MEC server
m provides computation services for the MDs in Nm

to obtain payoffs from the system. We assume that
the MDs in the overlapping coverage area of multiple
MECS can transmit workloads directly to the corre-
sponding MEC server. After the computation results
are returned, each MD will provide the corresponding
MEC server a service evaluation score, which is re-
lated to the reputation value of the MEC server.

To ensure the security and privacy of the MEC sys-
tem, we introduce the blockchain technology into the
MEC network. The blockchain system can collect
and store information from the MEC system, such
as workload offloading records and the MEC server’s
reputation value. Such information will be grouped
into data blocks and recorded on the blockchain after
consensus is reached (e.g., the Nakamoto consensus
agreement). The M MEC servers act as miners in the
blockchain system, where the first miner to solve the

consensus problem will obtain the mining reward and
broadcast the verified transaction to other blockchain
nodes in a safe and immutable manner [6].

2.2 Workload Arrival and System Service Ca-
pability

The proposed system operates over discrete time peri-
ods T ≜ {0, 1, ..., T}. In each time slot t, the work-
loads generated by each MD will be offloaded to one
of the associated MEC server for execution. For the
MD n, the types of generated workloads in time slot
t can be modeled as a set K = {1, 2, ...,K}. With-
out loss of generality, we assume that the workloads
from MD n arrive at MEC m follow a Poisson distri-
bution with rate πn,m(t) in time slot t [30]. We de-
note βk

n,m(t) ∈ [0, 1] as the proportion of type k work-
loads to the total workloads generated by MD n, and
βn,m(t) = {βk

n,m(t)}k∈K is the set of workload per-
centages. The execution requirements for the type k

workloads generated by MD n associated with MEC
server m are modeled as a vector of four tuples, which
is denoted by Ikn,m(t) ≜ {ak, dk, hk, τk}. For the type
k workloads, ak (in GB) indicates the required storage
capacity, dk (in Mb/workload) is the data size of each
workload, hk (in CPU cycles/Mb) denotes the required
CPU cycles for workloads execution, and τk (in sec) is
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the maximum execution delay deadline.
We consider the case that the MECS have limited

service capabilities (e.g., computation capability, stor-
age capacity, and communication capability), and the
MEC with a heavier loads can transfer some work-
loads to the MECS that have lighter loads to achieve
load balancing through the LAN. We denote Rm and
Fm as the overall storage capacity and computation
capability of MEC server m, respectively. Since the
different execution requirements of each type of work-
loads, only the MECS that have cached the related ap-
plications data are eligible to provide services for the
corresponding types of workloads.

2.3 Service Caching and Load Balancing

MD n sends service requests to the connected MECS
at each time slot t. The service requests from MD n for
type k workloads can be processed only when MEC m

has cached the corresponding application data and has
sufficient service resources. Let xm(t) = {xk

m(t) ∈
{0, 1}|m ∈ M, k ∈ K} be the set of service caching
decisions of MEC server m at time slot t, which is
used to indicate whether the application data for type k
workloads is cached at MEC server m (when xk

m(t) =

1) or not (when xk
m(t) = 0) at time slot t. Note that

the service caching decisions are constrained by the
overall storage capacity of MEC server m, i.e.,∑

k∈K

akx
k
m(t) ≤ Rm. (1)

When the service requests of MDs in Nm arrive at
the associated MEC server m at each time slot, the
load balancing among the cooperative MECS will be
implemented by transmitting the redundant workloads
to nearby MECS with low loads. Denote zm(t) =

{zkm,l(t)|l ∈ M, k ∈ K} as the set of load balancing
decisions among MECS for MEC server m at time slot
t, where zkm,l(t) ∈ [0, 1] is the proportion of the k-type
of workloads transmitted from MEC server m to MEC
server l.

Let Nml ⊆ Nm be the set of MDs associ-
ated with MEC server m in the overlapping area
of MEC server m and MEC server l. Note that
{Nml}l∈M,l ̸=m

⋃
Nmm = Nm, where Nmm indicates

the set of MDs associated with MEC server m only
within the coverage area of MEC server m. We de-

note ym(t) = {ykn,m(t) ∈ {0, 1} | n ∈ Nm, k ∈ K}
as the workload offloading decisions for MD n asso-
ciated with MEC server m, where ykn,m(t) = 1 means
that the workloads generated by MD n are offloaded
to MEC server m at time slot t. Similarly, ykn,l(t) = 1

indicates that the workloads are transmitted to MEC
server l from MD n associated with MEC server m

directly. Note that if and only if n ∈ Nml, we have
ykn,l(t) ≥ 0, otherwise ykn,l(t) = 0. In addition, the
workloads can only be processed on the MEC server
m that caches the application data for type k work-
loads. Thus we have{

ykn,l(t) = 0, zkm,l(t) = 0, if xk
l (t) = 0

ykn,l(t) ≥ 0, zkm,l(t) ≥ 0, if xk
l (t) ̸= 0,

(2)

where {xk
l (t) ∈ {0, 1}|l ∈ M, k ∈ K} is the service

caching decision of MEC server l at time slot t.

2.4 System Cost

In the cooperative MEC system, we mainly consider
the cost related to energy consumption and execution
delay, which is determined by the following processes:
(i) workload offloading to MECS; (ii) load balancing
among MECS; and (iii) workload execution at MECS.

2.4.1 Workload Offloading to MECS

In view of the OFDMA transmission mechanism, in-
terference between multiple MDs is ignored due to
different MDs occupy non-overlapping subcarrier sets.
We assume that there are |S| subcarriers available for
data wireless transmission among MEC server m and
multiple MDs in its service area, which is denoted by
S = {1, 2, ..., s, ...|S|} [29]. And wn,m(t) is the band-
width of one of the subcarrier for the uplink data trans-
missions from MD n to MEC server m. The sum of
occupied bandwidth resource of all MDs in the cover-
age area of MEC server m can not exceed the whole
bandwidth resource of MEC server m, i.e.,∑

n∈N
wn,m(t) ≤ Wm, (3)

where Wm is the overall available bandwidth resource
of MEC server m.

In each time slot t, the workloads generated by the
MDs associated with MEC server m can be offloaded
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to MEC server m for execution, and then the process-
ing results will be returned to MDs. Without loss of
generality, we focus on the energy consumption of the
uplink data transmission and execution delay. Accord-
ing to Shannon’s theorem, the uplink data transmission
rate between MD n and MEC server m is given by

run,m(t) = wn,m(t) log

(
1 +

P u
n,m(t)Hn,m(t)

σ2

)
,

(4)
where P u

n,m(t) is the transmit power for the uplink data
transmissions from MD n to MEC server m; Hn,m(t)

is the channel gain; and σ2 is the additive white Gaus-
sian noise power. The uplink data transmission de-
lay from MD n to MEC server m for unit workload
of type k can be written as T k

n,m(t) = dk/r
u
n,m(t),

while Ek
n,m(t) = P u

n,m(t)dk/r
u
n,m(t) denotes the cor-

responding energy consumption. Therefore, the over-
all cost for workloads offloading from the MDs asso-
ciated with MEC server m in time slot t is

Co
m(t) =

∑
k∈K

{
Bk

m(t)
[
φT k

n,m(t) + (1− φ)Ek
n,m(t)

]}
,

(5)
where φ is the relative weight between delay and en-
ergy consumption. The Bk

m(t) =
∑

n∈Nmm
βk
n,m(t)

πn,m(t)y
k
n,m(t) +

∑
l∈M,l ̸=m βk

n,m(t)πn,m(t)y
k
n,l(t) is

the overall workloads of type k generated by the MDs
in Nm that need to be offloaded at time slot t. In the
first term (

∑
n∈Nmm

βk
n,m(t)πn,m(t)y

k
n,m(t)) of the ex-

pression Bk
m(t), which means that the overall work-

loads of type k are offloaded by MDs (in Nmm )
to MEC server m at time slot t; The second term
(
∑

l∈M,l ̸=m βk
n,m(t)πn,m(t)y

k
n,l(t)) of the expression

Bk
m(t), which is the overall workloads of type k are of-

floaded by MDs (in {Nml}l∈M,l ̸=m ) associated with
MEC server m to the other MEC servers directly at
time slot t.

2.4.2 Load Balancing Among MECS

Recall that the data transmission among MECS is
through a wireline LAN with limited capacity, which
incurs congestion delay. According to [30], the service
capacity of the LAN is denoted as 1/η, which follows
the negative exponentially distribution. The data trans-
mission among MECS for load balancing is modeled
as an M/M/1 queuing system [31], which can be de-

scribed as:

Tm,g(t) = Bm(t) ·
1

1/η −B(t)
, B(t) <

1

η
, (6)

where Bm(t) =
∑

l∈M,l ̸=mBm,l(t) is the total amount
of workloads of MEC server m for load balanc-
ing in time slot t, and Bm,l(t) =

∑
k∈K Bk

m,l(t)

is the total amount of workloads of all types trans-
mitted from MEC server m to MEC server l.
Bk

m,l(t) =
∑

n∈Nmm
zkm,l(t)

[
βk
n,m(t)πn,m(t)y

k
n,m(t)

]
is the amount of type k workloads that will be trans-
mitted from MEC server m to MEC server l. And
B(t) =

∑
m∈MBm(t) is the total data traffic rate

in the LAN for load balancing among the MECS at
time slot t. The energy consumption for load balanc-
ing among MECS in time slot t is given by

Em,g(t) = Pm,g(t)Tm,g(t), (7)

where Pm,g(t) is the energy consumption per unit time
for data transmission. Therefore, we obtain the over-
all system cost of MEC server m for load balancing
among MECS at time slot t, which can be written as:

C l
m(t) = φTm,g(t) + (1− φ)Em,g(t). (8)

2.4.3 Workload Execution at MECS

The total amount of workloads of the type k computed
by MEC server m at time slot t is denoted as λk

m(t),
and it follows the Poisson process with rate λk

m(t),
which can be described as:

λk
m(t) =

∑
n∈Nmm

βk
n,m(t)πn,m(t)y

k
n,m(t)

+
∑

l∈M,l ̸=m

∑
n∈Nlm

βk
n,m(t)πn,m(t)y

k
n,m(t)

+
∑

l∈M,l ̸=m

Bk
l,m(t)−

∑
l∈M,l ̸=m

Bk
m,l(t), (9)

where the first term is for the workloads offloaded
from MDs in Nmm to MEC server m at time slot t.
The second term indicates the workloads transmitted
by MDs in the overlapping areas between MEC server
m and the other MECS, in which {Nlm}l∈M,l ̸=m is
the set of MDs associated with MEC server l in the
overlapping areas of MEC server l and MEC server m,
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and ykn,m(t) means that the workloads are transmitted
to MEC server m from MD n associated with MEC
server l directly. The third and fourth items are the
workloads transmitted by other MECS to MEC server
m and the workloads transmitted by MEC server m to
the other MECS, respectively.

According to the M/M/1 queuing model [31] and
Little’s law [32], we obtain the average execution de-
lay for type k workloads at MEC server m as follows:

T k
m,p(t) =

1

fk
m,p(t)/hk − λk

m(t)
, (10)

where fk
m,p(t) is the allocated computation capability

of MEC server m for the k-type workloads at time slot
t. fk

m,p(t)/hk is the service capacity of MEC server m
for workloads execution related to type k workloads,
which follows a negative exponential distribution [30].
We obtain the average energy consumption computed
by MEC server m for type k workloads in time slot t
as:

Ek
m,p(t) = P k

m,p(t)T
k
m,p(t), (11)

where P k
m,p(t) = κm[f

k
m,p(t)]

3 is the power consump-
tion for processing the workloads at MEC server m in
time slot t, and κm is the constant related to the struc-
ture of the CPU [33]. Thus, the overall system cost for
workload execution at MEC server m in time slot t is
given by

Cp
m(t) =

∑
k∈K

{
λk
m(t)

[
φT k

m,p(t) + (1− φ)Ek
m,p(t)

]}
.

(12)
Therefore, the total cost of MEC server m in the co-
operative MEC system at time slot t can be written as

Cm(t) = Co
m(t) + C l

m(t) + Cp
m(t), (13)

the total system cost is closely related to the MEC’s
service caching decisions, workload offloading deci-
sions, and load balancing decisions.

2.5 System Reward

In the MEC blockchain network, the MECS can be
rewarded in the following two ways: (i) providing
workload processing services for MDs; (ii) being the
first miner to solve the consensus problem. We next

present the models for the workload execution payoffs
and mining payoffs in detail.

2.5.1 Payoffs for Workload Execution

In order to incentivize load balancing among MECS,
we introduce the payoffs for workloads execution. The
payoff is related to not only the data size of the work-
loads, but also the reputation of each MEC server. Let
ekn,m(t) be the service evaluation results given by MD
n for processing type k workloads at MEC server m in
time slot t. Then em(t) = {ekn,m(t)|n ∈ N , k ∈ K} is
the set of service evaluation results of MDs for MEC
server m for processing all types of workloads.

Denote ckn,m(t) ∈ {0, 1} as the credibility of MEC
server m at time slot t, i.e., if ekn,m(t) is sufficiently
high relative to em(t), we have ckn,m(t) = 1; otherwise
we have ckn,m(t) = 0 [34]. We obtain the credibility
evaluation results of MEC server m by MD n at time
slot t as êkn,m(t) = ckn,m(t)e

k
n,m(t), the reputation of

MEC server m is given by Bayesian inference [35]:

Y k
m(t) = ξ/n1

∑
n∈Nmm

êkn,m(t)

+ (1− ξ)/n2

∑
l∈M,l ̸=m

∑
n∈Nlm

êkn,m(t), (14)

where the first term is the credibility evaluation results
of MEC server m by MDs in Nmm, the second term
means that the credibility evaluation results of MEC
server m by MDs in the overlapping areas between
MEC server m and the other MECS, ξ is the weight
coefficient, and n1 and n2 are the corresponding num-
ber of MDs.

According to the data size computed by MEC server
m and the reputation of MEC server m at time slot t,
we obtain the payoff of MEC server m for processing
type k workloads at time slot t as

Rk
m,p(t) = υY k

m(t)λ
k
m(t), (15)

where υ is the unit system payoff of MEC server m
for executing type k workloads.

In summary, the MEC sever with higher reputa-
tions and processed more workloads will obtain more
payoffs. Thus, the network is more inclined to load
balancing among multiple MECS for maximizing the
utilization of computation resources to process more
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workloads, and each MEC server will also pay more
attention to its own reputation (which is related to
quality of service). Therefore, the MEC system em-
powered by blockchain help us establish a more de-
centralized and secure cooperative MECS network.

2.5.2 Mining Payoffs

In the proposed system, MEC server m also acts as a
miner to process the mining service to obtain the min-
ing payoffs in each time slot t. Let fm,b(t) be the al-
located computation capability by MEC server m for
mining service at time slot t. The ratio of fm,b(t) over
the sum of the computing capability allocated to min-
ing services by other MECS can be expressed as

µm(t) =
fm,b(t)∑

m∈M fm,b(t)
, (16)

which is directly proportional to the success of mining
competition and satisfies

∑
m∈M µm(t) = 1 [3]. In

addition, in the propagation stage for mined block of
MEC server m in the blockchain system, a slow prop-
agation speed will lead to loss of the mined block and
no reward (which is called orphaning [36]). The prob-
ability of orphaning is calculated as

ϱ(t) = 1− e−δζ(sm), (17)

where δ is a constant, and ζ(sm) indicates the prop-
agation time for block size sm of MEC server m [8].
Thus we obtain the probability of MEC server m suc-
cessfully mining a block as

Pm(t) = µm(t)(1− ϱ(t)) = µm(t)e
−δζ(sm). (18)

Denote rb as the mining reward for the winning
MEC server. The expected mining payoffs of MEC
server m can be expressed as

Rm,b(t) = rbPm(t)

= rb ·
fm,b(t)∑

m∈M fm,b(t)
· e−δζ(sm). (19)

III. PROBLEM FORMULATION

In order to achieve a higher network revenue, achieve
load balancing, and encourage MECS to partici-

pate in cooperative workloads execution, the MEC
blockchain network operators need to make optimal
decisions for workload offloading, service caching,
load balancing among MECS, and computation capa-
bility allocation in each time slot t. Let

ψ(t) ≜ {xm(t),ym(t), zm(t),fm(t)}

be the decisions set, where fm(t) = {fk
m,p(t)}k∈K

⋃
{fm,b(t)}. We aim to maximize the network revenue,
i.e., to balance the cost and reward of the MEC sys-
tem and the blockchain system. We denote the utility
function of MEC server m at time slot t as

Um(t) = (1−ρ)
{
[
∑
k∈K

Rk
m,p(t)]−Cm(t)

}
+ρRm,b(t),

(20)
where ρ (greater than zero) is the weight parame-
ter for the utility between the MEC system and the
blockchain system. We formulate a problem that max-
imizes the weighted and time-averaged sum of net-
work revenue in the long-term time horizon as

P1 : max
ψ(t)

lim
T→∞

1

T

T−1∑
t=0

M∑
m=1

Um(t)

s.t. (1) − (3), (6)∑
l∈M

yknl(t) = 1,
∑
l∈M

zkml(t) = 1 (21)∑
k∈K

βk
n(t) = 1,

∑
m∈M

µm(t) = 1 (22)∑
k∈K

fk
m,p(t) + fm,b(t) ≤ Fm. (23)

In Problem P1, Constraint (1) represents the stor-
age capacity constraint of MEC server m. Con-
straint (2) describes that the relationship between ser-
vice caching, workload offloading, and load balancing
decisions. Constraint (3) shows the limit of overall
bandwidth resources of MEC server m. Constraint (6)
enforces the limit of service capacity of the wireline
LAN. Constraint (21) guarantees that the sum of the
workload offloading decisions and the load balancing
decisions of the MEC server m at time slot t are both
equal to 1. The first term in Constraints (22) guar-
antees the percentage of each type of workloads gen-
erated by MD n at time slot t, and the second term
of (22) indicates the limit of the proportional to the
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success of mining competition. Constraint (23) en-
sures that the sum of allocated computation capabil-
ities for workload computing and mining service can-
not exceed the computation capability of MEC server
m at time slot t.

The formulated problem of long-term network rev-
enue maximization is a mixed integer nonlinear pro-
gramming (MINLP) problem. As the number of MDs
in the MEC blockchain networks is increased, the
complexity of the problem will also increase greatly,
which is difficult to solve by traditional methods.
Therefore, we propose a highly competitive solution
based on DRL to drive the strategy ψ(t).

IV. LEARNING-BASED JOINT SERVICE
CACHING AND LOAD BALANCING
POLICY

In this section, we consider Problem P1 as an MDP
problem. We aim to design a learning-based joint ser-
vice caching and load balancing policy to find a highly
competitive solution to the original problem P1.

4.1 The DRL Framework

We first reformulate the problem as an MDP, and de-
fine the state, action, and reward function as follows.

4.1.1 State

The state of MEC server m at time slot t con-
sists of the workload arrival rate πm(t) =

{π1,m(t), π2,m(t), ..., πN,m(t)}, the propor-
tion of different types of workloads βm(t) =

{β1,m(t),β2,m(t), ...,βN,m(t)}, the reputation
Ym(t) = {Y 1

m(t), Y
2
m(t), ..., Y

K
m (t)}, the channel con-

ditions Hm(t) = {H1,m(t), H2,m(t), . . . ,HN,m(t)},
the storage capacity Rm and the computation capabil-
ity Fm, which can be written by a tuple as

s(t) ≜
{
πm(t),βm(t),Hm(t),Ym(t), Rm, Fm

}
.

4.1.2 Action

In the MEC blockchain network, we consider four
types of actions, including service caching xm(t),
workload offloading ym(t), load balancing zm(t), and

computation capability allocation fm(t). We denote

a(t) ≜
{
xm(t),ym(t), zm(t),fm(t)

}
as the action space of MEC server m at time slot t. To
simplify the problem, we divide the number of work-
loads and service resources of the MEC server m into
countable parts to discretize the action space.

4.1.3 Reward Function

In this paper, we aim to maximize the network rev-
enue by jointly optimizing the decisions for workload
offloading, service caching, load balancing among
MECS, and computation capability allocation. There-
fore, the reward function needs to take these objectives
into consideration, which is defined as

r(t) =

M∑
m=1

Um(t). (24)

4.2 Learning-Based Algorithm

Reinforcement learning (RL) is used to describe and
solve the problem of reward maximization or achiev-
ing specific goals through learning strategies in the
process of interacting with the environment, usually
described as an MDP. It is an autonomous learning
process, where the agent makes decisions periodically
and gradually, relying on the feedback from the envi-
ronment to improve the strategy, until the best strategy

π∗ = argmax
π

Q∗(s(t), a(t))

is learned. The agent aims to achieve the expected
long-term reward, which can be expressed as:

r(t) = r(t)+γr(t+1)+γ2r(t+2)+ ...+γT−tr(T ),

(25)
where γ ∈ [0, 1] is the reward discount coefficient,
indicating the influence of future rewards on the re-
sponse of the current action.

DRL is an effective method to combine deep learn-
ing and RL to address problems with large action
space and sample space, where a neural network called
DQN is incorporated to approximate the Q value.
In the DQN architecture, for given system state and
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action inputs, the output Q value, Q(s(t), a(t)) ≈
Q′(s(t), a(t); θ), can be obtained directly, where θ de-
notes the parameter of the neural network. The neural
network is trained by iteratively updating the parame-
ter θ to minimize the loss function:

L(θ(t)) = E
{[

r(t) + γmaxQ(s(t+ 1), a(t+ 1);

θ(t+ 1))−Q(s(t), a(t); θ(t))
]2}

, (26)

where r(t) + γmaxQ(s(t+ 1), a(t+ 1); θ(t+ 1)) is
the target Q value and will be updated every once in a
while.

To overcome the Q value overestimation problem
encountered in the DQN algorithm, we propose a
double-dueling DQN based joint service caching and
load balance algorithm. The key idea is to use differ-
ent objective functions to select and evaluate actions,
and then the target Q value in the double-dueling DQN
can be expressed as:

r(t) + γmaxQ(s(t+ 1), amax(s(t)|θ(t)); θ(t+ 1)),

(27)
the amax(s(t)|θ(t)) = argmaxa(t)Q(s(t), a(t); θ(t))

is the best action, which is obtained through the cur-
rent Q network.

The Q value is divided into two parts in the double-
dueling DQN model. The first part is just based on the
state and does not take into account the specific action
to be performed, which is called value function and
expressed as V (s). The second part is called advan-
tage function and denoted as A(s, a), which is based
on the current state and action. Thus, we obtain the Q

value in the double-dueling DQN architecture as

Q(s, a) = A(s, a) + V (s). (28)

In the implementation of the proposed double-
dueling DQN based joint service caching and load bal-
ance algorithm, we set a fully connected feed-forward
5-layer neural network, and each hidden layer has 20
neurons [37]. In each training step, the state infor-
mation in current system will be fed into the Q net-
work. Then the Q network returns the optimal ac-
tion, which is selected in accordance with the ϵ-greedy
policy. Based on the optimal action (service caching,
workload offloading, load balancing, and computa-

Algorithm 1. The double-dueling DQN based joint service
caching and load balancing algorithm.

1: Input: Learning rate α; exploration rate ϵ; dis-
count factor γ; experience replay memory D; up-
date step length C; action space a(t).

2: Output: Optimal strategy ψ(t).
3: Initialize the current network parameter θ;
4: Initialize the target network parameter θ′ = θ;
5: Initialize the experience replay buffer;
6: for t = 1, 2, ... do
7: Observe the initial state s(t);
8: Select probability p randomly;
9: if p ≥ ϵ then

10: Choose action amax(s(t)|θ(t)) =

argmaxa(t)Q(s(t), a(t); θ(t));
11: else
12: Choose an action randomly;
13: end if
14: Decrease the exploration probability ϵ;
15: Execute action a(t);
16: Based on the service caching, workload offload-

ing, load balancing, and computation capability
allocation decisions to obtain the network util-
ity by solving (20);

17: Compute the reward function r(t) by solv-
ing (24) and obtain the next state s(t+ 1);

18: Store the experience (s(t), a(t), r(t), s(t + 1))

in the memory D;
19: Sample random mini-batch from D;
20: Calculate the target Q value by solving (27);
21: Calculate the loss function and calculate net-

work parameter θ;
22: Every C steps reset θ′ = θ;
23: end for

tion capability allocation decisions), we can obtain
the network utility by solving (27). And then we ob-
tain the value of reward function by solving (20) and
obtain the next state s(t + 1). All the experience
(s(t), a(t), r(t), s(t + 1)) in the training process will
be accumulated in the experience replay pool D. A
small group of samples will be selected from the pool
to train the current network parameters, and the tar-
get network will be directly copied from the current
network, with the same structure and parameters. The
detailed algorithm is presented in Algorithm 1.
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Table 1. List of simulation parameters.

Parameter Numerical value Unit

Wm 30 MHz
πn,m(t) [10,40] workload/sec
κ 10−27 -
σ2 −174 dBm/Hz
fTX 900 MHz
NL 20 -
α 0.01 -
γ 0.9 -
sm [2,6] MB
rb 20 tokens
ϵ 0.1 -

V. PERFORMANCE EVALUATION

5.1 Simulation Configuration

In this section, we validate the performance of our pro-
posed algorithm by simulations using the Pytorch with
Python 3.7 (tensorflow) on a desktop with Windows
64 bits, 3.59 GHz AMD Ryzen 5 3600 6-Core Pro-
cessor, and 16 GB RAM, and comparison with several
baseline schemes. We consider an MEC blockchain
networks including 30 MDs and 4 MECS. There are
overlapping coverage areas between the MECS. Each
MEC server serves a dedicated set of MDs that are as-
sociated with it. MDs can generate a total of four types
of workloads. Assume that MECS have strong service
capabilities to serve all types of workloads, and each
MEC server can cache the corresponding application
data in advance based on the caching policies. For
each type of workload in the MEC system, the data
size of each workload of type k is dk = [0.5, 1] Mb/-
workload, the required CPU cycles for processing one
type k workload is hk = [20, 40] CPU cycles/Mb, and
the required storage capacity is ak = [20, 80] GB. The
storage capacity and computation capacity of MEC
servers are set to [100, 200] GB and [5, 10] GHz, re-
spectively. The channel gain for wireless data trans-
mission is modeled by the indoor loss model [14]:

L[dB] = 20 log(fTX)[MHz] +NL log(d[m])− 28.

The noise power σ2 is −174 dBm/Hz [38]. The weight
factor φ between delay and energy consumption are
set to 0.6 and 0.4, respectively. For the blockchain
network, η = 1/600 sec [14] and the mining reward
is set to rb = 20 tokens. Other simulation parameters
are listed in Table 1.

Figure 2. Convergence performance of the proposed algo-
rithm as indicated by the evolution of the loss function.

We evaluate the performance of our proposed al-
gorithm and compare it with the following baseline
schemes under various system configurations:

1. No direct communications among MDs and their
un-associated MECS (termed NDC): unlike our
proposed scheme, in this scheme, the MDs in the
overlapping coverage area of multiple MECS can
only allow to offload workloads to its associated
MEC server, and cannot directly offload work-
loads to other MECS that covering them.

2. Greedy offloading scheme (termed GO): in this
scenario, each MEC server hopes to serve as
many MDs as possible. As long as the MEC
server caches the corresponding applications data
to serve such type of workloads, the MEC server
will reserve as many workloads as possible and
ignore its computing capability and the current
system state. For unserviceable workloads, the
MEC server only considers the computing capa-
bility and ignores the reputation value when bal-
ancing the workloads to other MEC servers.

3. Random offloading scheme (termed RO): both
MDs and MECS randomly select a feasible MEC
server for workloads offloading with equal proba-
bility.

5.2 Results and Analysis

We first show the convergence of our proposed algo-
rithm with respect to the loss function and learning
rate in Figure 2 and Figure 3, respectively. In Fig-
ure 2, we present the convergence performance of the
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Figure 3. Reward function value vs. different learning
rates.

proposed algorithm as shown by the evolution of the
loss function. At the beginning of the training process,
since the double-dueling DQN agent does not have
enough information to make reasonable decisions, the
loss function assumes large values. As the training
process goes on, the value of loss function decreases
gradually and eventually approaches a relatively sta-
ble value after about 4,000 time slots. We then ex-
amine the influence of different learning rates on the
convergence of the proposed algorithm in Figure. 3.
We simulate the change of reward function values at
α = 10−1, 10−2, 10−3 over 12,000 time slots. The
vertical axis is the long-term averaged reward value,
which is normalized by introducing r̂ = r

rmax
for ease

of viewing. It can be observed that the averaged re-
ward value of the network gradually increases and ap-
proaches 1 as the learning process progresses. Fur-
thermore, since the state of the network in each time
slot may change dynamically, e.g., due to the dynamic
workload arrival process, the curve will still fluctu-
ate slightly even after convergence. Moreover, as the
learning rate is increased from 10−3 to 10−1, the con-
vergence rate of the proposed algorithm also increases
gradually.

Next, we examine the network delay cost under dif-
ferent numbers of MDs. The results are presented in
Figure 4. As the increase of the number of MDs, the
amount of workloads will also increase. Due to the
limited computation capabilities of MECS, all the four
curves show high network delay costs. Compared with
the three baseline schemes, our proposed algorithm
achieves the smallest network delay costs. In the NDC

Figure 4. The network delay cost under different numbers
of mobile devices.

Figure 5. The Energy consumption under different numbers
of mobile devices.

scheme, each MD can only offload workloads to its
associated MEC server, and then the MEC server may
transfer the workloads to other MEC servers that can
execute the workloads. Such an approach increases
the data transmission delay between MECS. Thus, the
network delay cost is slightly higher than our proposed
algorithm. In addition, the GO scheme offloads work-
loads to the MEC server with the largest computational
capability other than itself. Thus its network delay cost
is lower than that of the RO scheme.

We also demonstrate the energy consumption of the
four schemes under different numbers of MDs in Fig-
ure 5. It can be seen that the energy consumption
trends of the four algorithms are similar to the network
delay cost trends shown in Figure 4.

Figure 6 verifies the effect of different numbers
of MDs on the payment rewards received by MEC
servers. According to (15), the payment rewards of
each MEC server are related to the credibility evalua-
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Figure 6. The Payment reward under different numbers of
mobile devices.

Figure 7. Delay cost versus total computational capability.

tion results of each MEC server provided by MDs and
the amount of workload processing. As the number of
MDs is increased, the amount of workloads increases,
and the payment rewards of the four algorithms all be-
come larger. However, due to the constant increase in
the number of MDs on the premise of maintaining the
same computing capabilities of MECS, the network
delay cost gradually increases (as shown in Figure 4),
which leads to poorer credibility evaluation results of
MECS. Thus, the trends of payment rewards for the
four algorithms will slow down or even decrease when
the number of MDs becomes large.

Next, we examine the effect of different total com-
putation capabilities of MECS on the network delay
cost and the energy consumption of MECS in Figure 7
and Figure 8, respectively. Figure 7 shows the decreas-
ing network delay cost as the total computation capa-
bilities of MECS are increased. It can be seen that
when the computing capabilities of MECS are suffi-
cient to process the current workloads, the decrease of
the network delay cost gradually slows down in all the

Figure 8. Energy consumption vs. computing capability.

Figure 9. Payment reward vs. computational capability.

curves of the four algorithms. Figure 8 shows that the
energy consumption increases with the computing ca-
pabilities of MECS.

In Figure 9, we present the relationship between the
payment reward obtained by the MECS and the total
computing capabilities. According to (15), when the
MEC server processes the same amount of workloads,
a better value of credibility evaluation will provide the
MEC server a higher payment reward. As the comput-
ing capabilities of MECS is increased, the processing
delay gradually decreases, and the credibility evalua-
tion results of MECS gradually become better. Thus,
as the MECS computing capabilities are increased, the
payment rewards obtained by the MECS get better and
better. When the computing capabilities of MECS are
sufficient to meet the current workloads, the payment
rewards obtained by the MECS will be gradually sta-
bilized.

Figure 10 shows the influence of the current block
size on the value of the objective function. Accord-
ing to (20), the value of the objective function is re-
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Figure 10. Objective function value vs. block sizes.

lated to the mining payoffs of MECS. A larger block
size value leads to a longer propagation time for the
corresponding block, which is more likely to be lost
during the propagation process. Therefore, the proba-
bility of success of block mining will becomes smaller.
And thus the objective function values of the four al-
gorithms decrease gradually with the increase of block
size.

VI. CONCLUSION

In this paper, we considered the problem of joint
service caching and load balancing for blockchain-
authorized MEC networks with multiple cooperative
MECS and multiple types of workloads. We estab-
lished a secure load balancing mechanism among co-
operative MECS based on the blockchain technology
to maximize resources utilization. We formulated a
long-term network revenue maximization MDP prob-
lem and developed a double-dueling DQN algorithm
for network revenue maximization while satisfying the
requirements of MDs. We analyzed the convergence
and feasibility of the proposed algorithm by extensive
simulations. Compared with three baseline schemes,
our proposed algorithm achieved a superior perfor-
mance in terms of the energy consumption, the net-
work delay cost, and the payment reward in MEC
blcokchain networks.
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