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of point clouds comes at a cost. Due to the 
sizeable nature of these point clouds, each 
with various attributes attached to them, 
point clouds cost a large amount of memory 
or transmission bandwidth, making them 
unwieldy to implement. These point clouds 
can grow to be millions of points within a 
single frame, which, when running at 30 fps,  
can lead to bandwidth usage on the order 
of several Gbps if uncompressed [1]. In 
order to meet the requirements of state-of-
the-art VR devices, these point clouds may 
need to generate even higher resolution, 
attach more attributes, or create even larger 
scenes, resulting in exponential increases in 
both storage and transmission size. In order 
to abate these restrictions, compression 
technology has been applied to these 
point clouds to make them more easily 
transmittable and take up less space.

Currently, the Moving Pictures Experts 
Group (MPEG) has been developing various 
standards for compression of immersive 
media. The standards developed by MPEG 
have been applied over the past few decades 
across all kinds of devices with popular 
compression standards such as MPEG-2, 
AVC, and HEVC [7]. Along with these 
standards, MPEG has also been developing 
standards for point cloud compression 
(PCC) to aid in its development. These 
standardization activities are centered on 
the improvements on the codecs developed 
by the MPEG group, creating the original 
PCC standard, which included LIDAR PCC 
(L-PCC) for dynamically acquired data, 
Surface PCC (S-PCC) for static point cloud 
data, and finally, Video-based PCC (V-PCC) 
for dynamic contents. However, post 2017, 
the categories were officially compressed to 
geometry-based PCC (G-PCC) combining 
Lidar PCC and Surface PCC due to their 
similarities, while Video-based PCC 
remained the same [3]. These categories 
generated corresponding test models named 
TMC13 and TMC2, respectively, with the 
G-PCC combining categories 1 and 3 of test 

priorities of developers of VR technology. 
Not to mention that the 3D modeled objects 
or scenes come with various caveats of having 
numerous changing attributes as users 
interact with their world, such as changing 
positions, colors, or sizes. To fill such a niche, 
the utility of point clouds has been rising as 
a vital option to generate such high-fidelity 
3D representations and a key option in the 
3D modeling scene. These point clouds have 
the ability to model various 3D objects or 
scenes, whether they are dynamic, static, 
or even part of a video. However, the usage 

With the recent rapid development in com- 
munication and computation, Augmented 
Reality (AR), Virtual Reality (VR), and Mixed 
Reality (MR) are proceeding to make waves 
in the consumer technology market. With 
the avant-garde VR devices being capable of 
reproducing near-lifelike three-dimensional 
(3D) scenes and videos, it is of utmost 
importance to be able to accurately represent 
3D objects, create various scenes and worlds 
within VR, and display 3D videos for the VR 
markets. Allowing users to navigate well-
modeled spaces is currently one of the top 

	Categories 	 Point Cloud Technology	 Data Type	 Test Model 	 Example Applications

	 1	 LIDAR	 Static	 TMC13	 Static Objects

	 2	 Video	 Dynamic 	 TMC2	 3D Videos

	 3	 Mesh Models	 Dynamically	 TMC13	 Mobile Mapping 
			   Acquired

TABLE 1. Point Cloud Categories

	 Standard 	 PCC Data Type	 Test Model	 Deployability	 Compression Dimension	 ISO	 Coding

	 G-PCC	 Static or dynamically	 TMC13	 Slow market 	 3D	 In development	 Arithmetic Coder 
		  acquired		  deployability		  	

	 V-PCC	 Video	 TMC2 	 Fast market 	 2D	 Published	 Traditional 
				    deployability			   Video Coder

TABLE 2. G-PCC versus V-PCC

T he prevalent point cloud compression (PCC) standards of 
today are utilized to encode various types of point cloud data, 
allowing for reasonable bandwidth and storage usage. With 
increasing demand for high-fidelity three-dimensional (3D) 

models for a large variety of applications, including immersive visual 
communication, Augmented reality (AR) and Virtual Reality (VR), 
navigation, autonomous driving, and smart city, point clouds are seeing 
increasing usage and development to meet the increasing demands.  
However, with the advancements in 3D modelling and sensing, the 
amount of data required to accurately depict such representations and 
models is likewise ballooning to increasingly large proportions, leading 
to the development and standardization of the point cloud compression 
standards. In this article, we provide an overview of some topical and 
popular MPEG point cloud compression (PCC) standards. We discuss 
the development and applications of the Geometry-based PCC (G-PCC) 
and Video-based PCC (V-PCC) standards as they escalate in importance 
in an era of virtual reality and machine learning. Finally, we conclude 
our article describing the future research directions and applications  
of the PCC standards of today.
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through the use of RD (rate distortion) curves 
to demonstrate compression performance on 
various test cases [4].

The standardization of PCC originally 
began in 2013, when the MPEG group first 
decided to utilize point clouds in immersive 
applications. However, these standards 
were made for computer animated content 
and were thus not suitable for point cloud 
usage in real-time systems. This led to the 
MPEG group issuing a Call for Proposals 
in early 2017 [9], categorizing the state-
of-the-art PCC technologies into LIDAR, 
Surface, and Video PCC. Test models were 
developed later in 2017, merging the two 
categories LIDAR and Surface PCC into 
Geometry-based PCC and keeping Video 
PCC. Later in 2020, S-PCC and L-PCC were 
officially merged into G-PCC as part of the 
immersive media standard. Finally, in 2021, 
the V-PCC standard was published as part 
of ISO 23090-5 as part of the immersive 
media standard. The G-PCC standard is 
still under development and has not been 
published yet. Development for these two 
codecs has been steadily progressing, with 
new versions of the codecs releasing every 
few months since their first version. The 2nd 
edition G-PCC codec, which was developed 
in mid-2022, achieved improvements to the 
coding schemes and transformations used 
within the codec. A general timeline of the 
major standardization activities can be seen 
in Figure 2. A comparison of G-PCC and 
V-PCC is provided in Table 2.

can be seen as a process of breaking down a 
3D space into equal-sized cubes, or voxels, 
and each point within the cube is mapped to 
the center of such voxel. This process is then 
repeated d times, creating d levels of detail 
(LoD) of a 1×1×1 cubic root voxel. 

To represent scenes and objects, these 
point clouds are generally acquired through 
the usage of cameras or sensors, and then 
processed in a computer. However, these 
point clouds have wide ranges of properties 
depending on their applications. To this 
end, the MPEG standards have categorized 
them as static point clouds with high details 
and large numbers of points, dynamic point 
clouds with fewer points but including time, 
and dynamically acquired point clouds, with 
large numbers of points and more attributes.

Although these point clouds can each be 
categorized into different data types and have 
vastly different properties, their overarching 
structure remains the same. The PCC general 
architecture draws much similarity to video 
coding, consisting of an encoder to compress 
the point cloud and make it easier to transmit 
or store, as well as a decoder to decompress 
and revert the point cloud to its original state, 
as shown in Figure 2. These point clouds can 
be compressed either with lossy coding or 
lossless coding, depending on the need for 
further compression or for preserving image/
video quality. In order to measure the quality 
of PCC, the standard typically tests for image 
distortion, such as point-to-point distortion 
(D1) or point-to-plane distortion (D2), and 

models (static and dynamically acquired) 
and V-PCC consisting of only TMC2. These 
two standards were released as part of ISO/
IEC 23090-5 as well as 23090-9 as part of 
Immersive Media (MPEG-I) in 2020 [1,2,3]. 
The main features of each of these categories 
are summarized in Table 1.

In this article, we first introduce the 
concept of point cloud compression in 
“Overview of PCC.” We then introduce the 
development of Geometry-based Point Cloud 
Compression as well as their standardization 
activities in “Geometry Based Point Cloud 
Compression.” Next, we introduce and 
analyze the growth of Video based point 
cloud compression in “Video Based Point 
Cloud Compression.” Finally, we conclude 
this article with a discussion of the various 
applications and future trends of rising PCC 
standards in “Applications/Future Trends.”

OVERVIEW OF PCC
Point Clouds are collections of points in a 
3D space, with each point being assigned a 
collection of attributes. From the standards 
currently being developed by MPEG, each  
point has been assigned three types of 
attributes, including a 3D coordinate (x, y,  
and z), the reflectance, and the RGB (red, 
green, blue) attributes associated with each 
point [4]. Among these attributes, the 3D  
coordinates of each point are usually chara- 
cterized by floating point values, however 
these values can be quantized into integers 
through the usage of voxelization. Voxelization 

Encoder Decoder

Reconstructed
Point Cloud

Original Point
Cloud

Transmission/Store

FIGURE 1. The general PCC system structure.

FIGURE 2. Timeline of major PCC standardization activities. 

October 2017: MPEG creates 2 Test Models (TMC2 and TMC13),  
Merging Categories 1 and 3, Creating V-PCC and G-PCC
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GEOMETRY BASED POINT  
CLOUD COMPRESSION
The G-PCC standard currently deals with  
all the point cloud compression data other  
than the video PCC format. It was originally 
developed about 2017-18 but was only 
officially introduced in 2020. Due to the 
similarities between the encoders and 
decoders of the L-PCC and S-PCC, these 
two were combined into the G-PCC. G-PCC 
now consists of all point cloud types ranging 
from point clouds for dynamically acquired 
data, e.g., for autonomous navigation, to 
detailed point clouds of static objects. The 
main feature of G-PCC is that it is coded 
directly in 3D without any changes in 
dimension like the V-PCC. Although the 
G-PCC does not allow for the usage of 
previous encoder technology, such as the 
video codecs, it has a lot of potential to 
be exploited, as G-PCC is open to many 
future developments in its geometric or 
attribute coding schemes. The G-PCC codec 
structure is presented in Figure 3, which, 
while not showing all the modules of the 
TMC13, provides a general overview of the 
codec. With each new version release of the 
G-PCC, advances have been made to refine 
various portions of the geometry or attribute 
coding or introduce new techniques to make 
the coding more efficient. Each portion of 
the encoding and decoding procedure is 
detailed in the following [2].

Geometry Coding: Geometry coding 
involves the procedure of processing and 
compressing the positions of the points within 
the point cloud. Because the positions begin 
as floating-point numbers within an original/
world coordinate system, these positions 
must be pre-processed to be usable. This is 

done through coordinate transformation 
and voxelization, i.e., assigning each point 
to a voxel. Afterwards, the geometry of the 
structure is analyzed through the use of 
octree coding [3] or surface approximation 
utilizing trisoup [4]. Octree coding can be 
thought of as occupancy mapping of voxels, 
whereas occupied voxels are represented by 
1s and unoccupied voxels are represented 
by 0s, and this is repeated recursively per 
subcube. These nodes are then further 
compressed through the usage of entropy 
coding. On the other hand, trisoup represents 
an object’s surface as a series of triangular 
meshes (therefore creating a triangular soup) 
and is an optional coding option usually 
utilized in point clouds with dense surfaces. 
Recent advances in sparse convolutional 
engines [11] have also enabled very effective 
learning-based geometry coding, as repres- 
ented by PU-Dense [12], Sparse Conv 
Point Cloud Compression (PCGC) [14], 
and learning based dynamic point cloud 
compensation and compression [15]. 

Attribute Coding: Regarding attributes 
in the MPEG standard, the standard only 
consists of RGB (color) and reflectance. 
Attribute coding represents the compression 
of these two attributes for each point within 
the point cloud. The first step of this process 
is an optional transformation, where users are 
given the option to transform colors in the 
point cloud from RGB to YCbCr (luminance, 
the blue-difference, and red-difference chroma 
components). Afterwards, the attributes 
are transferred to the reconstructed point 
cloud geometry (compressed, reconstructed, 
then decompressed points) and are either 
transformed using the Predicting Method, the 
Regional Adaptive Hierarchical Transform 

(RAHT), or Lifting Method. The predicting 
and lifting methods both generate and utilize 
a Level of Detail (LoD) representation 
whereas the Predicting Method encodes 
attributes based on a prediction of the 
LoD order, while the Lifting Method is 
built on top of the Predicting Method and 
utilizes an update operator as well as an 
adaptive quantization strategy. On the 
other hand, RAHT encodes attributes by 
spatially transforming them based on the 
octree hierarchy and then quantize them. 
An alternative implementation of RAHT 
was introduced by [5] as the Fixed-point 
implementation and is also being utilized 
along with a transform domain prediction 
technique to improve coding efficiency 
proposed by [6]. The type of transformation 
method used is typically selected based 
on the category of point cloud data (with 
RAHT typically being used in Category 
1 and prediction/lifting typically being 
used in Category 3). Finally, after attribute 
transformation, the attribute coefficients are 
then quantized and encoded arithmetically 
like in the geometry coder. In recent years, 
learning based attributes coding schemes 
have shown promising results as shown 
by Deep-PAC [16] and octree based MLP 
predictive coding [17]. 

Decoding: Decoding of the geometry 
and positions is essentially performed in 
inverse of the encoder, where the geometry 
is arithmetically decoded, the octree or 
surface approximation is synthesized, the 
geometry is then reconstructed from the 
synthesis, and the coordinate transformation 
is inverted, resulting in the original positions. 
Attributes become decoded similarly 
through arithmetic decoding, then inversely 

FIGURE 3. The structure of the G-PCC codec: (a) encoder, (b) decoder.
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quantized, and inversely transformed; if the 
color was transformed to YCbCr, it can be 
transformed to RGB next, resulting in the 
original attributes. The uncompressed point 
cloud can be obtained through the usage of 
the decoded attributes and positions.

VIDEO BASED POINT  
CLOUD COMPRESSION
The V-PCC is based on the Visual Volumetric  
Video-based Coding (V3C). The V-PCC, 
on the other hand, has faster deployment 
in the market than G-PCC and makes use 
of video-coding properties of point cloud 
videos. V-PCC essentially splits videos into 
a geometric video sequence and a texture 
video sequence utilizing existing video codecs, 
such as MPEG 4, AVC, and HEVC. Unlike 
S-PCC, L-PCC, and G-PCC, patch generation 
is a big part of V-PCC encoding. Although the 
V-PCC encodes the attributes and positions 
separately, the codec performs its encoding 
and decoding in the 2D plane rather than 3D 
as in G-PCC, to allow for usage of existing 
video codecs. To do so, the encoder first 
generates and packs the original point cloud 
into a set of 3D patches and independently 
projects each patch to the 2D plane, where 

each patch takes up a unique location in a 
W×H grid. Afterwards, the geometry and 
attribute images are generated, padded 
with images, and compressed utilizing 
general video codecs. The reconstructed 
geometry may also be smoothed as part of 
a post-processing step. In addition to these 
two typical compressed bit streams, the 
V-PCC also generates an occupancy map 
and auxiliary patch information before 
multiplexing all of the bitstreams, as shown 
in Figure 4. Afterwards, the decoding will 
be much simpler, with de-multiplexing into 
decompression of each compressed bitstream, 
geometry and attribute reconstruction, 
geometry reconstruction steps, and ending 
with attribute transfer and smoothing, 
finally resulting in the uncompressed point 
cloud, as demonstrated in Figure 5. These 
V-PCC codecs are typically evaluated on 
common test cases, such as the Longdress 
dataset, RedandBlack dataset, and Soldier 
dataset [4]. The architecture of the codec is 
further elaborated in the following [1].

Patch Generation and Packing: Usage of 
patches is the key to utilizing video codecs 
for V-PCC, where 3D objects are mapped to 

series of 2D projections known as patches. 
The main objective of patch generation and 
packing is the generation and processing 
of 2D projections with low distortions and 
without loss to geometry or attributes. 
V-PCC accomplishes this by applying a 
heuristic segmentation process, creating a 
set of smooth patches. However, because the 
3D patches can be mapped onto the same 
location in 2D, these patches are stored on 
different maps: a close map and a far map 
depending on depth. The patches are then 
packed, using a simple iterative strategy to 
insert patches onto a user-specified W×H 
grid and minimizing unused space. These 
patches are then used in image generation, 
geometry smoothing and reconstruction, 
occupancy map compression, and auxiliary 
patch information compression.

Image Generation/Padding: Image 
generation aims to generate the geometry 
and texture of the projections as images.  
The image generation process exploits 
the 2D projection process from the patch 
packing process to store the geometry and 
attributes as images. On the other hand, the 
padding process fills in the blank spaces 

FIGURE 4. The structure of the V-PCC codec: (a) encoder, (b) decoder.
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between patches to generate a smooth image. 
This is accomplished by checking blocks of 
pixels for empty space and copying previous 
rows or columns of pixels as replacement.

Occupancy Map Coding: The occupancy 
map is used to indicate whether a space 
in the image is filled or empty. This is a 
binary image where 1s represent at least 1 
“occupied” pixel in the corresponding B×B 
block in the image, while 0s represent empty 
space in the B×B blocks. This occupancy map 
is usually lossless but is able to be coded lossy. 
To reduce excessive bit rate cost, the map is 
usually coded at 4×4 pixel resolution, and 
further improved utilizing deep learning-
based occupancy map super resolution [18] 
to improve reconstruction quality.

Auxiliary Patch Coding: The auxiliary patch 
coding aims to compress the extra metadata 
required to reconstruct the 3D point cloud 
from the 2D images. This metadata includes 
the 3D location, 2D bounding box, and 
projection plane index for each patch as well 
as the patch index of each T×T block. This 
metadata is compressed and coded separately 
from the other bitstreams.

Smoothing and Reconstruction: The 
smoothing process is a post-processing 
procedure in the encoder that aims to 
remedy any potential discontinuities at patch 
boundaries. One approach to smoothing 
includes taking points at the boundaries of 
patches and moving the points to the centroid 

of its closest neighbors. On the other hand, the 
reconstruction process utilizes the occupancy 
map and auxiliary metadata to calculate 
the original 3D positions of the points to 
reconstruct the geometry and attributes of 
the original point cloud. Deep learning-based 
solutions for V-PCC deblocking have shown 
to achieve considerable performance gains, as 
demonstrated by sparse convolutional engine-
based compression artifacts removal [13], 
as well as geometry [19] and attribute [20] 
deblocking.

APPLICATIONS/FUTURE TRENDS
Point cloud compression has many applic- 
ations, including cultural heritage, autono-
mous driving, VR/AR/XR, and metaverse. 
Regarding cultural heritage, many historical 
objects are stored virtually through the usage 
of high precision static point clouds. These 
objects are scanned using high precision 
3D sensors and turned into point clouds so 
they can be shared and preserved in a digital 
format in places like historical museums and 
buildings. With the many advances being 
made in autonomous driving and modern 
vehicles becoming almost fully autonomous, 
these vehicles are equipped with a variety 
of sensors to acquire information on 
their surrounding environment, such as 
LIDAR sensors. These LIDAR sensors can 
continuously acquire the 3D environment 
surrounding such vehicles for creation of 
a time-varying point cloud with G-PCC 
usage to improve transmission and storage. 
Finally, in recent years, the VR/AR/MR field 

has been making large strides in innovation, 
generating larger and larger words (and 
the metaverse) with even more accurate 
virtual representations. This has led to 
a rise in immersive 3D videos as well as 
improved modelling explosively improving 
image quality, utilizing point clouds for 
high precision 3D content simulation and 
visualization. To enhance this immersive 
video experience, V-PCC has been applied to 
effectively compress and recreate these time-
varying 3D models and videos in real time. 

Currently, with the establishment of the 
V-PCC in its first edition ISO, development 
on the V-PCC has started slowing down. 
However, due to the nature of the V-PCC, 
as more video codecs are developed and 
become more efficient through machine 
learning and hardware acceleration, the 
V-PCC will become more efficient as a 
result. On the other hand, G-PCC is still 
seeing constant version updates by MPEG 
and its respective ISO standard, 23090-9, 
is still under development and should be 
published in the near future.

Due to the uniqueness and novelty of 
the standard category, G-PCC still has 
many improvements and potential yet 
to be capitalized on. One such potential 
improvement is the usage of machine 
learning in G-PCC, utilizing neural networks 
to improve prediction in voxel occupancy 
prediction or utilizing deep learning frame- 
works to improve compression performance. 
Other solutions have proposed fractional 
super-resolution [6] utilizing look-up tables 
to improve voxelized point cloud precision. 
These machine learning-based approaches 
tend to outperform the traditional G-PCC 
codec in terms of Rate-Distortion (RD) 
performance at the cost of CPU or GPU 
runtimes and complexity. With the advent 
of Deep Learning-based PCC, development 
in this area has approached improvements 
on PCC in many different ways, such as 
joint encoding or separate encoding of 
geometry and attributes, use of lossy or 
lossless compression, encoding based on 
voxels or points, etc. [10]. With the aid of 
neural networks, such as CNNs or RNNs, 
many PCC codecs have been optimized to 
significantly reduce distortion and improve 
RD performance. The application of deep 
learning has shown to improve PCC in 
comparison to MPEG’s standard codecs at 
the cost of computational complexity [8]. 

[STANDARDS]

IN THIS ARTICLE, WE PROVIDE AN  
OVERVIEW OF SOME TOPICAL AND  
POPULAR MPEG POINT CLOUD  
COMPRESSION (PCC) STANDARDS
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CONCLUSION
This article provided an overview of the 
current MPEG point cloud compression 
standards. The applications, a brief history 
and development of G-PCC and V-PCC 
were discussed, detailing the progression 
of recent PCC standards. With the recent 
interests in producing realistic 3D models 
and the requirement for efficient bandwidth 
usage as well as data storage, point cloud  
compression has been vital in the develop- 
ment of reliable 3D visualization and 
modeling services. PCC has proven to be  
a solid choice to effectively render in 3D  
for immersive media. n
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