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Abstract—Large Language Models (LLMs), such as LLaMA
and GPT-4, have transformed the paradigm of natural lan-
guage comprehension and generation. Despite their impressive
performance, these models still face certain challenges, including
the need for extensive data, high computational resources,
and privacy concerns related to their data sources. Recently,
Federated Learning (FL) has surfaced as a cooperative AI
methodology that enables AI training across distributed compu-
tation entities while maintaining decentralized data. Integrating
FL with LLMs presents an encouraging solution for privacy-
preserving and collaborative LLM learning across multiple
end-users, thus addressing the aforementioned challenges. In
this paper, we provide an exhaustive review of federated Large
Language Models, starting from an overview of the latest
progress in FL and LLMs, and proceeding to a discourse on their
motivation and challenges for integration. We then conduct a
thorough review of the existing federated LLM research from the
perspective of the entire lifespan, from pre-training to fine-tuning
and practical applications. Moreover, we address the threats and
issues arising from this integration, shedding light on the delicate
balance between privacy and robustness, and introduce existing
approaches and potential strategies for enhancing federated
LLM privacy and resilience. Finally, we conclude this survey by
outlining promising avenues for future research in this emerging
field.

Index Terms—Federated learning, large language model,
foundation model, privacy.

I. INTRODUCTION

IN THE past few years, the domain of Artificial Intelligence
(AI) [1], [2], [3], [4], [5], [6], [7], [8] has experienced a

paradigm shift with the advent of Foundation Models (FMs),
prominently represented by Large Language Models (LLMs).
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LLMs, including GPT series [9], [10], [11], PaLM [12], and
LLaMA [13], boast billions of parameters and have attracted
considerable interest owing to their outstanding performance
across a wide spectrum of AI tasks, such as text gener-
ation [14], contextual awareness [15], and even planning
and reasoning [16]. Based on these AI tasks, LLMs have
paved the way for a plethora of applications in diverse fields.
They provide technical assistance not only to areas directly
linked to language processing (e.g., search engines [17], ser-
vice support [18], and multi-language translation [19], [20]),
but also prove beneficial in broader contexts such as code
generation [21], chatbot [22], finance [23], and legal consul-
tation [24]. However, while LLMs have achieved impressive
success in various domains, these models necessitate substan-
tial amounts of high-quality data and significant computational
resources, which result in substantial costs for the training
and utilization of LLMs. Moreover, LLMs typically rely
on extensive public datasets for training. To enhance their
performance in specific domains, they need to incorporate data
from private entities, such as hospitals and banks. However,
these highly sensitive data pose privacy challenges that hinder
further improvements in LLMs unless well addressed.

NOMENCLATURE

Acronyms Definitions

AI Artificial Intelligence
ML Machine Learning
FL Federated Learning
LM Language Model
LLM Large Language Model
NLP Natural Language Processing
GPT Generative Pre-Training Transformer
i.i.d Independently and Identically Distributed
PFM Pretrained Foundation Model
IoT Internet of Things
UAV Unmanned Aerial Vehicle
HFL Horizontal Federated Learning
VFL Vertical Federated Learning
TFL Transfer Federated Learning
CFL Centralized Federated Learning
DFL Decentralized Federated Learning
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
BERT Bidirectional Encoder Representation from

Transformers
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RLHF Reinforcement Learning with Human Feedback
KD Knowledge Distillation
GPU Graphics Processing Unit
PEFT Parameter-Efficient Fine-tuning
LoRA Low-Rank Adaptation of Large Language Models
FLOP Floating Point Operations
SMPC Secure Multi-Party Computation
DP Differential Privacy
HE Homomorphic Encryption
IP Intellectual Property
GAN Generative Adversarial Network
ViTs Vision Transformers Models
CLIP Contrastive Language-Image Pre-training
In the field of machine learning, Federated Learning (FL)

has recently gained traction as an innovative framework that
enables intelligent learning systems while maintaining data
privacy [25], [26], [27], [28]. FL is a decentralized artificial
intelligence strategy that facilitates model training across
numerous devices, coordinated by a central server, without the
need to exchange the actual data. Typically, the process begins
with the central server, or the aggregator, initializing a global
model with certain learning parameters. Each participating
device, referred to as a worker, retrieves the latest model from
the aggregator, applies its own data to update the model, and
then transmits this updated model back to the aggregator. The
aggregator then amalgamates these updates from all workers
to refine the global model. By harnessing the computing power
of distributed workers, significant computational resources can
be saved for the centralized server. Additionally, since the
data remains local, the data transmission cost associated with
centralized training is reduced, and user privacy risks are
minimized.

With these distinctive advantages, FL can address various
challenges faced by LLM systems, spanning from pre-training
to deployment, as previously discussed. LLM can also assist
FL in synthetic data generation to mitigate the non-i.i.d
(non-independent and identically distributed) data challenge
within FL. Therefore, the integration of LLMs and FL,
namely federated LLM, is emerging as a prominent and
trending topic [29], [30], [31]. FL leverages distributed data
sources to efficiently supply LLMs with a vast amount of
data, which is one of the primary requirements for LLMs.
Additionally, the use of distributed data sources helps cir-
cumvent the communication overhead typically associated
with centralizing distributed datasets. FL’s capacity for reli-
able privacy protection during distributed training enables
access to high-quality, private domain data beyond publicly
available datasets. For instance, medical data from hospi-
tals can be harnessed to address knowledge gaps in LLMs
within specific domains, thereby enhancing model accuracy
and generalizability. Furthermore, the distributed computing
nature of FL allows for the exploitation of computational
resources from numerous edge devices. This exploitation
can, to some extent, alleviate the immense computational
power required by large models. However, integrating FL
with LLMs introduces new and unexplored challenges. These
challenges include heterogeneity in federated LLM training,
as well as new privacy and security concerns arising from this

amalgamation. For example, the integration of FL with LLMs
raises significant concerns regarding data leakage and model
inversion attacks. Adversaries may exploit the gradients shared
during the training process to infer sensitive information about
the underlying data. Therefore, it is imperative to develop
advanced cryptographic techniques and differential privacy
methods to safeguard against such threats. Furthermore, the
amalgamation of FL and LLMs necessitates stringent access
control and authentication protocols to prevent unauthorized
access and ensure the confidentiality of the training data. The
implementation of Secure Multi-Party Computation (SMPC)
and homomorphic encryption can provide viable solutions to
these privacy and security challenges. To examine the current
state of research and address the encountered challenges, this
article will conduct a comprehensive survey of the federated
LLM domain.

A. Related Reviews and Our Contributions

Prompted by the latest progress in FL and LLM, a number
of overviews on the corresponding studies have emerged. For
instance, Khan et al. [32] review the recent advances of FL
for enabling IoT applications. They propose a comprehensive
set of evaluation metrics, such as sparsification, robustness,
quantization, scalability, security, and privacy, to rigorously
evaluate the recent progress. Furthermore, they establish a
systematically structured classification for understanding FL
in IoT networks. Similarly, Nguyen et al. [33] investigate FL
for a range of crucial IoT services and explore related works
in IoT applications. Other studies such as [34], [35], [36],
[37] have also presented the fundamental principles of FL.
and the taxonomy of recent work under various scenarios. In
addition, Lyu et al. [38] delve into the privacy and robustness
challenges in FL, offering a thorough classification of FL
threats along with the respective protective measures and
outlining prospective avenues for future research. Several other
similar works [14], [39] also provide a detailed taxonomy from
the FL privacy and security perspective.

On the other hand, with the rise of LLMs, there has
been a surge in survey works based on LLMs. For instance,
Zhou et al. [40] present an extensive survey of the latest
developments, existing challenges, and future prospects for
Pretrained Foundation Models, with a particular focus on
LLMs among diverse data types. Xi et al. [41] delve into the
realm of LLM-based agents, exploring current research and
future prospects in this domain. They introduce a general con-
ceptual framework for LLM-based agents, comprising three
essential components: brain, perception, and action, which
is adaptable to various applications. Wang et al. [42] offer
a comprehensive overview of LLM alignment technologies,
discussing from three major perspectives, including data col-
lection, training methodologies, and model evaluation. This
serves as a crucial guide for individuals interested in com-
prehending and progressing the alignment of LLMs to more
effectively meet human-centric tasks and expectations. In [43],
the authors conduct a thorough examination of the security and
privacy issues associated with LLMs concerning both training
data and application-based risks across various domains. The
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review includes an assessment of the vulnerabilities inherent to
LLMs, an investigation into the emerging security and privacy
attacks targeting these models, and a comprehensive evaluation
of potential defense strategies. Several other works [44], [45],
[46], [47] also provide detailed introductions to various aspects
of LLMs.

While FL and LLMs have been studied extensively in
isolation within the existing literature, as far as we know,
only a selected number of studies have conducted an in-depth
analysis specifically focused on the system architecture of
federated LLMs, a categorization of existing federated LLM
works, and federated LLM applications in various scenarios.
For instance, Yu et al. [48] and Chen et al. [49] emphasize
the potential benefits and challenges of FL throughout the
lifecycle of LLMs, including stages of pre-training, fine-
tuning, and application. They also delve into future research
directions, aiming to facilitate the creation of more per-
sonalized and context-sensitive models, all while prioritizing
data privacy protection. Similar work has been proposed by
Zhuang et al. [50], aiming to understand of the synergistic
relationship between FL and LLM. Their study highlights the
motivations, challenges, and future directions in more detail.
Nonetheless, these studies have merely offered a cursory
overview of the fundamental notions and challenges, without
conducting a comprehensive review of all the current relevant
research. These limitations inspire us to carry out a more
thorough survey of the integration of FL and LLM. The
principal contributions of this paper are highlighted as follows:

1) We present a state-of-the-art survey on the topic of
federated LLM, beginning with an introduction to the
basic system concept and recent advances in FL and
LLM. We also engage in an in-depth discussion about
the motivation behind integrating FL and LLM, delving
into how this union can foster innovation and enhance
efficiency across both fields.

2) We conduct a comprehensive investigation and analysis
of the existing work, spanning from pre-training and
fine-tuning to application. Various detailed topics, such
as data construction, initialization, and research related
to heterogeneity, are thoroughly reviewed. Additionally,
we provide taxonomy tables summarizing the key
technical aspects and contributions of each proposed
approach for federated LLM.

3) Furthermore, we undertake a thorough review from
the perspectives of privacy and robustness. We have
curated a list of potential threats to privacy and secu-
rity that federated LLMs may encounter, along with
a detailed analysis of corresponding defense strategies.
Furthermore, we offer taxonomy tables summarizing
these research efforts, providing a clear overview of the
field’s current state and challenges.

4) We identify several critical research challenges and
outline prospective research directions that aim to boost
the performance and utility of federated LLMs.

B. Structure of the Survey

The structure of this paper is systematically outlined in
Fig. 1. Section II offers a primer on the foundational concepts

of the system and delves into the latest developments in FL and
LLMs. It particularly explores the core mechanisms of FL, the
various types of federated methodologies, and the progression,
architecture, and taxonomy of LLMs. Section III examines
the impetus and obstacles associated with merging FL with
LLMs. Section IV provides a comprehensive survey and
categorization of the current work on federated LLMs, from
pre-training and fine-tuning to application, and meticulously
sorts through different subtopics in detail. Section V addresses
the work on federated LLMs from the perspectives of privacy
and robustness, investigates potential privacy and security
threats that may arise, and presents an in-depth analysis of
the respective countermeasures. Section VI discusses potential
future directions aimed at enhancing the performance of
federated LLMs. Section VII summarizes the survey.

II. BACKGROUND

A. Federated Learning

FL has gained significant attention across multiple research
fields, leading to a proliferation of studies on FL. Since its
inception in 2016 [51], FL has been a game-changer for a
multitude of intelligent Internet of Things (IoT) applications.
It has offered groundbreaking AI solutions, capitalizing on
its distributed framework and privacy-conscious features. FL
can be described as a distributed approach to ML. In this
framework, clients independently conduct training on their
datasets and update a collective global model at a central
server without exposing their individual data. This process
enables devices to benefit from a comprehensive model while
preserving data privacy, as they periodically contribute to the
enhancement of the global model by sharing their model
updates.

1) Definition of Federated Learning: In the standard FL
framework, it is assumed that there are N participating clients,
denoted as {C1,C2, . . . ,CN }. Each client Cn possesses a
private dataset Dn = {xni , yni }Kn

i=1 with |xn | = Kn and K =
∑K

n=1Nk . In addition, client Cn typically possesses a learned
local network model or an initialized model, represented by
f (θn ). Thus, f (xn , θn ) represents the predicted result of the
private sample xn based on the local model θk . Conventional
ML frameworks are typically built on a larger centralized
dataset, denoted as Dcentral = D1 ∪ D2 ∪ · · · ∪ DN , by
directly combining the private datasets of each client. This
merged dataset is subsequently employed to train a model
with better performance, symbolized by θcentral . Despite
the limitations imposed by data silos and privacy concerns,
traditional centralized learning approaches are impractical for
use in real-world contexts where privacy is paramount. As a
remedy, FL allows each participant, Cn , to jointly train the
models without revealing the private data Dn to other clients
Cn0(n �= n0). As shown in Fig. 2, the typical FL procedure
includes the following key stages:

1) System Initialization. The server receives the task
requirements and target application, then establishes
learning parameters, for instance, learning rates and
communication rounds. In addition, the server chooses
a set of clients, denoted as {C1,C2, . . . ,CK }, to par-
ticipate and set up the initial global model θ1global in the
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Fig. 1. Organization of this paper.

Fig. 2. A typical FL procedure considering N number of participants.

first round. Subsequently, it distributes the present global
model θt−1

global to all the clients involved. This serves as

the initialization of local models θt−1
1 , θt−1

2 , . . . , θt−1
N .

2) Local Training and Update. Each client Cn employs its
private dataset Dn to execute local model updates in the
following manner:

θtn ← θt−1
n − α∇θLn

(
f (xn , θt−1

n ), yn
)
, (1)

where α denotes the learning rate and Ln (·) denotes the
calculated loss for each client n. The loss function can
differ among various FL approaches [28]. Subsequently,
each client, labeled as n, sends its computed update θtn
to the central server.

3) Model Aggregation and Global Update. Upon receiving
the local models {θt1, θt2, . . . , θtN } from the participants,
the FL server conducts an aggregation process and
subsequently generates an updated version of the global
model θtglobal by

θtglobal ←
1

∑
n∈N |Dn |

N∑

n=1

|Dn |θn . (2)

After aggregating the models, the server disseminates
the latest global update θtglobal to every client. This is
intended to enhance the local models in the ensuing
training iteration. The FL procedure is reiterated until
the global loss function reaches convergence or attains
a predetermined accuracy benchmark.

2) Taxonomy of FL Frameworks: Recent research in
FL [33], [35], [52] has made significant advances. Typically,
FL can be categorized according to federation scale, parti-
tioning sample and networking structure. In this subsection,
we conduct a detailed study of each individual instance of
categorization.

Depending on the nature of the data distribution across
clients, FL is typically classified into three distinct categories,
including Horizontal Federated Learning (HFL) [53], Vertical
Federated Learning (VFL) [54], and Transfer Federated
Learning (TFL) [55], as summarized in Fig. 3.

HFL is the predominant technique utilized in FL. It
encompasses the federation of samples and is optimal in
situations characterized by a high degree of feature overlap but
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Fig. 3. FL with different data organization strategies. The main difference between these methods is whether they have the same or different types of samples
and features.

minimal node overlap. Such conditions are commonly linked
with cross-device scenarios. In an HFL framework, every
participant independently develops their AI model, which
results in a local update. To ensure security and privacy,
these local updates can be concealed through methods like
encryption or application of differential privacy. Following
this, a central server consolidates all the local updates received
from the clients to formulate a new, comprehensive global
update. This global update is then disseminated back to the
clients, facilitating the subsequent phase of local training. This
iterative cycle persists until the model’s loss function stabilizes
or attains a predetermined accuracy threshold.

In contrast, VFL and TFL present intricate challenges in
their implementation and integration within various application
contexts due to their distinct approaches to data structuring.
VFL is designed to facilitate the collaborative learning of a
shared AI model among a network of clients that possess a
common set of samples but disparate feature sets. It employs
an entity alignment method to amalgamate intersecting sam-
ples from these clients, which are then used to collectively
train a unified AI model. Security during this process is
bolstered by the use of encryption protocols. Conversely,
TFL is the strategy of choice in scenarios where there is
a scant overlap of features and samples across nodes. It
involves the transformation of features from heterogeneous
feature spaces into a unified format, enabling the training
of a model with data compiled from numerous clients. The
server responsible for aggregation then updates the model
based on the weights received from the participants’ learning
processes. TFL’s primary goal is to develop tailored models
that are effective for specific use cases, particularly when
data availability is limited, thereby representing another crucial
facet of data organization within FL strategies.

Networking Structure: From the standpoint of network
architecture, FL can be bifurcated into two subcategories:
Centralized Federated Learning (CFL) and Decentralized
Federated Learning (DFL).

Currently, CFL is the most widely adopted framework in
FL. This structure involves a central server coordinating with
numerous clients to implement an FL model. During each
iteration of training, clients individually train their models on
local data and then forward the updated parameters to the

central server. The server employs a specialized algorithm for
aggregating these parameters, such as Federated Averaging
(FedAvg) [51], to produce a global model. This global model
is then circulated among all clients for further training rounds.
However, the centralized design of CFL can lead to issues
like a single point of failure, dependency on trust, and server
bottlenecks. These are common challenges in systems where
a central server plays a pivotal role. In contrast to the CFL
system, DFL presents a server-less paradigm of FL. This
approach underscores the benefits of adopting a peer-to-peer
model for delivery and aggregation, which is independent of
a central trusted server. Rather than exclusively interacting
with a central server, participants in a Decentralized FL
system can fully exploit the network bandwidth by utilizing
the network connections among themselves. This peer-to-peer
communication allows for a more distributed and potentially
more resilient system. These modern attributes of DFL make
it compatible with peer-to-peer communication technologies,
including blockchain [56], [57], to establish decentralized FL
networks.

B. Large Language Models (LLMs)

LLMs are typically sophisticated language models, distin-
guished by their extensive parameter sizes and exceptional
learning capabilities. The self-attention module in the
Transformer [58] acts as the fundamental building block for
these LLMs, aiding in language modeling tasks. Furthermore,
these LLMs necessitate substantial computational resources
and diverse datasets for model pretraining. After the training
phase, LLMs require finetuning to meet specific downstream
requirements, including performance, speed, and confidential-
ity. This section will offer a comprehensive introduction to the
background of LLMs concerning the aforementioned aspects.

1) LLM Background and Definition: Language models
(LMs) [59], [60] are computational models designed to com-
prehend and generate human language. Here, we focus on
generative language models that generate text in an autoregres-
sive manner. These models predict the next token in a sequence
by calculating the probability distribution conditioned on the
preceding tokens, which unfolds as follows:

P(w) = P(w1) · P(w2|w1) · · · P(wT |w1, . . . ,wT−1), (3)
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Fig. 4. The model architecture, the Transformer structure, and evolution of LLMs.

where {w1 · · · wT } denotes a text sequence of T = |w |
tokens, and t is the current position. P(wt |w1, . . . ,wt−1) with
t = 1, . . . ,T , is the probability the LM outputs on the token
wt given the previous t − 1 tokens. However, traditional LMs
usually encounter several challenges, such as dealing with rare
or unseen words, mitigating the issue of overfitting, and the
difficulty in capturing complex linguistic phenomena.

LLM have made great progress in solving the problems
that traditional LMs faced before, utilizing huge amounts
of high-quality data and having large amounts of parame-
ters. The fundamental structure that has driven the recent
advancements of LLMs is the Transformer model. This model,
first introduced in 2017, has outperformed the traditional
Recurrent Neural Network (RNN) architecture and become
the preferred model for machine translation tasks. Transformer
models are more suitable for parallel computing than RNN,
which makes them to train faster and handle larger datasets.
The Transformer architecture is built around two key struc-
tures, namely an encoder and a decoder. The encoder is
constructed from multiple identical layers, each containing
a multi-head attention mechanism and a feed-forward neural
network. These layers work in unison to process the input
sequence, extracting its features layer by layer, and culminate
in a final output that is passed on to the decoder. Similarly, the
decoder is comprised of several identical layers, each equipped
with a multi-head attention mechanism and a feed-forward
neural network. However, the decoder layers also include
an additional encoder-decoder attention mechanism, which
focuses on the input sequence while decoding. At the core
of the Transformer lies the mechanism of self-attention. The
fundamental formula for the attention mechanism is given by:

Attention(Q ,K ,V ) = softmax

(
QKT

√
dk

)

V , (4)

where Q, K, and V represent Query, Key, and Value vectors,
respectively, while dk denotes the dimension of the key.
The self-attention mechanism quantifies the relevance of each
term within a sentence when forecasting a particular word. It

computes a weighted aggregate of the values for all terms in
the sentence, with the weights determined by the resemblance
of each term to the word under prediction.

As discussed, all modern LLMs are based on the
Transformer architecture. This design allows these models
to handle up to trillions of parameters. Fig. 4 illustrates a
thorough overview of LLMs, including the model architecture,
the evolutionary trajectory of the LLMs, and the Transformer
structure.

2) Training and Fine-Tuning of LLMs: The pre-training
process of large-scale language models involves numerous
crucial steps that are essential for their effective develop-
ment. This procedure usually begins with the collection and
preprocessing of a vast amount of text data from diverse
sources. The assembled dataset is viewed as the fundamental
building block for the training of LLMs. Table I shows
several examples of datasets used by typical models. During
the training process, unsupervised learning techniques are
employed, wherein the model learns to predict the subsequent
word in a sequence based on the context that precedes it.
This task is commonly referred to as language modeling.
LLMs utilize sophisticated neural network architectures, usu-
ally Transformers, which allow them to capture intricate
language patterns and dependencies. The primary training
objective is to optimize the model’s parameters to maximize
the likelihood of generating the correct next word within a
given context. This optimization is typically achieved using
an algorithm like stochastic gradient descent (SGD) or its
variants, combined with backpropagation to iteratively update
the model’s weights. In addition, pre-training for LLMs
necessitates significant computational power. For example,
GPT-3-175B [10] model utilizes 3.14×1023 flops and LLaMa-
70B [13] requires 1.7 × 106 hours of GPU processing.
Consequently, the strategic allocation of computational assets
is crucial for the streamlined pre-training of these language
models.

On the other hand, the fine-tuning techniques for LLMs can
be classified into the following three categories:
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TABLE I
DATASETS UTILIZED BY SEVERAL TYPICAL LLM MODELS

Supervised Fine-Tuning (SFT): The fundamental principle
of SFT [69] involves refining the model through supervised
learning after extensive pre-training, thereby enhancing its
proficiency in conforming to the unique demands of a specific
task. During the SFT procedure, it’s crucial to have a labeled
dataset specific to the given task, featuring input texts paired
with their respective labels. A subset of SFT, known as
instruction tuning, is commonly employed in the fine-tuning
stages of LLMs. This method further trains LLMs using
a dataset of both instruction and output, with the goal of
bolstering the models’ ability to comprehend and execute
human instructions, thus improving their functionality and
controllability.

Alignment Tuning: Alignment tuning is imperative. To
tackle the challenges posed by LLMs acting outside human
intentions [70]. LLMs undergo initial training with vast
amounts of varied data sourced from the Internet. Despite
preprocessing efforts, it remains challenging to fully eliminate
biased or detrimental content from the extensive datasets used
in training. While LLMs have shown remarkable abilities in a
range of language processing tasks, they can sometimes pro-
duce results that stray from what humans might intend, such
as creating inaccurate information or biased and misleading
expressions [71]. A prominent strategy for alignment tuning
involves the use of Reinforcement Learning with Human
Feedback (RLHF) [69], which incorporates human-generated
feedback to develop a model that guides the reinforcement
learning process.

Parameter-efficient Tuning: LLMs such as ChatGPT [11] are
constantly increasing in scale. However, for most researchers,
full fine-tuning on consumer-grade hardware is infeasible and
impractical. PEFT’s objective is to meet both computational
and memory demands in LLM finetuning. This approach
entails fine-tuning merely a select few or additional model
parameters, while the bulk of the pre-trained parameters
remain unchanged, thus significantly diminishing the need
for computational and storage resources. Notably, cutting-
edge techniques in parameter-efficient tuning have achieved
results on par with comprehensive fine-tuning. Among the
prominent methods of parameter-efficient tuning are Low-
Rank Adaptation (LoRA) [72], Prefix Tuning [73], and
P-Tuning [74], [75]. These techniques enable effective tuning
of models, even in settings with limited resources, offering
practicality and efficiency for real world applications.

III. MOTIVATION AND CHALLENGES

In this section, we will elaborate on the motivation and chal-
lenges of combining LLMs with FL. Current FL techniques

face several challenges when dealing with LLMs, including
model complexity and communication overhead. Due to the
large number of parameters in LLMs, traditional FL methods
incur high communication costs during model updates and
parameter synchronization. Additionally, FL has limitations in
handling heterogeneous data and devices, which can affect
model performance and convergence speed. In particular, we
will investigate how FL can address the current issues in the
LLM training and application processes, and vice versa, how
LLMs can support FL in various aspects.

A. Massive and Distributed Nature of LLM Training Data

LLMs are typically pretrained using massive and high-
quality data to achieve an astounding performance. For
instance, GPT-3 used 45TB of text data for training, while
Meta LLaMA-2 used 20 trillion tokens for training. However,
such high-quality data is projected to be exhausted within five
years [76]. Moreover, platforms that previously offered free
public data, such as Twitter, have begun charging substantial
fees for accessing their data [50]. In addition, utilizing these
public data may also involve legal and copyright-related
complications. It will become increasingly difficult to train
better-performing LLMs using public datasets.

Conversely, a substantial volume of data remains accessible
within private domains, spanning a wide array of personal and
corporate sources. However, aggregating these distributed pri-
vate datasets for centralized training would not only necessitate
intricate data integration efforts but also pose potential privacy
risks. Considering both model performance and efficiency, FL
stands out as a promising solution. By directly utilizing private
data for model training, it addresses the challenges posed by
privacy and data distribution across various domains. Besides,
by training with FL, LLMs can access a wider range of data
for optimization tasks such as fine-tuning, prompt tuning, and
pre-training. The enhanced data access facilitates the creation
of more accurate and efficient AI systems, better tailored to
meet the needs of users across a wide range of application
scenarios.

B. Data Privacy

Data privacy is a crucial concern in LLM training and
application, given the massive and distributed data used. In
FL, the server does not need raw data for training. The server
and clients only exchange intermediate information in model
training, such as model weights or gradient updates. This
core idea ensures that sensitive data stays local and is not
leaked. Therefore, FL reduces the risk of exposing sensitive
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user information to external third parties and enhances data
privacy in LLM training and application.

C. Continuous Performance Improvement With Updating
Data

Another data-related challenge is the necessity of keeping
LLMs updated with the latest knowledge. Data in real-world
scenarios are constantly growing even during a short time.
For instance, common applications such as drones and mobile
robots are constantly generating new data over time [77].
Maintaining the relevance and timeliness of LLMs becomes
challenging, particularly when dealing with distributed data.
The dynamic nature of information across various sources
necessitates continuous adaptation and updates to ensure
LLMs remain accurate and effective. FL provides a solution
by enabling continuous adaptation and enhancement of models
by utilizing distributed and heterogeneous data sources. For
instance, LLMs can be deployed in a federated manner, where
local models undergo additional fine-tuning based on the data
specific to that locality. Rather than transmitting local data,
only the updates to the model are transmitted back to the
central server. This allows the global model to be progressively
enhanced based on user data, without ever directly accessing
that data.

D. High Computational Demand for LLM Training

As discussed in Section II, LLMs have a huge num-
ber of model parameters. Hence, training large-scale LLMs
demands considerable computational resources. This poses a
challenge for separate entities lacking the necessary framework
or capabilities to independently conduct LLM training. FL
facilitates a collective training approach, permitting entities
to combine their computational capabilities, which in turn,
decentralizes the training workload and alleviates the burden
on any single entity. On the other hand, FL usually involves
multiple local clients with heterogeneous computing resources
in the entire life-span process, and it can adjust the original
model according to the node’s computing capability, so that
even clients with low computing power can also join in the
LLM training and fine-tuning process.

E. Model Personalization and Adaptation

With the rapid development of LLMs, an increasing num-
ber of large models are evolving towards specific domains.
These application scenarios not only involve different spe-
cific domain knowledge, but also have certain constraints on
the computing power and hardware requirements of clients.
Therefore, due to the decentralized nature of FL, it can provide
users with personalized and adaptive LLM services by training
on diverse, user-generated data. Another important issue is the
bias in LLM training. In FL, the models learn from various
users, which diversifies the data and knowledge that LLMs
use. This helps the models better understand the nuances
and complexities of real-world scenarios, and leads to more
informed and less biased decisions for different tasks and
domains, which contribute to bias reduction in LLM systems.

F. LLM-Assisted FL

While FL can address numerous challenges associated with
LLMs, LLMs can reciprocally offer substantial support to
classic FL. For instance, a common issue in classic FL is
client drift, which arises from the heterogeneity in private
data distribution among clients. To improve FL performance,
recent research suggests incorporating data gathered from
public domains, such as the Internet, into the FL process. The
success of methods that utilize public data is largely dependent
on the quality of the gathered public data. To overcome the
constraints associated with public data, approaches based on
synthetic data for FL have been developed. LLMs, which are
pre-trained on wide-ranging datasets, have powerful fitting
capabilities of data distribution. This enables them to create
synthetic data that faithfully reflects the varied and intricate
nature of real-life data scenarios.

Additionally, LLMs can effectively address the issue of
suboptimal performance in FL through a process known as
knowledge distillation [78], [79]. Knowledge distillation is
a technique where the LLM, functioning as the “teacher,”
imparts its knowledge to streamline the training of a more
basic “student” model within the FL framework. The LLM
usually employs knowledge distillation to refine and condense
the student model. Subsequently, each participant in the FL
network utilizes this distilled student model to bolster their
local training efforts. The transfer of insights from the LLM
to the smaller model elevates the latter’s performance and
ability to generalize, addressing the challenges posed by scarce
or unevenly distributed data. This approach allows for more
efficient and effective learning within the FL system.

G. Challenges

The integration of LLMs with FL provides many benefits
as we explained above, yet it also inherits certain fundamental
challenges from the existing LLM and FL paradigms. In this
context, we will delve into these challenges, with a specific
emphasis on architectural design, privacy and security issues.

Computational and Communication Resource Issues: In
conventional Federated Learning FL, memory, communi-
cation, and computation costs are critical factors that
significantly impact performance. These challenges become
even more pronounced when integrating LLMs due to their
substantial size and complexity. One of the core principles
of FL is the frequent exchange of model updates between
clients and the central server [80], [81], [82]. When dealing
with LLMs, the volume of data that needs to be transmitted
and synchronized across multiple clients is immense. This
results in significant communication overhead, which can lead
to increased latency and reduced overall system performance.
The high communication cost can also be a barrier in scenarios
with limited bandwidth or unstable network connections.
Training LLMs is computationally intensive, requiring sub-
stantial processing power and energy consumption. In an
FL setting, this computational burden is distributed across
multiple clients, many of which may not have the necessary
computational resources to handle such demanding tasks. This
can lead to uneven training progress and suboptimal model
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performance, as some clients may struggle to keep up with
the computational demands. To address these resource chal-
lenges, several strategies can be employed. Techniques such
as pruning [83], [84], quantization [85], [86], and knowledge
distillation [87], [88] can be used to reduce the size of LLMs,
making them more manageable for FL environments. These
methods help in decreasing memory and computation require-
ments without significantly compromising model performance.
Instead of training LLMs from scratch, fine-tuning pre-trained
models [89], [90] on specific tasks can significantly reduce
the computational and communication costs. This approach
leverages the knowledge already embedded in the pre-trained
models, requiring fewer resources for adaptation to new tasks.

Synchronization and Coordination: In FL, clients indepen-
dently train their local models and periodically synchronize
with a central server. However, when dealing with LLMs,
the large number of parameters and the complexity of these
models exacerbate these issues. One of the primary challenges
is the timeliness of model updates. Due to the enormous size
of LLMs, clients need to transmit a vast amount of update data
to the central server after local training. This large-scale data
transmission not only increases communication overhead but
also leads to delays and potential staleness in updates. Stale
updates can slow down the convergence of the global model
and reduce its accuracy. To address this, efficient synchroniza-
tion mechanisms are required. One approach is synchronous
aggregation [91], where the server waits for updates from
all clients before performing a global update. However, this
can lead to increased latency, especially if some clients have
slower network connections or lower computational power.
On the other hand, asynchronous aggregation [92], [93], [94]
allows the server to update the global model as soon as
it receives updates from any client. While this can reduce
latency, it introduces the risk of incorporating stale updates,
which can degrade the model’s performance. To mitigate this,
techniques such as staleness-aware aggregation [95], [96] can
be employed, where the server assigns different weights to
updates based on their timeliness, giving more importance to
recent updates. Straggler clients [97], [98] are another issue
that needs to be addressed. These are slower clients that delay
the synchronization process. One approach to mitigate this is
to set a deadline for updates, after which the server proceeds
with the available updates, ignoring the stragglers. Another
approach is to use partial aggregation [99], [100], where the
server aggregates updates from a subset of clients, ensuring
that the synchronization process is not held up by a few slow
clients.

Heterogeneities: In FL, data is distributed across multiple
clients, each of which may possess vastly different data in
terms of quantity, quality, and distribution. The non-IID nature
of this data can lead to model divergence and suboptimal
performance when training LLMs, namely a phenomenon
known as data heterogeneity [101], [102]. Additionally, clients
in a federated setting can range from powerful servers to
resource-constrained edge devices, each with varying com-
putational power, memory capacity, and network conditions.
This variability can result in uneven training progress, as
some clients may struggle to meet the computational demands

of training LLMs, which referred to as system heterogene-
ity [103], [104]. To address these heterogeneities, techniques
such as personalized federated learning [105], [106], [107]
can be employed. Personalized federated learning aims to
create models tailored to the specific data distribution and
computational capabilities of each client, rather than relying
on a single global model that may not perform well for all
clients. Methods such as meta-learning [108] and multi-task
learning [109] can be explored to enable effective personal-
ization.

Privacy and Security Issues: LLMs need to deal with
various potential attacks and biases, such as adversarial
examples [110], [111], backdoor attacks [112], [113], poi-
soning attacks [114], [115], model stealing [116], [117], etc.
These challenges lead to issues concerning the robustness
and security of LLMs, which can impact their reliability and
trustworthiness. For instance, LLMs are susceptible to word
embedding poisoning due to noisy perturbations. Studies [118]
indicate that even modifying a single word embedding vector
enables an adversary to subtly manipulate the model, leading
to abnormal responses to specific trigger words. Furthermore,
the impact of word embedding poisoning attacks in federated
networks is substantial; even a small number of compromised
clients can significantly degrade the global model. In federated
LLM systems deployed over wireless networks, adversarial
jamming emerges as a practical threat, corrupting sensitive
word embeddings during transmission.

The challenges mentioned above is by no means a complete
list, as separate research on LLMs and FL has already
addressed a substantial number of issues [119], [120], [121],
[122]. However, this paper mainly focuses on the research that
integrates LLMs with FL more cohesively, and the works that
are biased towards only LLM or FL are out of our scope. This
paper will introduce and discuss these challenges in detail and
depth, and review the existing major relevant works.

IV. LLM PRE-TRAINING AND FINE-TUNING WITH FL:
STATE-OF-THE-ART

In this section, we conduct a comprehensive review
of the literature on LLM that utilize FL for pre-training
and fine-tuning, representing the state-of-the-art in this
field. Specifically, we survey the existing federated LLM
systems and organize our discussion around five key aspects:
framework & benchmark, data and model initialization,
federated LLM finetuning, personalized federated LLM, back-
propagation-free methods.

A. Framework & Benchmark

The pioneering effort in large-scale FL systems was made
by Google, where FL was employed to enhance next-word
prediction [123] and query suggestion [124] for Gboard appli-
cations. Following this, various innovative FL systems have
been developed to accommodate different FL scenarios, such
as TFF [125], FedLab [126], Felicitas [127], IBM FL [128],
Paddle-FL [129]. Recently, there has been notable advance-
ment in the creation of FL infrastructures and standards
specifically tailored for LLMs. These frameworks, usually
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Fig. 5. Basic components of FATE-LLM.

coupled with LLMs, provide a complete set of APIs that
facilitate various effective FL algorithms, encompassing most
or all aspects of the lifecycle of federated LLMs.

FedLLM [130], [131], FATE-LLM [132] and
FederatedScope-LLM (FS-LLM) [133] are three notable works
in the field of federated LLMs for enterprise level applications.
They incorporate parameter-efficient fine-tuning techniques
to enhance training efficiency and reduce communication
overhead. Additionally, these systems implement robust
privacy-preserving mechanisms to ensure the confidentiality
and integrity of data during both training and inference
phases. By facilitating cross-domain collaboration, these
frameworks allow diverse organizations to jointly optimize
model performance while addressing the challenges of limited
computational resources and data heterogeneity. FedML
presents FedLLM [130], which enables an MLOps-based
training pipeline to construct the enterprise’s own LLM
on private data. FedLLM can perform training in both
centralized and geo-distributed GPU clusters, as well as in a
FL fashion for data silos. For a particular siloed GPU cluster,
FedLLM utilizes existing open-source LLMs and well-known
frameworks for local training. Moreover, for efficient training,
FedLLM supports parameter-efficient training methods such
as LoRA.

FATE-LLM (Fig. 5), built upon FATE (Federated AI
Technology Enabler), aims to simplify FL for LLMs [132].
Specifically, FATE-LLM enables FL for both homogeneous
and heterogeneous LLMs; it also boosts the training efficiency
of Federated LLM by adopting parameter-efficient fine-tuning
methods, such as LoRA and P-Tuning-v2. Furthermore, FATE-
LLM protects the intellectual property of LLMs using a
federated protection approach and preserves data privacy
during training and inference by applying privacy-preserving
mechanisms. This holistic approach strives to optimize the
performance of LLMs while adhering to high standards of data
security and privacy.

FS-LLM [133] aims to represent an all-encompassing
toolkit designed for the federated refinement of LLMs. This
toolkit establishes a seamless benchmarking system from
start to finish, streamlining dataset preparation, the execution
or simulation of federated refinement, and the assessment
of performance in federated LLM refinement tailored for
various capability demonstrations. It offers a suite of ready-to-
deploy federated PEFT algorithms and adaptable interfaces for

programming, which pave the way for future enhancements
to LLM functionalities in FL environments, ensuring min-
imal communication and computational overhead, and even
enabling operation without full model access. Moreover, it
integrates a range of swift and economical operators for opti-
mizing LLMs under resource constraints, along with modular
sub-routines that support cross-disciplinary research (such as
personalized FL applications of LLMs).

OpenFedLLM [134] presents an innovative framework for
contemporary LLMs that promotes cooperative and secure
training on underutilized distributed private datasets. It utilizes
FL to collectively enhance a shared model while maintaining
the privacy of raw data. The framework is streamlined,
unified, and designed to be user-friendly. Additionally, it
integrates federated instruction tuning to refine LLMs’ ability
to follow instructions, federated value alignment to align
LLMs with human ethics, and includes 7 key FL algorithms.
OpenFedLLM also facilitates the training of LLMs across
multiple fields, encompassing 8 distinct training datasets,
and offers thorough evaluations with over 30 evaluation
metrics.

In addition, the academic community also has a variety
of benchmarks and implementations for federated LLMs.
FedIT [135] is recognized as a pioneering initiative that utilizes
FL for instruction tuning of LLMs. This research illustrates
that FedIT can address the constraints of traditional instruction
tuning by harnessing the varied sets of instructions from users
within the FL framework. This is particularly effective in a
cross-device FL environment with a client base numbering in
the billions. Additionally, it offers an in-depth analysis of the
diversity present in FL instruction tuning. Utilizing the GPT-4
auto-evaluation technique, the study validates the efficacy of
FedIT in enhancing the quality of responses through the use
of a broad spectrum of instructions.

Woisetschlager et al. [29] explore the present and future
capabilities of edge computing for FL with LLMs, by con-
trasting these systems with a data-center GPU. They show the
possibility for improvement and the next steps towards achiev-
ing higher computational efficiency at the edge. Specifically,
this study fine-tunes the FLAN-T5 model family, adopting
FL for a text summarization task. It provides a micro-level
hardware benchmark, compared the model FLOP utilization
to a state-of-the-art GPU used in a data center, and examined
the network utilization in realistic conditions.
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Zhao et al. [136] introduce a methodology that integrates
privacy-preserving technologies including FL, emulator-based
tuning with PEFT strategies and differential privacy (DP).
The paper details specialized parameter-efficient methods for
federated environments, designed to minimize communica-
tion costs while maintaining model efficacy. Additionally,
the implementation of DP safeguards against compromising
individual data privacy during statistical analysis.

There are also several other modalities of federated founda-
tion models training/fine-tuning works, such as Flower [137],
which supports fine-tuning of Whisper for the downstream
task of keyword spotting in a federated way. The experiments
also benchmark the new Raspberry Pi 5, with regard to not
only training times but also the time taken to pre-process the
dataset partitions. FedCLIP, as presented in [138], introduces
a lightweight adapter module for the CLIP. These streamlined
adapters are capable of harnessing the extensive knowledge
of pretrained models, thereby guaranteeing that the models
remain flexible and suitable for client-specific applications.
Gao et al. [139] conduct a study on the convergence of self-
supervised learning and FL, with an emphasis on speech
representation leveraging the wav2vec 2.0 framework [140].
The researchers provide a pioneering, systematic exploration
into the practicality involved in developing speech models
within FL contexts, examining the subject through the lenses
of algorithmic processes, hardware capabilities, and systemic
boundaries.

B. Data and Model Initialization

The processing of original data and the initial setup of
models are crucial factors influencing the efficacy of FL.
Among the current FL literature, neural networks are usually
initialized with random weights. However, in centralized
learning, it is common to use model initialization with
weights pre-trained on large-scale datasets, as this has been
proven [141], [142] to enhance accuracy, generalizability,
robustness, etc. Training from random weights is also more
challenging for LLMs. Some recent works have investigated
whether model pre-training is suitable for FL and the impact
of model initialization (whether random or pre-trained) on
the performance of federated optimization techniques. These
studies [143], [144] show that initiating from a pre-trained
LLM can notably diminish the disparity between Independent
and Identically Distributed (IID) and non-IID data settings
for clients. Furthermore, when using a pre-trained model as
the initial point, the number of local epochs per round can
be greatly decreased without degrading the final accuracy.
These results indicate that pre-training effectively closes the
gap between FL and centralized learning.

One of the challenges for LLM is how to group such
massive datasets. Dataset Grouper library [145] facilitates
the formation of extensive, group-structured datasets, such as
those used in federated settings for Large LLMs. Its three
primary benefits include its ability to manage single-group
datasets that exceed memory capacity, its adaptable approach
to choosing the foundational dataset and defining partitions,
and its framework-agnostic nature. The generation of synthetic

Fig. 6. Several typical fine-tuning methods, including full parameter fine-
tuning, P-tuning v2, and LoRA. The weights that require fine-tuning are
highlighted within the green boxes.

data using LLMs is another intriguing topic. It arises from the
challenges in obtaining specific public datasets and the lack of
clear guidelines for their acquisition. To address the scarcity
of public data, researchers have explored FL approaches
that leverage synthetic data. In these methods, a generative
model is fine-tuned through knowledge distillation (KD), and
synthetic data is generated by this model in a staggered
manner during the federated training cycles. However, these
methods have stability and security issues, which can be
effectively solved by LLMs due to their strong generative
performance. GPT-FL [146] utilizes generative pre-training
approaches to create a variety of synthetic datasets. Such
synthetic information is employed to enhance a server-based
downstream model, which undergoes further refinement using
confidential data from clients within the conventional FL struc-
ture. Experimental results indicate that GPT-FL outperforms
contemporary FL techniques in aspects such as accuracy of
model testing, efficiency of communication, and efficiency in
sampling across clients. Another typical work is proposed by
Wang et al. [147], which propose an in depth study into the
utilization of extensive public datasets and LLMs to enhance
the DP based training of mobile FL models. Their objective
is to strike a better balance between privacy and utility
by employing knowledge distillation methods. Additionally,
they introduce an innovative distribution matching technique,
backed by theoretical analysis, to select public data that closely
resembles the distribution of private data, thereby effectively
boosting the efficiency of training with public datasets.

C. Federated LLM Fine-Tuning

The process of federated fine-tuning LLMs focuses on
adapting a pre-trained LLM to achieve specific objectives. Due
to the considerable computational resources and data volume
requirements for pre-training LLMs, most of the federated
LLM work concentrates on enhancing the fine-tuning phase’s
effectiveness and efficiency. For instance, efforts are made
to reduce the communication and computational overhead of
federated LLM fine-tuning, tackle the challenges of non-IID
data and personalized requirements across various clients, and
support a broader range of downstream tasks.

1) Federated LLM With PEFT: As outlined in Section II-B,
PEFT is a technique to tailor LLMs to particular downstream
tasks. Several typical PEFT methods are shown in Fig. 6. The
methodology entails freezing the core architecture of LLMs
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while modifying a minimal number of extra parameters. The
objective of PEFT is to decrease the duration of training
and the expenses associated with communication, thereby
addressing a fundamental obstacle in FL. Here we only
introduce the typical PEFT-related works, and the works on
personalized FL based on PEFT will be described in detail in
the next subsection.

LP-FL [148] integrates few-shot prompt learning from
LLMs with efficient communication and federating techniques.
It empowers federated clients to assign soft labels to unla-
beled data, using the gradually updated knowledge from
the global model. By employing the LoRA technique, this
method enables the generation of concise learnable parameters
and promotes the federation of global models with minimal
overhead.

Malaviya et al. [149] demonstrate that the PEFT approach
is capable of diminishing communication overheads without
compromising the efficacy of the model in FL environments.
In a range of real-world applications, acquiring data specific to
the intended downstream task can prove challenging; however,
procuring data from analogous tasks is often more feasible.
The empirical evidence regarding the task-level applicability
of PEFT within FL frameworks indicate substantial zero-
shot learning capabilities of the model on the intended tasks,
provided that the source data is derived from a closely related
task.

FedTune [150] reveals that Transformers, once fine-tuned,
exhibit superior efficacy in FL scenarios. The study highlights
that a streamlined fine-tuning process not only accelerates
the convergence but also minimizes communication costs.
Delving into the specifics, the authors conducted an extensive
empirical analysis on three distinct tuning strategiesmodifying
inputs, integrating additional modules, and altering the core
architecture, which utilizing two categories of pre-trained
models, namely vision-language and vision models. The find-
ings underscore that the integration of pre-trained models
within FL significantly enhances accuracy of the model by
effectively addressing the problem of overfitting.

FedPETuning [151] investigates the potential of PEFT
methods in LLMs and establish a federated benchmark
for four key PEFT approaches. Specifically, it pioneers a
thorough empirical investigation into the tuning techniques
of prominent pretrained LMs within an FL framework,
encompassing aspects such as privacy threats, performance
metrics, and analysis under resource limitations. The extensive
experimental data corroborate that FedPETuning is adept at
safeguarding privacy while maintaining commendable model
performance, all the while reducing the demand for substantial
resources.

FedPrompt [152] examines the application of prompt tuning
through a model split aggregation approach within FL. It
reveals that this method markedly diminishes the communica-
tion overhead while only slightly impacting accuracy across
both IID and Non-IID data distributions. Additionally, the
study includes tests of backdoor attacks via data poisoning on
FedPrompt, with results showing a minimal success rate for
the attacks and an inability to implant a backdoor successfully,
thereby affirming FedPrompt’s resilience.

PROMPTFL [153] introduces a shift from traditional fed-
erated model training to federated prompt training. This
approach encourages participants in a federated network to
focus on training prompts rather than a communal model.
This strategy aims to harness the capabilities of LLMs for
efficient global aggregation and effective local training, even
with limited data. The key advantage of PROMPTFL lies in
its requirement to update only the prompts, not the entire
model, thus significantly speeding up both local training and
global aggregation processes. Moreover, an LLM that has been
trained on extensive datasets can offer robust adaptability for
diverse tasks of distributed users through the utilization of
trained soft prompts.

SplitLoRA [154] is a split FL LLM fine-tuning framework,
which is constructed upon the split FL paradigm, integrating
the benefits of parallel training from FL and model partitioning
from split learning. This integration significantly enhances
training efficiency by delegating the primary training workload
to a server through model partitioning. This approach involves
the exchange of activations and their gradients with smaller
data sizes, rather than transmitting the entire LLM. Notably,
SplitLoRA represents the first open-source benchmark for
SL LLM fine-tuning, establishing a foundational platform for
future research endeavors aimed at advancing split FL LLM
fine-tuning methodologies.

2) Fine-Tuning for Downstream Applications: LLMs must
undergo the fine-tuning process in order to perform better on
downstream tasks. This stage adjusts the pre-trained model’s
parameters using a dataset tailored to the task at hand. The
purpose of fine-tuning is to shift from the broad linguistic
comprehension acquired during pre-training to a focus on
the particular subtleties and demands of the task in question.
Some works have adopted FL to finetune the LLM for
downstream tasks, with the aim of addressing the privacy and
data sensitivity issues.

Riedel et al. [155] explore the application of FL for the
purpose of Multilingual Protest News Detection (a binary
classification task), utilizing news texts in English, Portuguese,
Spanish, and Hindi. The researchers engage fine-tuning pre-
trained multilingual BERT and DistilBERT models on the
multilingual data, leveraging their demonstrated success in
analogous NLP classification tasks within centralized learning
frameworks [156], [157]. Additionally, the study assesses the
performance of FL aggregation algorithms across different
data partitioning scenarios.

FedTherapist [158] is a mobile application designed for
mental health monitoring that leverages ongoing speech and
typing activity while ensuring privacy through FL. The authors
assess the efficiency and computational load of BERT and
GPT-3.5 to manage the intricacies associated with training
language models directly on mobile devices. Additionally, the
study presents a context-aware learning technique, which is
adept at harnessing the voluminous and varied text data from
smartphones for detecting mental health indicators.

FedJudge [159] combines FL and LLM to address the
data privacy issues raised by the centralized training of Legal
LLMs, as legal data is scattered across various institutions
with sensitive personal information. In particular, FedJudge
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employs parameter-efficient fine-tuning methods to update
only a few extra parameters during FL training. Moreover,
continual learning methods are also investigated to maintain
the global model’s crucial parameters when training local
clients to alleviate the problem of data shifts.

FedED [160] proposes a medical relation extraction model
that preserves the privacy of data sources, using FL as the
underlying framework. This is to tackle the challenge of han-
dling medical texts, which often contain sensitive information
that cannot be shared or copied across different domains. The
model is based on BERT models as the backbone, and enables
the training of a global model without exposing or transferring
any private local data. To address the communication bottle-
neck in FL, a knowledge distillation strategy is adopted that
leverages the predictions of local models aggregated to form
the global model, instead of sending local parameters.

Ahmed et al. [161] propose an active learning based news
article retrieval model in a semi-supervised learning scenario.
This model offers the benefits of low communication overhead,
high scalability, enhanced data privacy, and a temporal-aware
retrieval model. The framework employs lexicon expansion,
content segmentation, and temporal events to construct a
BERT attention embedding query that captures the temporal
dynamics of sequential news articles. To produce pseudo-
labels, the partially trained models with the original labeled
data are fused.

FedHumor [162] is an approach for personalized humor
recognition based on FL. Recognizing the subjective nature
of humor, this method seeks to tailor humor recognition to
individual preferences, a task that is notably challenging for
conventional models. By enhancing a pre-trained language
model, FedHumor fine-tunes its processes to reflect the varied
humor tastes of different users. Furthermore, it employs a
strategy that adapts to this diversity, aiming to cultivate a
humor recognition model that is personalized for each user
within the FL paradigm.

Efficient-FedRec [163] is an FL framework for news rec-
ommendation that preserves user privacy. This framework
strategically splits the model into a substantial news compo-
nent hosted on the server and a compact user model shared
between the server and client devices. Specifically, client
devices receive the user model and news details from the server
and return their individual gradient updates for collective
integration. Subsequently, the server refines its universal user
model utilizing these combined gradients.

FEWFEDWEIGHT [164] trains client models on isolated
devices without data sharing. The framework utilizes the
server’s global model to create pseudo data for each client,
facilitating knowledge transfer from the global model to
improve the client models’ few-shot learning capability. An
energy-based algorithm is implemented to filter out noise by
weighting the pseudo samples. Additionally, the client models’
weights are adjusted according to their performance, it then
dynamically consolidates the client models to refresh the
global model.

FedNLP [165] is a framework designed to assess FL
techniques across four prevalent NLP tasks, namely text
classification, sequence tagging, QA, and seq2seq generation.

This system offers a standardized platform that integrates
Transformer-based LLMs, such as BERT and BART, with
FL strategies, accommodating a range of non-identically
distributed data situations.

In summary, we list the federated LLM fine-tuning works
in the taxonomy Table II, summarizing the technical aspects
as the key informations and contributions of each reference
work.

D. Personalized Federated LLM

As outlined in Section III, FL encounters various types
of heterogeneity issues, which require adaptive and person-
alized solutions to overcome these challenges. In this paper,
the definition of personalized federated LLMs is inherited
from conventional personalized FL and extended to federated
LLMs. The goal is to address the various heterogeneity issues
that may arise during the pretraining and fine-tuning processes
of federated LLMs. Statistical (Data) Heterogeneity arises as
client data often exhibit non-IID characteristics. This can lead
to a scenario where a model trained on local data at a client site
may outperform a global FL model trained on heterogeneous
data. System Heterogeneity is evident as FL clients typically
operate on a wide array of hardware capabilities, includ-
ing differences in computational power, network bandwidth,
and storage capacities, as well as disparities in operating
systems, applications, and other software tools as noted by
Jiang et al. [166]. This variation allows clients with advanced
hardware to train more complex models, whereas those with
less capable systems are restricted to simpler models. Model
Heterogeneity is characterized by the fact that various entities
often maintain distinct, proprietary model collections. The
process of fine-tuning these models within the FL framework
can lead to reduced training durations while also safeguarding
proprietary knowledge, as discussed by Ye et al. [35]. Given
the diversity of models across organizations, it is crucial
to facilitate the training of personalized models that are
heterogeneous in nature. These challenges are not unique to
FL but are also prevalent in federated LLMs, subsequently we
will delve into the specific works addressing these challenges.

Fed-PepTAO [167] aims to enable efficient and effective FL
of LLMs. This work proposes a parameter-efficient prompt
tuning method with an efficient and effective method to
select appropriate layers of prompts for FL. Second, a new
adaptive optimization method is devised to tackle the client
drift problems on both the client and server sides to improve
the system performance further.

Profit [168] attempts to study the trade-off between per-
sonalization (adaptation to the clients’ local distributions) and
robustness (avoiding catastrophic forgetting) over different FL
training algorithms and different data heterogeneity levels.
The study finds that in federated LLM prompt tuning, the
choice of adaptive optimizer, learning rate, regularization and
other parameters is crucial for achieving the personalization
vs robustness trade-off.

FedDAT [169] is a fine-tuning framework tailored for
heterogeneous multi-modal FL. It employs a Dual-Adapter
Teacher (DAT) to address data heterogeneity by regularizing
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the local updates of the client and applying Mutual Knowledge
Distillation (MKD) for efficient knowledge transfer. The
experiment results indicate that the approach attains a superior
convergence rate and scalability compared to existing PEFT
methods.

FedRA [170] tackles the issue of diverse client capabilities
in computational and communication aspects within FL. It
operates by generating a random allocation matrix in each
communication cycle. For clients with constrained resources,
FedRA adapts a subset of the model’s layers according to
this matrix and refines them through LoRA. The server
then gathers the refined LoRA parameters, aligns them with
the existing allocation matrix, and assimilates them into the
designated layers of the basic model.

FedLoRA [171] aims to address the issues of statistical,
system, and model heterogeneity in LLM PEFT. It works by
incorporating a small and consistent adapter into each client’s
heterogeneous local model. These models are trained using an
iterative procedure that facilitates the transfer of global and
local knowledge. The FL server then aggregates these small
and uniform local adapters into a global one. This technique

allows FL clients to leverage diverse local models with reduced
computational and communication costs.

pFedPG [172] is designed to harness the strong represen-
tational power of LLMs to enable efficient personalization
for clients with varying capabilities. It achieves this through
a dual-stage optimization process that involves adapting per-
sonalized prompts at the local level and generating them at
the global level. A specialized prompt generator at the server
side plays a pivotal role in this process, utilizing personalized
optimization trajectories to produce unique prompts tailored
for each client’s model. This approach ensures that each
client’s model is updated effectively, taking into account the
specific needs and constraints of the client’s environment.

Heterogeneous-LoRA [173] explores the performance trade-
off of federated fine-tuning with higher and lower LoRA
ranks. It deploys heterogeneous ranks across clients, aggre-
gates the heterogeneous LoRA modules via zero-padding,
and redistributes the LoRA modules heterogeneously through
truncation. By combining the benefits of high-rank and low-
rank LoRAs, it achieves an optimal balance, demonstrating a
simple yet effective approach.
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AdaFL [165] addresses the critical issue of determining
the ideal depth and breadth for fine-tuning adapters, which
significantly influences the speed and efficiency of training.
The optimal configuration is contingent upon the specific
downstream NLP tasks, the desired accuracy of the model,
and the available mobile resources. AdaFL employs a gradual
approach to modify the adapter configuration throughout
a training session. Initially, it focuses on rapidly learning
shallow knowledge by training a limited number of smaller
adapters in the upper layers of the model. Subsequently, it
incorporates progressively larger and deeper adapters to grasp
more complex knowledge. Additionally, AdaFL continuously
evaluates various adapter configurations by designating partic-
ipant devices to different experimental groups.

PERADA [174] is an effective personalized FL framework
that minimizes communication and computational costs while
improving generalization performance, especially under test-
time distribution shifts. It enhances generalization by aligning
each client’s personalized adapter with a global one. The
global adapter in turn employs knowledge distillation to
aggregate generalized information from all clients. The validity
of this approach is supported by both theoretical and empirical
evidences.

Besides addressing the heterogeneity and personalization
issues of federated LLM with PEFT, decomposing a substan-
tial LLM into multiple sub-models is an uncomplicated yet
promising strategy for implementing practical federated LLM.
FedBERT [175] employs the concepts of federated and split
learning to pre-train BERT in a distributed fashion. After the
global model’s pre-training phase, each client has the ability to
independently fine-tune their model for local NLP tasks. This
method is inclusive, supporting all participants, regardless of
their computational power or data volume, to partake in the
pre-training process.

FEDBFPT [176] is a framework that trains selected layers
of BERT in an efficient way, which lowers the computational
and communication costs. It allows the training of a large
global model using FL by creating small local models for each
client. These local models train specific layers of the global
model, which leads to less computational resource consump-
tion and fewer weights to send. The efficiency of FEDBFPT is
supported by theoretical analysis and experiments on corpora
from various domains.

FEDOBD [177] is a novel framework that splits large-
scale deep models into semantic blocks, and assesses block
importance (rather than individual parameter importance) and
selectively eliminates unimportant blocks to achieve more
significant reduction of communication cost while maintaining
model performance. Comprehensive experimental evaluation
shows that FEDOBD surpasses state-of-the-art baselines in
terms of communication cost and test accuracy.

FedPerfix [178] attempts to investigate the partial personal-
ization of large-scale models. It conducts empirical evaluations
to determine how sensitive different layers are to data dis-
tribution. The findings suggest that the self-attention layer
and the classification head in a Vision Transformer (ViT)
are particularly sensitive. To address this, FedPerfix employs

plugins as a means to personalize the model by transferring
information from the aggregated model to individual clients.

In addition, there are also a number of works that
address the heterogeneity and personalization issues of
federated LLM by using techniques such as model com-
pression [179], [180] and knowledge distillation [181], [182].
For instance, RaFFM [183] introduces specialized model
compression algorithms tailored for FL scenarios, such as
salient parameter prioritization and high-performance subnet-
work extraction. These algorithms enable dynamic scaling of
given transformer-based FMs to fit heterogeneous resource
constraints at the network edge during both FL’s optimization
and deployment stages. Fed-ET [184] is a method that utilizes
ensemble knowledge transfer within a FL framework. It
involves training smaller models with varied architectures on
client devices and then using these models to inform the
training of a larger, more comprehensive model on a central
server. This approach is distinct from traditional ensemble
learning because it leverages the heterogeneous data from
various clients. Fed-ET incorporates a weighted consensus dis-
tillation strategy along with diversity regularization to ensure
that the consensus derived from the ensemble is reliable and
to improve the model’s generalization capabilities by making
use of diverse data sets. However, these methods have many
applications of general personalized FL [135], [185], [186],
but few works have adopted these methods in federated LLM
so far. In the taxonomy Tab. II, the personalized federated
LLM works are cataloged, summarizing the technical aspects,
key information, and contributions of each cited study.

E. Back-Propagation-Free Methods

Due to the huge amount of parameters and data, the
high computational cost and memory overhead of LLM
training and fine-tuning are often unacceptable, even with
methods such as compression, quantization, and knowl-
edge distillation. To tackle this issue, several studies have
explored backpropagation-free techniques for training and
fine-tuning federated large language models. These approaches
enhance LLMs without the dependency on backpropagation.
The BP-free propagation algorithm obviates the necessity to
store activation values during computation, thereby mitigating
the substantial memory overhead typically associated with
backpropagation. For instance, inference-only methods like
zeroth-order optimization can reduce memory usage by up
to 12.5 times compared to BP-based methods [187]. Despite
the promise shown by BP-free training methods in optimizing
LLMs, they are still in the early stages of development. A
significant challenge lies in the scalability of these methods
to high-dimensional models, as they exhibit greater sensi-
tivity to dimensionality and reduced robustness compared to
BP-based methods [188]. Various optimizations have been
proposed to address these challenges, including tuning the
low intrinsic dimension of LLMs [189]. The potential impacts
of backpropagation-free methods are significant. Firstly, they
can drastically reduce the computational cost and memory
requirements associated with training large-scale models. This
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makes it feasible to train and fine-tune models on resource-
constrained devices. Secondly, these methods can enhance
the robustness and generalization capabilities of models by
introducing diverse optimization strategies that are less prone
to overfitting.

FwdLLM [190] is a pioneering study that integrates
backpropagation-free (BP-free) training, specifically zeroth-
order optimization, with methods that are efficient in terms
of the amount of updated parameters. This combination is
essential for scaling up to the era of LLMs. The BP-free
approach is particularly compatible with PEFT techniques,
which require only a minimal number of parameters to be
fine-tuned. Furthermore, FwdLLM is designed to distribute
computational tasks across devices in a systematic and adap-
tive manner, striking an optimal balance between the speed
of convergence and the accuracy of the model. Consequently,
FwdLLM facilitates federated training of LLMs with billions
of parameters on standard mobile devices.

ZOOPFL [191] aims to investigate the impact of LLMs
on FL performance and efficiency. The researchers conducted
a series of experiments on four typical NLP tasks using
different LLMs and FL methods. It was found that LLMs
can significantly improve the accuracy and generalizability
of FL models, but also introduce high computational cost
and communication overhead. The results suggest that LLMs
should be carefully selected and adapted for FL scenarios,
and that novel techniques such as compression, quantization,
and distillation should be applied to reduce the resource
consumption.

FEDBPT [192] aims to address the challenges of applying
FL to fine-tune LLMs, such as restricted model parameter

access, high computational requirements, and communication
overheads. The framework does not require clients to access
the model parameters. Rather, it trains optimal prompts using
gradient-free optimization methods, which reduces the number
of variables to be communicated, enhances communication
efficiency, and minimizes computational and storage costs.

FedKSeed [193] is a zeroth-order optimization-based FL
method for LLM, which enables full-parameter tuning of
billion-parameter LLMs on federated devices with extremely
low communication cost. It communicates only K seeds and
their corresponding scalar gradients between the server and the
clients. Moreover, it investigates the differentiated importance
of perturbations in ZOO, and proposes a simple and effective
strategy that samples seeds with non-uniform probabilities,
which reduces the number of required seeds.

F. Limitations and Lessons Learned

The preceding section has provided a comprehensive
overview of the state-of-the-art in LLM pre-training and fine-
tuning with FL. In this subsection, we discuss the limitations
of current methodologies and the lessons learned from recent
advancements in this field.

The diverse range of frameworks examined underscores
the ongoing need for innovation in FL systems. Each frame-
work provides distinct solutions to the challenges of privacy,
efficiency, and scalability. The evolution of frameworks like
FedLLM, FATE-LLM, and FS-LLM highlights the critical
importance of infrastructure development that not only sup-
ports but also enhances the capabilities of LLMs within
federated environments. Currently, most research is centered
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around fine-tuning LLMs using FL or combining it with
PEFT to achieve personalized FL. However, studies on pre-
training LLMs with FL remain scarce due to the significant
computational and communication costs involved. In an era
of diminishing data availability, federated LLM pre-training
presents a promising and practical approach, as it allows the
incorporation of private domain data while safeguarding data
privacy.

Furthermore, the establishment of benchmarks such
as FedIT and the utilization of evaluation metrics in
OpenFedLLM underscore the necessity for standardized test-
ing environments. These benchmarks are crucial for accurately
assessing the performance of federated LLM systems and
ensuring that advancements are both meaningful and mea-
surable. In the future, there will be a need for larger-scale
and more standardized benchmarks to further enhance the
evaluation process.

Additionally, to reduce the resource overhead of federated
LLMs, PEFT and back-propagation-free methods have been
explored. PEFT-based approaches, such as FedPETuning and
FedTune, offer a promising path to reducing computational
costs and enabling training on devices with limited resources,
thereby broadening the accessibility of LLMs. The explo-
ration of back-propagation-free methods like FwdLLM and
FedKSeed introduces a paradigm shift in the training of LLMs.
These methods can be combined with existing techniques
such as model quantization, pruning, and knowledge distil-
lation to further reduce resource overhead. Additionally, the
heterogeneity present in FL environments poses a significant
challenge. Solutions like Fed-PepTAO, Profit, and FedDAT,
which integrate with LLM PEFT methods, showcase the
potential of personalized approaches to address the hetero-
geneity in data, systems, and models.

V. FEDERATED LLM PRIVACY AND ROBUSTNESS:
STATE-OF-THE-ART

One of the crucial aspects in the research of FL and
LLM is how to ensure both privacy and robustness. FL
aims to address the privacy issues in ML training, and both
FL and LLM inherently face their distinct challenges to
privacy and robustness. The interaction between LLMs and FL
systems may exacerbate the potential vulnerabilities in these
systems, resulting in new challenges. In this section, we will
first present the privacy leakage and security problems that
Federated LLM may encounter, and then we will summarize
the defense methods against these issues.

A. Federated LLM Privacy

FL is a training approach for models that prioritizes privacy,
eliminating the need for data exchange and allowing members
to freely join or leave the network. Nonetheless, recent
inquiries indicate that FL might not be completely reliable
in protecting privacy. Analyzing from the FL standpoint, the
current protocols of FL exhibit susceptibilities in two distinct
areas. Initially, a hostile server could aim to retrieve confiden-
tial data from individual contributions incrementally, sway the
training operations, or alter the collective understanding of the

global model weights. Secondly, a participant with adversarial
intentions might infer confidential data about other members,
and disrupt the aggregation process of the global model
weights. Specifically, the act of sharing gradients during train-
ing can inadvertently reveal private data, potentially resulting
in significant privacy leakage [194], [195], which may affect
not just external entities but also the central server managing
the process [196], [197]. It has been noted that even a minimal
subset of gradients can unveil extensive details about the local
dataset [198]. Furthermore, recent works also have shown
that an adversary could, through gradient observations alone,
reconstruct the original training dataset [195], [199]. On the
other hand, LLMs like GPT-3 carry potential privacy risks due
to their design to assimilate and generate text from extensive,
varied datasets. These models might inadvertently encode and
disclose confidential details found within their training data,
leading to privacy issues in text creation process. Challenges
including unintended data memorization and information leak-
age are critical [200]. Thus, it is crucial to strike a tradeoff
between the inference performance of these advanced LMs and
the capabilities to protect user privacy, to ensure their reliable
and ethical deployment across different sectors. We propose
a basic taxonomy that facilitates the comprehension of the
various types of privacy attacks, categorized by the attacker’s
objectives.

1) Training Data Recovery Attacks: Training data recovery
attacks, also referred to as reconstruction attacks, target the
retrieval of a client’s LLM training data within a practical
FL environment. These attacks are predominantly gradient-
based, exploiting the data transmitted between clients and the
federated server. Deep learning typically utilizes optimization
algorithms reliant on gradients, and federated participating
clients transmit their gradients to the federated server each
round, adhering to a federated Stochastic Gradient Descent
(SGD)-based training protocol. Attackers with access to these
gradients, or the ability to deduce gradient information, may
be able to reconstruct the confidential training data. It has
been demonstrated by several studies [201], [202], [203], [204]
that gradients from deep learning models can be exploited
to reconstruct original private training data within an FL
framework. These techniques are primarily effective with
image data, and there is limited research on gradient leakage
for LLMs, particularly in a federated context. TAG [205]
is designed to address and resolve the gradient attack issue
on Transformer-based LMs, aiming to recover local training
data. TAG introduces a quantitative evaluation approach for
the NLP gradient attack challenge, utilizing metrics such
as Recovery Rate, ROUGE-1, ROUGE-2, ROUGE-L, and
runtime to measure the attack algorithm’s success. According
to these metrics, TAG has achieved a Recovery Rate that
is 1.5 times higher and a ROUGE-2 score that is 2.5 times
greater than previous methods. Tests conducted on models like
Transformer, TinyBERT4, TinyBERT6, BERTBASE , and
BERTLARGE using the GLUE benchmark have confirmed
TAG’s effectiveness.

LAMP [206] leverages language model priors to retrieve
private text from gradients. The fundamental concept behind
this type of attack is to integrate the predictive capabilities of a
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language model with a search strategy that oscillates between
continuous and discrete optimization phases. In particular, it
produces a list of candidate sentences by applying different
transformations on the token sequence (e.g., moving a token)
and selects a candidate that minimizes the joint reconstruction
loss and perplexity, which reflects the likelihood of the
text in a natural distribution. The experiments are based on
BERTLARGE and GPT-2 and the experiment results illustrate
the effectiveness of this method in extracting text from state-
of-the-art transformer models on several common datasets,
achieving up to 5 times more bigrams than previous work.

FILM [207] is the first method to demonstrate the possibility
of recovering text from large batch sizes of up to 128 sen-
tences. Unlike image-recovery methods that are designed to
match gradients, it adopts a different approach that first
extracts a set of words from gradients and then directly
reconstructs sentences based on beam search and a prior-based
reordering strategy. Three defense methods: gradient pruning,
DPSGD, and a simple approach to freeze word embeddings
are evaluated. Both gradient pruning and DPSGD result in
a significant loss of utility. However, when fine-tuning a
public pre-trained LM on private text without updating word
embeddings, it can successfully defend the attack with minimal
data utility loss.

The DECEPTICONS [208] framework introduces a novel
attack strategy that compromises user privacy by transmitting
harmful parameter vectors. This method is effective even
with mini-batches, multiple users, and extended sequences.
It uniquely leverages the Transformer architecture and token
embeddings to separately recover tokens and positional
embeddings, resulting in high-quality text reconstruction. This
approach underscores the significance of the malicious server
threat model, emphasizing the vulnerability of text applications
using Transformer models to privacy breaches. The experi-
ments demonstrate the feasibility of recovering all tokens and
most of their absolute positions, even in large sequences and
with models that are only 10% the size of BERT.

FLAT-CHAT [209] is a novel and efficient gradient flatten-
ing attack method. It is inspired by the sparsity property of
gradients from the last linear layer, and applies a matrix flat-
tening operation on the gradient matrix. The method is based
on a theory that the flattened gradient vector elements follow a
two-cluster Gaussian Mixture Model and three observations on
the statistical properties of the distribution. To reduce the risk,
two defense methods are evaluated, gradient freezing [207]
and Differentially Private Stochastic Gradient Descent [210],
against the attack. The former method is a robust defense
method but it compromises the models’ performance. The
latter can mitigate our attacks while achieving improved model
performance.

2) Membership Inference Attacks: Membership Inference
Attacks (MIAs) are designed to ascertain whether a particular
dataset was utilized during the training of a model, based
on the client’s model and some data. In an FL framework,
both active and passive MIAs can be conducted [194], [211].
Passive MIAs entail monitoring the model’s updated parame-
ters and deducing information without interrupting the learning
process. On the other hand, active MIAs involve tampering

with the FL training protocol, constituting a more aggressive
form of assault on the other participants. Regarding LMs,
MIAs are primarily focused on text generation and subsequent
text classification tasks [212], [213]. While LMs are generally
resistant to basic probing techniques [214], they are still
vulnerable to privacy threats from MIAs specifically crafted
for LMs. A common technique in Membership Inference
Attacks (MIA) is known as the threshold attack. This method
is particularly relevant for word embedding models, which
are susceptible to privacy breaches [215], [216]. It works
by transforming text data into vector embeddings and then
calculating a similarity score between these vector pairs. If
the average similarity score exceeds a predefined threshold,
the data is considered to have been part of the training set.
The study by Song and Raghunathan [217] examined the
vulnerability of three prominent word embedding models,
namely Word2Vec [218], FastText [219], and GloVe [220],
and all of which were trained using the Wikipedia corpus by
Mahoney [221]. Additionally, they scrutinized a dual-encoder
framework for sentence embeddings [222], which was trained
on the BookCorpus dataset. The findings highlighted that
these models, often considered merely as beneficial tools for
model training, could also pose risks of privacy breaches.
Other works [223], [224], [225] also employ a similar idea to
use some form of reference model to compute the threshold
test statistic. Another one of the methods for MIA relies on
the shadow model technique, which typically builds several
“shadow” models that emulate the target model, given a known
training dataset and its membership labels. The attack model
is trained using labeled data, distinguishing between member’
(part of the training set) and non-member’ (not part of the
training set), along with the inputs and outputs from shadow
models. Song and Shmatikov [226] pioneered the study of
membership inference in natural language text generation,
followed by Meeus et al. [227], Carlini et al. [228], and
Abascal et al. [229]. Moreover, several defense mechanisms
against MIAs, including information perturbation, have been
suggested to shield natural language models at various phases
of the target model’s development. However, the these attack
models mainly concentrated on LMs and only a few on LLMs,
and there is hardly any work that discusses the integration
of FL and LLMs. It is imperative to conduct comprehensive
research and scrutiny to ascertain the effects of the attack
methods on federated LLMs and to identify viable counter-
measures.

3) Property Inference Attacks: Property inference attacks
are another potential privacy threat for LLMs, although they
have received less attention than membership inference and
training data extraction attacks. Attribute inference attacks in
the context of FL are designed to deduce specific character-
istics of a client or the collective attributes of participants
that are not directly related to the primary function of the
machine learning model. The objective is to uncover personal
or demographic details that are intended to remain confiden-
tial. For instance, these attacks might aim to infer sensitive
information such as an individual’s name, contact number,
residential address, or private financial and medical records.
Therefore, attribute leakage has also been a serious problem
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Fig. 7. FL without DP and with different DP mechanisms.

to be solved in LLMs. Staab et al. [230] conducted a com-
prehensive research on the attack risks. It leverages publicly
available content authored by individuals, like messages on
digital social platforms. This information is incorporated into a
structured prompt that instructs an LLM to deduce the personal
characteristics of the post’s author. Utilizing the data from
user profiles, which include details such as age, educational
background, gender, profession, and geographical location,
GPT-4 was able to correctly identify these attributes with a
Top-1 accuracy rate of 84.6%.

B. Defence Methods Against Federated LLM Privacy Attacks

Privacy preservation methods have been thoroughly investi-
gated in the machine learning field, but it becomes even more
complex in FL settings, where factors such as intermittent
power and network availability, and heterogeneous data distri-
butions, affect the learning process. In this section, we review
some of the mainstream techniques for preserving privacy,
such as differential privacy (DP), homomorphic encryption
(HE), and secure multi-party computation (SMPC), and how
they can be integrated in federated LLM scenarios.

1) Differential Privacy: DP is a technique that was initially
developed for the single database setting, where a database
server responds to each query with a randomized answer that
preserves privacy [231]. Unlike encryption-based methods,
DP achieves a balance between privacy-preserving and model
accuracy by adding noise to the data in a manner that
prevents an adversary from reconstructing the original data and
maintains a high level of utility. It ensures that any output from
a differentially private algorithm is nearly the same, whether
or not an individual’s data is included in the dataset. Formally,
a randomized algorithm M : D → R satisfies ε-differential
privacy if for any two adjacent datasets x , y ∈ D that differ
by only one record, and any subset of outputs S ⊆ R, the
following inequality holds:

Pr[M (x ) ∈ S ] ≤ eε Pr[M (y) ∈ S ] (5)

This indicates that the likelihood of a specific result being
produced by the algorithm is limited by a factor of eε, which
is independent of whether any single entry is included in
the dataset or not. The parameter ε controls the degree of
privacy: lower values of ε correspond to more robust privacy
safeguards, albeit with the trade-off of increased distortion in
the final result.

There are mainly two types of DP in FL scenarios, namely
Global Differential Privacy (GDP) and Local Differential
Privacy (LDP). GDP [232], [233], [234], [235], [236] has
an advantage of preserving privacy with a limited cost to
model performance, as it adds limited noise to the aggregated
data, ensuring a good statistical distribution. On the other
hand, LDP [237], [238], [239], [240], [241] methods offer
a stronger privacy guarantee than GDP-based FL methods,
as individuals can apply noise to their sensitive data locally
to meet DP standards prior to sharing it with a potentially
untrustworthy data collector. Moreover, a variety of LM
works adopt DP to protect privacy against training data
recovery attacks, membership inference attacks, and property
inference attacks, which include data perturbation and output
perturbation [242]. By using the stochastic gradient descent
optimization algorithm [243], models with DP can reduce
the empirical privacy leakage while maintaining comparable
model utility in the non-DP setting. Fig. 7 shows the different
DP mechanisms. In addition, a few studies have also explored
the integration of LLM and FL using DP for preserving
privacy.

Basu et al. [244] investigate the impact of applying DP in FL
scenarios on training contextualized language models (BERT,
ALBERT, RoBERTa and DistilBERT). They benchmark the
effect of privacy mechanisms such as DP on the performance
of the federated BERT-based models. The experiments with
different privacy budgets show how the privacy budgets
influence the utility of models trained on Tweets related
to depression and sexual harassment. The authors provide
guidance on how to train NLP models privately and what
architectures and setups yield more favorable privacy-utility
trade-offs.

Basu et al. [245] propose a financial text classification
system that preserves privacy, using transformers (BERT and
RoBERTa) with differential privacy, in both centralized and
FL scenarios, testing different privacy budgets to examine
the privacy-utility trade-off and their performance in clas-
sifying financial document-based text sequences. For the
federated scenarios, both IID and non-IID data distributions
are explored.

DP-LoRA [246] is a novel FL algorithm designed for
LLMs. It employs a Gaussian mechanism to add noise in
weight updates, which preserves individual data privacy and
enables collaborative model training. Furthermore, DP-LoRA
reduces communication costs by using low-rank adaptation,
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which minimizes the amount of updated weights transmitted
during distributed training. The experiments on various LLMs
across medical, financial, and general datasets show that DP-
LoRA can effectively satisfy strict privacy requirements while
reducing communication overhead. The method ensures data
privacy in LLM fine-tuning through feasible FL approaches,
which allow multiple parties to securely improve LLMs.

2) Homomorphic Encryption: Homomorphic encryption
(HE) allows for computations to be performed on encrypted
data, maintaining the homomorphic trait, which means the
outcome, once decrypted, matches the result of operations con-
ducted on the original, unencrypted data. The homomorphic
properties are mathematically defined as follows:

Epk (m1 +m2) = c1 ⊕ c2, (6)

Epk (a ·m2) = a ⊗ c2, (7)

where a is a constant, m1, m2 denote the original messages
that require encryption, and c1, c2 refer to the resultant
encrypted messages corresponding to m1 and m2, respec-
tively. Homomorphic encryption can be categorized into partial
homomorphic encryption (PHE), somewhat homomorphic
encryption (SHE), and fully homomorphic encryption (FHE)
based on the type and number of ciphertext operations that
they support. PHE only supports one kind of ciphertext homo-
morphic operation, such as additive homomorphic encryption
(AHE) or multiplicative homomorphic encryption (MHE),
exemplified by Paillier [247] and ElGamal [248], respectively.
SHE extends this capability to support an unlimited number
of additions and at least one multiplication in the encrypted
domain, and it can evolve into an FHE system through
bootstrapping. FHE, which adheres to Gentry’s framework,
is capable of executing an indefinite sequence of both addi-
tions and multiplications on ciphertexts. HE is extensively
utilized, especially for enhancing the security of learning
processes by allowing computations on encrypted data, thus
safeguarding against privacy breaches in FL involving LLMs.
Nonetheless, the computational operations on encrypted data
introduce significant overheads in terms of memory usage and
processing time, necessitating a balance between security and
performance in HE-based systems.

3) Secure Multi-Party Computation: The concept of Secure
Multi-Party Computation (SMPC) emerged from the million-
aire’s dilemma as outlined in [249]. SMPC’s objective is
to facilitate collaborative computation of a function among
multiple data proprietors who lack mutual trust, all while
maintaining the confidentiality of their respective datasets.
The foundational mechanisms that facilitate the SMPC frame-
work include Garbled Circuit (GC) [250], Oblivious Transfer
(OT) [251], and Secret Sharing (SS) [252]. However, these
techniques have drawbacks and often need to be combined
with other techniques to build efficient SFL algorithms.
Generally, SMC methods are known for their high privacy
and accuracy levels. However, they incur high computation
and communication costs, which may discourage participation.
Another major challenge for SMPC-based schemes is the need
for all participants to coordinate synchronously throughout the
LLM training process. This multiparty interaction model may

not be suitable for practical scenarios, especially under the typ-
ical participant-server architecture in FL settings. Moreover,
SMC-based protocols can enable a group of participants to
jointly perform calculations on a shared function without
disclosing individual inputs, except for inferences made from
the output [253]. However, SMPC is not entirely foolproof
against data leakage, which calls for the integration of DP
mechanisms into the collective protocol to mitigate such
vulnerabilities [254], [255]. Despite these challenges, SMPC
remains a promising strategy for protecting privacy in FL
involving LLMs.

C. Federated LLM Robustness

Robustness is the ability of the LLM to produce the
desired content accurately, even under various types of attacks.
Unlike privacy attacks that aim at data confidentiality, these
attacks on robustness are not interested in data access, but in
manipulating the model’s output to mislead users and achieve
the attackers’ malicious goals. In this section, we discuss the
robustness issues faced by federated LLMs under three typical
attack methods, namely Byzantine attacks, poisoning attacks,
and prompt attacks.

1) Byzantine Attacks and Defences: Adversarial attacks
for robustness can be classified into two main categories,
depending on the attacker’s objective, namely untargeted
attacks [256], [257], [258] and targeted attacks [112], [259],
[260], [261], [262]. Byzantine attacks [263], [264], [265],
[266] are usually defined as untargeted attacks that send
maliciously crafted gradients to the model aggregator, aiming
to degrade the performance of the global model or compromise
its integrity. In this scenario, the server cannot verify the
trustworthiness of the clients. Byzantine problems often arise
during the client update phase. Certain clients might be vulner-
able to external attacks or internal errors. Such compromised
clients are capable of sending tainted updates to the server. If
these malicious updates are inadvertently merged by the server,
it could derail the entire federated optimization workflow. The
concept of a Byzantine attack is formally described as follows:

Δwi =

{ ∗ if ith participant is Byzantine
∇Fi (wi ) otherwise,

(8)

where “*” represents any values, Δwi denotes the gradient
update, and Fi represents the local model objective function
of participant i. The impact of the Byzantine attacks on
distributed learning can be described as follows:

w = w − Λ
(
Δw1,Δw2, . . . ,Δwp

)
. (9)

Byzantine Detection and Robust Aggregation are
two prevalent strategies to counteract Byzantine attacks
within FL. The primary goal of robust aggregation
approaches [267], [268], [269] is to minimize the influence
of Byzantine clients on the collective model update process.
These methods presuppose that the corrupted updates are
geometrically distant from the legitimate ones. Consequently,
the focus is on developing an aggregation rule robust enough
to mitigate the impact of these attacks. For instance, in
distributed learning environments, algorithms like Krum [270]
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and Bulyan [271] select local updates closest in Euclidean
distance to the majority and use them for the global model
update. Nonetheless, these robust aggregation methods often
experience a decline in performance when a significant
number of clients are compromised or when the client
data is highly Non-IID. This necessitates further exploration
and enhancement of robust aggregation techniques. In
contrast, Byzantine detection methods are designed to
pinpoint and eliminate harmful local updates, thereby
preventing compromised clients from impairing the FL
system [272], [273], [274]. These detection-based methods
tend to offer greater resilience than their aggregation-
focused counterparts. However, these approaches require extra
computational resources and data demand on the server and
client side. As a common problem in FL security related
work, it is rarely discussed in more complex and unpredictable
federated LLM scenarios, which makes it an open problem
that calls for further studies on federated LLM robustness.

2) Poisoning Attacks and Defences: Poisoning attacks rep-
resent a common form of targeted disruption in FL. These
attacks are twofold: data poisoning, which occurs during the
collection of local data, and model poisoning, which takes
place throughout the local model training phase. Specifically,
model poisoning encompasses data poisoning within FL envi-
ronments, as it modifies a portion of the updates transmitted
to the model during any iteration. Conventionally, poisoning
attacks on mainstream ML models are designed to deceive
the model by tampering with the training data, often tar-
geting classification models. For instance, attackers might
contaminate a spam filter by incorporating “good” words into
the training dataset [275], [276], or they might compromise
network intrusion detection systems [277]. Recent studies have
revealed that LLMs are particularly susceptible to poisoning,
largely because their training data is predominantly sourced
from the Interneta platform where content can be freely posted,
thus exposing it to potential poisoning. Research has demon-
strated the feasibility of poisoning expansive datasets such
as LAION-400M [278], COYO-700M [279], and Wikipedia
by domain purchases or crowdsourcing efforts [280]. It has
been shown that contaminating a mere 0.1% of unlabeled
data in semi-supervised learning can cause the model to
incorrectly classify any given example during testing [281].
Moreover, even a slight 0.01% dataset contamination can cause
models like CLIP to misclassify test images [281]. Backdoor
attacks, a subset or variation of poisoning attacks, threaten
the integrity of a model by embedding harmful functions
within it using poisoned samples. These attacks can trigger
inappropriate model behavior in response to specific inputs
while maintaining normal function otherwise [282]. While data
poisoning poses a challenge for LLMs due to the vast volume
and stringent management of training data, alternative back-
door attack methods remain a viable threat. These methods
introduce malicious logic into the model by altering inputs
during testing, potentially leading to targeted misclassification
when LLMs execute certain tasks [283], [284].

A few studies have pioneered the exploration of
poisoning attacks in the scenario of federated LLM.
FedMLSecurity [285] is an FL security module of FedML,

which consists of two main components: FedMLAttacker and
FedMLDefender. It allows for the evaluation of various attack
methods in FL, such as Byzantine attacks, and label flipping
backdoor attack, and defense mechanisms such as Krum (and
m-Krum) and geometric median. Furthermore, FedMLSecurity
supports a broad spectrum of ML models, including basic
ResNet and GAN and shows the versatility of FedMLSecurity
for LLMs and real-world applications through experiments.

Li et al. [286] introduce a new backdoor attack strategy
for HFL, named Fed-EBD, that eliminates the need for
compromising any client or sustaining long-term involvement
in the FL process. This strategy implants and disseminates the
backdoor via a synthetic public dataset created by a foundation
model, which could elude existing backdoor countermeasures
in FL by simulating normal client behaviors. Furthermore,
Li et al. [287] assess the robustness of FL integrating LLMs
by measuring their susceptibility to backdoor attacks. Based
on this, they devise an attack that does not demand the attacker
to fully subvert any client or persistently partake in the long-
term FL process. It is efficacious in realistic FL settings, as
the backdoor is embedded and transmitted to each client at the
FL initialization and it is difficult to discern due to the limited
research on the robustness of the LLMs. Another similar work
by Wu et al. [288] also specializes in novel backdoor attacks
for federated LLMs.

Zhou et al. [289] propose a robust pre-training strategy for
foundation models that can resist attacks without demanding
downstream users to adopt additional defensive measures.
The defense strategy aims to increase the feature distance
between poisons and targets. This is accomplished by altering
the feature distribution of the pre-trained model through two
methods, namely augmenting the feature distance between
samples of different classes and generating poison samples
with adversarial samples to shrink the feature distance between
poison samples and clean samples.

Huang et al. [290] propose a secure distributed large lan-
guage model (LLM) framework based on model slicing. This
framework employs the Trusted Execution Environment (TEE)
on both the client and server sides, incorporating the fine-
tuned structure (either LoRA or the embedding of P-tuning v2)
within the TEE. Secure communication is facilitated between
the TEE and general environments through lightweight encryp-
tion. To further reduce equipment costs and enhance model
performance and accuracy, the authors introduce a split fine-
tuning scheme. Specifically, the LLM is partitioned by layers,
with the latter layers placed in a server-side TEE, thereby
eliminating the need for a TEE on the client side.

All the above works attempt to analyze the vulnerability
of federated LLMs and design new poison attack methods.
The vulnerabilities pose new threats to the security and
reliability of the federated LLMs system. However, there are
few works in this direction currently. Therefore, exploring
how to discover new vulnerabilities and achieve corresponding
good effects of adversarial defense is worthwhile.

3) Prompt Attacks and Defences: LLMs are sensitive to
the engineering of prompts, and it has been shown that
LLMs can be inconsistent with their answers when prompted
differently. Prompt attacks involve strategically designing and
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TABLE IV
TAXONOMY OF FEDERATED LLM PRIVACY AND ROBUSTNESS RESEARCH

manipulating input prompts to modify the output of LLMs.
The intent behind this tactic is to direct the model towards
producing specific outputs or achieving particular objectives.
Even models that have undergone extensive training may
yield deceptive or harmful outputs when presented with
certain tailored prompts. One of the common methods of
this kind of attacks is prompt injection [291], [292], [293],
[294], where the attacker gains control over the output of
a language model, enabling them to dictate the content it
generates. This method involves bypassing safeguards by using
specially crafted prompts that cause the model to ignore
previous instructions or execute specific tasks. Such security
loopholes could result in various adverse outcomes, including
the exposure of sensitive data, unauthorized system entry, or
other forms of security problems. For instance, [295] has
demonstrated that a GPT model’s responses can be swayed
by introducing specially engineered adversarial disturbances,
affecting its text classification capabilities. In [296], the model
might be configured to avoid performing certain sensitive
tasks, like modifying a user’s password. However, prompt
injection attack using certain prompts, e.g., instructing the
LLM to “ignore previously established restrictions,” the assis-
tant could be manipulated into carrying out these prohibited
actions.

For such prompt-based attack methods in LLMs, lim-
ited studies explored the corresponding defense strategies.
Some preventive measures [297] are suggested, such as
preprocessing the data prompt to remove the injected
task’s instruction/data, and/or redesigning the instruction
prompt itself. To counter adversarial prompts, several tech-
niques can be used, for instance, paraphrasing [298],
re-tokenization [299], data prompt isolation [299], and instruc-
tional prevention [299]. Prompt attacks may affect the
fine-tuning and inference applications of federated LLMs, but
they are mainly due to the security issues of LLMs, and they

barely involve the FL process. Defending from the perspective
of LLMs alone can prevent such attacks, so this topic will not
be discussed further in this paper.

D. Limitations and Lessons Learned

The exploration of federated LLMs is a dynamic field
that presents unique challenges and opportunities. This sec-
tion aims to distill the lessons learned from current research
and practice regarding the privacy and robustness of federated
LLMs, highlighting areas that require further attention and
innovation.

The integration of FL and LLMs necessitates adaptive
defenses [300] due to the dynamic nature of cyber-attacks.
Federated LLMs, which involve distributed training across
multiple devices, are particularly vulnerable to novel attack
vectors. Static security measures are inadequate; instead,
adaptive defenses that evolve in response to emerging threats
are essential. These defenses can leverage real-time data
from various nodes to detect and mitigate attacks, ensuring
the robustness and security of federated LLMs. Additionally,
developing secure and efficient federated LLMs requires a
multidisciplinary approach. For instance, combining insights
from cryptography, machine learning, and network security
is crucial. Cryptographic methods can secure data during
transmission and storage, while machine learning techniques
enhance model performance and resilience. Network security
ensures the integrity of data exchanges between nodes. By
integrating these disciplines, researchers can address the com-
plex challenges of federated LLMs, creating robust and secure
systems.

As federated LLMs become more complex, transparency
and explainability are paramount. Understanding the decision-
making processes of these models helps identify vulnerabilities
and build trust. Explainable AI (XAI) techniques [301], [302]
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can be applied to federated LLMs to interpret model outputs
and provide insights into their functioning. This transparency
is crucial for debugging, improving model performance, and
ensuring that federated LLMs operate as intended. It also
fosters trust among users and stakeholders by elucidating how
decisions are made.

Moreover, balancing privacy and utility is a central chal-
lenge in federated LLMs. Privacy-preserving techniques, such
as differential privacy and secure multi-party computation, are
essential to protect sensitive data. However, these methods
can impact model performance. Research must continue to
explore innovative approaches that enhance privacy without
significantly compromising utility. Achieving this balance
ensures that federated LLMs remain both effective and
secure, providing high-quality results while safeguarding user
data.

VI. FUTURE RESEARCH DIRECTIONS

As discussed in the previous sections, integrating LLMs
with FL is a novel technique that can be regarded as an
emerging research area. After a thorough review of the
existing works on the federated LLM training and fine-tuning
process, as well as privacy and robustness mechanisms, this
section explores the several key challenges, and also discusses
the possible research directions to address these challenges.

1) Efficiency of Federated LLM: As discussed in Section II,
LLMs usually have a huge amount of parameters,
which poses significant challenges to their training and
deployment on resource-limited clients. In order to
tackle this obstacle, we have presented the state-of-
the-art federated LLM approaches that leverage PEFT
techniques, such as Adapter and LoRA, to fine-tune
the LLMs efficiently, and the backward propagation-
free methods to reduce computational costs and enhance
system performance. However, several other techniques
can also be leveraged with them to further improve the
efficiency of Federated LLMs: (i) From the perspec-
tive of model structure, more resource-efficient model
structures can be combined, such as more efficient
Attention module designs [303], [304], Dynamic Neural
Networks [305], [306] (e.g., Mixture-of-Experts (MoE)
structure [307]) to reduce computational and memory
overheads. (ii) Model compression strategies can also
be applied, such as pruning [308], [309], quantiza-
tion [310], [311] and knowledge distillation [181], [182]
methods for LLMs, which can effectively reduce the
model size without significant performance degradation.
(iii) From the perspective of infrastructure, more effi-
cient computing and inference hardware and software
designs, such as parallel computing [312], KV cache
utilization [313], and novel edge computing hardware,
can also be used to meet the computational demands of
federated LLMs by enhancing efficiency. Nevertheless,
these studies mainly consider the isolated LLM scenario,
combining these methods with FL and their efficacy have
not yet been fully examined, which will inevitably intro-
duce new optimization methods and new challenges.

2) Heterogeneity of Federated LLM: In practical large-scale
Federated scenarios, there may be significant differences
among data distributions, model structures, communica-
tion networks, and system edge clients, which make it
difficult to achieve federated collaboration. Such hetero-
geneity can be classified into four categories, namely
data heterogeneity, communication heterogeneity, device
heterogeneity, and model heterogeneity. The research
that we have reviewed in this paper mainly focuses on
device heterogeneity, where most works adopt PEFT
methods to adapt to different computational capabilities
of client devices. However, few works have considered
the impact of other types of heterogeneity. For example,
various studies [101], [102], [314] indicate that the local
optimization objectives of clients are not aligned with
the global optimization objective due to the variations in
the local data distribution. Therefore, data heterogeneity
may cause local models to converge to different direc-
tions, reaching local optima instead of global optima,
thus impairing the FL performance. In the scenario of
federated LLM, LLMs have access to a large amount
of data for training, and data heterogeneity may have a
greater impact on the training and fine-tuning processes.
On the other hand, data diversity could also poten-
tially improve the model’s generalization performance.
Therefore, it is crucial to investigate the impact of
data heterogeneity and other types of heterogeneity on
federated LLM more deeply, as this type of work is still
scarce.

3) Privacy of Federated LLM: A holistic approach that
encompasses both impact evaluation and solution design
is required for privacy protection, which is an grow-
ing research area that needs further improvements. As
mentioned in Section V, some studies have started to
investigate the privacy challenges of Federated LLM. DP
and its variations demonstrate reliable and generalizable
privacy protection capabilities, but they have limitations
when it comes to handling complex tasks, and these
approaches did not consider the heterogeneous resources
of clients. Cryptographic protections such as SMPC and
HE are primarily utilized during the inference phase
of LLMs, and these approaches usually encounter high
communication and computation costs. Furthermore,
these methods have not been evaluated for the feasibility
of applying a robust privacy-preserving algorithm, and
developing a system that can be adapted to the federated
LLM scenario. Further research needs to be conducted to
obtain maximum privacy benefits throughout the entire
lifecycle of LLMs.

4) Robustness of Federated LLM: There has been con-
siderable thorough and comprehensive research on the
robustness of LLM and FL against adversarial attacks.
However, the work that considers FL-integrated LLM
is scarce. The federated LLM system is evidently
more large-scale and complex than conventional FL
systems. Consequently, adversaries are likely to have
more opportunities to exploit security vulnerabilities
within federated LLM systems and launch malicious
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attacks. Thus, a comprehensive assessment of the vul-
nerability of federated LLM to potential threats is
essential. This evaluation should examine the impacts of
malicious attacks, such as backdoors, Byzantine attacks,
and possible novel attack methods. Moreover, from the
FL perspective, a thorough evaluation of the existing
defense mechanisms against emerging threats is also
necessary. This evaluation should include the effective-
ness of robust aggregation strategies and post-training
detection methods in combating these new threats. As
we look ahead to the future, sustained research and
innovation in this area will be crucial to advancing the
field for federated LLMs.

In addition to the potential future directions that aim to
address the current challenges mentioned above, given that the
research on federated LLM is still in its early stages, there
are various other opportunities that are worth exploring, for
example:

1) Multimodal Models Integration: In the rapidly evolving
field of AI, LLM is one of the most popular topics. For
example, millions of new GPTs in the GPT Store are
tailored for specific tasks or interests, such as providing
personalized trail recommendations, coding tutorials, or
even generating haikus. The GPT Store facilitates the
discovery and use of these custom GPTs. Besides, other
multimodal models, such as GPT-4o [315], which can
process and generate text, audio, and images simul-
taneously, Vision Transformers Models (ViTs) [316]
for various downstream vision tasks, Latent Diffusion
Models for high-quality images with arbitrary text-based
prompts generation, and CLIP and ImageBind [317]
which map different modal data into the same latent
space, are also developing quickly. These foundation
models are similar to LLM in that they have a large
amount of model parameters and require a lot of data for
training, as well as a lot of computational resources for
training and deployment. This makes them compatible
with FL for similar reasons. Therefore, similar hetero-
geneity, privacy and robustness issues also exist when
integrating FL with these foundation models. However,
due to the different characteristics of modal information,
these issues manifest and are addressed differently. For
example, different modal information may have different
data distributions, dimensions, formats, and quality,
which affect the training efficiency and effectiveness
when adopting FL for training. Therefore, appropriate
data alignment, data augmentation, and data selection
strategies are needed to reduce the negative impact
of heterogeneity. Building on the research findings
of LLM in this paper, how to solve these problems
in a broaderly ranged foundation models remains an
open challenge and a potential and promising research
direction.

2) Federated Domain-specific AI agents: Domain-specific
AI agents [318], which are closely related to large
LLMs, are garnering significant attention. LLMs
empower intelligent agents to autonomously address
complex problems. Domain-specific LLM agents, which

are LLM-based agents deeply integrated with domain-
specific data, provide specialized assistance in fields
such as healthcare and finance. However, the data in
these domains is highly sensitive and subject to strin-
gent privacy regulations. This data is often distributed
across various locations, complicating centralized train-
ing efforts. FL offers a promising solution by enabling
the training and fine-tuning of models without the
need to centralize data, thereby preserving privacy.
Consequently, the integration of domain AI agents with
FL represents a highly promising future direction.

3) Continual Learning for Federated LLM: LLMs need to
constantly update their domain knowledge as they are
applied in dynamic real world scenarios, where data
distributions may change over time and cause domain
and concept drift. A potential solution is to combine
federated LLMs with continual learning methods [319].
Continual learning is a branch of machine learning
that focuses on how to enable machine learning mod-
els to learn from new data continuously, by retaining
knowledge from previous learning experiences without
catastrophic forgetting them. It tackles the challenges of
incrementally training a model using real-time collected
data, which may vary over time and cause data drift.
LLMs have the potential to achieve better generalization
and representation learning, which makes them suitable
for adapting to new distributions through continual
learning. Future research can explore how to address
the performance challenges of continual learning in
federated LLM settings.

4) Legal, Responsible, and Profitable Usage: Federated
LLMs involve multiple entities that contribute their own
data, devices, and computational resources to the train-
ing process. These models are used for various content
creation applications by the users. However, this rapid
growth has also raised conflicts, especially regarding
intellectual property (IP) rights. While some technical
methods, such as watermarking for LLMs [320], [321],
have been proposed, tackling these challenges still
demands a multidisciplinary approach, which incor-
porates not only advances in machine learning and
statistics, but also insights from fields such as law,
ethics, and social sciences. Ensuring the lawful and
ethical utilization of these trained models is a criti-
cal future direction. Furthermore, the development of
a sustainable business model for federated LLMs is
imperative. Although federated LLMs have numerous
potential applications, such as in healthcare where
patient data privacy is paramount, robust models can
be developed by training LLMs on decentralized patient
records across multiple hospitals without compromising
sensitive information. Another potential application is in
the financial sector, where federated LLMs can analyze
transaction data from different banks to detect fraudulent
activities while ensuring data confidentiality. However,
this model must delineate strategies to render federated
LLMs profitable. However, this model must delineate
strategies to render federated LLMs profitable, as the
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widespread adoption of this technology hinges on its
economic viability. Without a clear pathway to prof-
itability, the potential of federated LLMs may remain
unrealized, limiting their impact and utility.

5) Data Erasure for Federated LLMs: Although LLMs are
exceptionally powerful, their reliance on vast datasets
can also become a liability due to privacy concerns,
accuracy limitations, copyright infringement issues, and
the potential propagation of societal biases. A notable
example is the lawsuit filed by the New York Times
against OpenAI and Microsoft for using copyrighted
content in training their GPT models, sparking a con-
troversial debate on the application of fair use rules to
LLM training and highlighting the urgent need for data
erasure mechanisms [322]. To comply with the “right to
be forgotten” requirements stipulated by the EU’s GDPR
and the US’s CCPA/CPRA, it is essential to incorporate
data erasure mechanisms in future LLMs. Recently,
there has been a surge in relevant studies discussing
this issue in the context of LLMs [322], [323], [324],
[325]. However, this challenge becomes particularly pro-
nounced in FL settings, where the concerned sensitive
data may not be centrally stored. Hence, future research
should focus on developing a distributed approach to
machine unlearning for FL-LLMs, ensuring effective
data erasure while maintaining the decentralized nature
of FL.

VII. CONCLUSION

This paper provided a comprehensive, systematic overview
of recent advances on integrating FL with LLMs. We first
introduce the preliminary background of FL and LLM respec-
tively, including their development history, basic workflow,
and common architectures and algorithms. We then presented
the motivation for integrating FL with LLMs from multiple
perspectives, as well as the benefits they can bring to each
other. We also categorized and reviewed the current works
from the perspective of the whole lifespan of LLMs, from
training to deployment. In addition, we also classified and
reviewed the current works from the perspective of privacy
and robustness. Finally, we discussed the open opportunities
and future directions for federated LLM research based on the
comprehensive investigation of existing works.
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