Chapter 1

Deep Learning for Indoor Localization based on
Bi-modal CSI Data

Xuyu Wang' and Shiwen Mao?

In this chapter, we incorporate deep learning for indoor localization based on channel
state information with commodity SGHz WiFi. We first introduce the state-of-the-art
deep learning techniques including deep autoencoder network, convolutional neural
network, and recurrent neural network. We then present a deep learning based al-
gorithm to leverage bi-modal CSI data, i.e., average amplitudes and estimated angle
of arrivals (AOA), in both offline and online stages of fingerprinting. The proposed
scheme is validated with extensive experiments. Finally, we examine several open
research problems for indoor localization based on deep learning techniques.

1.1 Introduction

The proliferation of mobile devices has fostered great interest in indoor location-
based services, such as indoor navigation, robot tracking in the factories, locating
workers on construction sites, and activity recognition [1, 2, 3, 4, 5, 6, 7, 8], all
requiring accurately identifying locations of mobile devices indoors. The indoor
environment poses a complex radio propagation channel, including multipath propa-
gation, blockage, and shadow fading, and stimulates great research efforts on indoor
localization theory and systems [9]. Among various indoor localization schemes,
WiFi-based fingerprinting is probably one of the most widely used. With finger-
printing, a database is first built with data collected from a thorough measurement of
the field in the offline training stage. Then, the position of a mobile user can be esti-
mated by comparing the newly received test data with that in the database. A unique
advantage of this approach is that no extra infrastructure needs to be deployed.
Many existing fingerprinting-based indoor localization systems use received sig-
nal strength (RSS) as fingerprints, due to its simplicity and low hardware require-
ment [10, 11]. For example, Radar is one of the first RSS-based fingerprinting
systems that incorporates a deterministic method for location estimation [10]. For
higher accuracy, Horus, another RSS-based fingerprinting scheme, adopts a prob-
abilistic method based on K-nearest-neighbor [9] for location estimation [11]. The
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performance of RSS-based schemes is limited by two inherent shortcomings of RSS.
First, due to the multipath effect and shadow fading, the RSS values are highly di-
verse, even for consecutively received packets at the same position. Second, RSS
value only reflects the coarse channel information, since it is the sum of the powers
of all received signals.

Unlike RSS, channel state information (CSI) represents fine-grained channel
information, which can now be extracted from several commodity WiFi network
interface cards (NIC), e.g., Intel WiFi Link 5300 NIC [12], the Atheros AR9390
chipset [13] and the Atheros AR9580 chipset [14]. CSI consists of subcarrier-level
measurements of orthogonal frequency division multiplexing (OFDM) channels. Itis
a more stable representation of channel characteristics than RSS. Several CSI-based
fingerprinting systems have been proposed and shown to achieve high localization
accuracy [15, 16]. FIFS [15] uses the weighted average of CSI values over multiple
antennas. To fully exploit the diversity among the multiple antennas and subcarri-
ers, DeepFi [16] learns a large amount of CSI data from the three antennas and 30
subcarriers with a deep network. However, these CSI-based schemes only use the
amplitude information of CSI. The raw phase information is extremely random and
not directly usable [17].

Recently, for the Intel 5300 NIC in 2.4GHz, two effective methods are proposed
to remove the randomness in raw CSI phase data. In [18], the measured phases
from 30 subcarriers are processed with a linear transformation to mitigate the ran-
dom phase offsets, which is then employed for passive human movement detection.
In [17], in addition to the linear transformation, the difference of the sanitized phases
of two antennas is obtained and used for line-of-sight (LOS) identification. Although
both approaches can stabilize the phase information, the mean value of phase will
be zero (i.e., lost) after such processing. This is actually caused by the firmware
design of the Intel 5300 NIC when operating on the 2.4GHz band [19]. To address
this issue, Phaser [19] is the first to exploit CSI phase in SGHz WiFi. Phaser con-
structs an angle of arriving (AOA) pseudospectrum for phase calibration in single
Intel 5300 NIC. These interesting works greatly motivate us to explorer effectively
cleansed phase information for indoor fingerprinting with commodity SGHz WiFi.

In this chapter, we investigate the problem of fingerprinting-based indoor lo-
calization with commodity 5SGHz WiFi. We first present three hypotheses on CSI
amplitude and phase information for SGHz OFDM channels. First, the average am-
plitude over two antennas is more stable than that from a single antenna as well
as RSS. Second, the phase difference of CSI values from two antennas in SGHz is
highly stable. Due to the firmware design of Intel 5300 NIC, the phase differences of
consecutively received packets form four clusters when operating in 2.4GHz. Such
ambiguity makes measured phase difference unusable. However, we find this phe-
nomenon does not exit in the 5Ghz band, where all the phase differences concen-
trate around one value. We further design a simple multi-radio hardware for phase
calibration which is greatly different from the technique [19] that uses AOA pseu-
dospectrum searching with high computation complexity to calibrate phase in single
Intel 5300 NIC. As a result, the randomness from the time and frequency difference
between the transmitter and receiver, and the unknown phase offset can all be re-
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moved; and stable phase information can be obtained. Third, the calibrated phase
difference in SGHz can be translated into AOA with considerable accuracy when
there is a strong LOS component. We validate these hypotheses with both extensive
experiments and simple analysis.

We then design BiLoc, bi-modal deep learning for indoor localization with com-
modity SGHz WiFi, to incorporate the three hypotheses in an indoor fingerprint-
ing system [20]. In BiLoc, we first extract raw amplitude and phase data from the
three antennas, each with 30 subcarriers, with a modified firmware. We then obtain
bi-modal data, including average amplitudes over pairs of antennas and estimated
AOAs, with the calibration procedure discussed above. In the offline training stage,
we adopt a deep network with three hidden layers to extract the unique channel
features hidden in the bi-modal data, and propose to use the weights of the deep net-
work to store the extracted features (i.e., fingerprints). To reduce the computational
complexity, we propose a greedy learning algorithm to train the deep network in a
layer-by-layer manner with a Restricted Boltzmann Machine (RBM) model. In the
online test stage, bi-modal test data is first collected for a mobile device. Then a
Bayesian probability model based on the radial basis function (RBF) is leveraged for
accurate online position estimation.

In the rest of this chapter, deep learning for indoor localization is introduced 1.2.
Then, the preliminaries and hypotheses are given in Section 1.3. We present the
BiLoc system in Section 1.4 and validate its performance in Section 1.5. Section 1.6
discusses future research problems for indoor localization and Section 1.7 concludes
this paper.

1.2 Deep Learning for Indoor Localization

With the rapid growth of computation platforms like Tensorflow, Caffe and Torch [21],
Deep learning has been widely applied in a variety of areas such as object recogni-
tion, natural language processing, computer vision, Robotics, automated vehicles
and Al games [22]. Compared with shadowing machine learning algorithms such
support vector machine (SVM) and K-nearest neighbor (KNN), deep learning is a
branch of machine learning, which implements non-linear transformations with mul-
tiple hidden layers and has high-level data abstractions. In addition, Deep learning
can train the weights and bias of the network with a huge quantity of data for im-
proving classification performance and data representation capacity, which mainly
includes unsupervised and supervised learning with different deep learning mod-
els [23]. In the chapter, three different deep learning frameworks are discussed for
indoor localization problems as the following.

1.2.1 Autoencoder Neural Network

A deep autoencoder neural network is an unsupervised learning, which can produce
the output data that is a de-noised input data. Moreover, it is also used to extract data
features or reduce the size of data, which is more powerful than principal component
analysis (PCA) based methods because of its non-linear transformations with mul-
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Figure 1.1 Autoencoder.

tiple hidden layers. Fig. 1.1 shows the architecture of the deep autoencoder neural
network. For training phase, a deep autoencoder neural network has three stages with
pretraining, unrolling, and fine-tuning [24]. In the pretraining stage, each neighbor-
ing set of two layer is considered as a restricted boltzmann machines(RBM), which is
denoted as a bipartite undirected graphical model. Then, a greedy algorithm is used
to train the weights and biases for a stack of RBMs. In the unrolling stage, the deep
autoencoder network is unrolled to obtain the reconstructed input data. Finally, the
fine-tuning phase employs the backpropagation algorithm for training the weights in
the deep autoencoder network by minimizing the error.

Based on deep autoencoder networks, the first work for indoor localization is
DeepFi [16, 25] system, which is a deep autoencoder network based indoor finger-
printing method with CSI amplitudes. For every training location, the deep autoen-
coder network is trained to get a set of weights and biases, which are used as fin-
gerprints for corresponding locations. For online test, the final location is estimated
based on Bayesian scheme. The experimental results show that the mean distance
error in the living room and the laboratory is about 1.2 and 2.3 meters, respectively.
In addition, PhaseFi [26, 27] is proposed using CSI calibrated phase, which still use
deep autoencoder networks for indoor localization. Moreover, deep autoencoder net-
works are used for device-free indoor localization problems [28, 29]. The denoising
autoencoder-based indoor localization with BLE is also used to provide 3-D local-
ization [30]. In this chapter, we still consider deep autoencoder networks for indoor
localization using bimodal CSI data.

1.2.2  Convolutional Neural Network

Convolutional neural network (CNN) is also a useful deep learning architecture,
which has been successfully used in computer vision and activity recognition [31,
23]. In 1998, LeCun proposed LeNet-5 [32], which is the first architecture of CNN
that is called LeNet-5. Fig 1.1 shows CNN framework, which includes convolutional
layers, subsampling layers, and fully connected layers.

The convolutional layer can obtain feature maps within local regions in the pre-
vious layer’s feature maps with linear convolutional filters, which is followed by
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Figure 1.2 CNN.

nonlinear activation functions. For the subsampling layer, it can decrease the resolu-
tion of the feature maps by downsampling over a local neighborhood in the feature
maps of the previous layer, which is invariant to distortions on the input data [33].
The feature maps in the previous layer are pooled over a local temporal neighbor-
hood using the mean pooling function. Other operations such as the sum or max
pooling function can be also exploited in the subsampling layer.

After the convolutional and subsampling layers, the fully-connected layer can
consider a basic neural network with one hidden layer to train the output data. More-
over, the loss function is used to measure the difference between the true location
label and the output data of CNN, where the squared error or cross-entropy is used
as loss function for training these weights. Currently, increasing number of CNN
models are proposed, such as AlexNet [31] and ResNet [34]. AlexNet is a bigger
and more complex model, where Max pooling and ReLLU nonlinear activation func-
tion are used in the model [35]. Moreover, the dropout regularization is used to han-
dle overfitting problem. ResNet was proposed by Microsoft, where residual block
includes a direct path between the input and output, and adds batch normalization
technique to avoid diminishing or exploding of the gradient. ResNet is a 152 layers
residual learning framework, which won the ILSVRC 2015 classification task [31].

For indoor localization problems, CiFi [33, 36] system leverages generated im-
ages with estimated AOA values with commodity SGHz WiFi as the input of CNN
for indoor localization, which can be trained by backpropagation (BP) algorithm.
This system demonstrates that the performance of the localization has outperformed
existing schemes, like FIFS and Horus. Motivated by ResNet, ResLoc [37] system
uses bimodal CSI tensor data as input to train deep network with a deep residual
sharing learning, which can achieve the best performance in deep learning based
localization methods using CSI. CSI amplitude is also used to obtain CSi images for
indoor localization [38]. In addition, input images by using RSSI of Wi-Fi signals are
leveraged to train a CNN model [39, 40]. Moreover, CNN is used for TDoA-based
localization systems, which can estimate non-linearities in the signal propagation
space but also predict the signal for multipath effects [41].
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Figure 1.3 LSTM.

1.2.3  Long Short-term Memory

To process variable-length sequence inputs, recurrent neural networks (RNN) are
proposed, where long-term dependencies can be solved using the feedback loop in
the recurrent layer. However, the dependencies also lead to that RNN cannot be
successfully trained, because of diminishing or exploding of the gradient of the loss
function. Long short-term memory (LSTM) architecture is proposed to handle the
above problem, which has widely applications for sequence data processing [42].

For the LSTM algorithm in Fig. 1.3, the input gate i decides how much new
information will be exploited in the current memory cell, the forget gate f controls
how much information will be removed from the old memory cell, and the output
gate o determines how much data will be output based on the current memory cell
c¢. In addition, the sigmoid function ¢ can control how much information can be up-
dates and hyperbolic tangent function tanh can create new candidate values g. Thus,
unlike RNN, LSTM scheme can handle long-term dependency and has better data
representation ability, which has been employed for speech recognition, machine
translation, and time-series problems.

Currently, the DeepML system uses two layers LSTM network for obtaining a
higher learning and representation ability with magnetic and light sensor data for
indoor localization, which can achieve sub-meter level localization accuracy [43].
LSTM framework can be used for sequence based localization problems with other
signals. We have also applied LSTM to wheat moisture level detection [44] and
forecasting of renewable energy generation [45].

1.3 Preliminaries and Hypotheses

1.3.1 Channel State Information Preliminaries

OFDM is widely used in wireless network standards, such as WiFi (i.e., IEEE 802.11a/g/n),
where the total spectrum is partitioned into multiple orthogonal subcarriers, and
wireless data is transmitted over the subcarriers using the same modulation and cod-
ing scheme (MCS) to mitigate frequency selective fading. Leveraging the device
driver for off-the-shelf NICs, e.g., the Intel 5300 NIC, we can extract CSI that is a
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fine-grained physical layer (PHY) information. CSI reveals the channel characteris-
tics experienced by the received signal such as the multipath effect, shadow fading,
and distortion.

With OFDM, the WiFi channel at the SGHz band can be considered as a nar-
rowband flat fading channel. In the frequency domain, the channel model can be
expressed as

Y =CSI-X +N, (1.1)

where ¥ and X denote the received and transmitted signal vectors, respectively, N
is the additive white Gaussian noise and CSI represents the channel’s frequency re-
sponse, which can be computed from Y and X.

Although a WiFi receiver uses an OFDM system with 56 subcarriers for a 20
MHz channel, the Intel 5300 NIC can report 30 out of 56 subcarriers. The channel
frequency response of subcarrier i, CSI;, is a complex value, that is

CSI; = 4+ j2; = |CSI;| exp (j£CSL). (1.2)

where .#; and 2; are the in-phase component and quadrature component, respec-
tively; |CSI;| and ZCSI; are the amplitude response and phase response of subcarrier
i, respectively.

1.3.2  Distribution of Amplitude and Phase
In general both .#; and 2; can be modeled as i.i.d. AWGN of variance o2. The am-

plitude response is |[CS;| = {/.#* + 22, which follows a Rician distribution when
there is a strong LOS component [46]. The probability distribution function (PDF)
of the amplitude response is given by

|CST;| |CST;|? 4-|CSIy|? |CST;| - |CSIp|
f(|CSII|) = 62 Xexp —T XI() T 5 (13)

where |CSly| is the amplitude response without noise, () is the zeroth order modi-
fied Bessel function of the first kind. When the signal to noise ratio (SNR) is high, the
PDF f(|CSI;|) will converge to the Gaussian distribution as .4#"(1/|CSIy|? + 62, 62) [46].

The phase response of subcarrier i is computed by ZCSI; = arctan(2;/.%;) [46].
The phase PDF is given by

1 |CSIp|? |CSIo|
fesn) = 57 SXP <— 552 1+ p V2mcos(£CSI;) x
|CSIp|? cos?(£CSI;) |CSIp| cos(£CSI,)
exp ( 762 1-0 > )

where Q(-) is the Q-function. In the high SNR regime, the PDF f(ZCSI;) also
converges to a Gaussian distribution as .4 (0, (¢/|CSIo|)?) [46]. The distribution
of amplitude and phase of the subcarriers would be useful to guide the design of
localization algorithms.
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1.3.3 Hypotheses

We next present three important hypotheses about the CSI data for SGHz OFDM
channels, which are demonstrated and tested with our measurement study and theo-
retical analysis.

1.3.3.1 Hypothesis 1

The average CSI amplitude value over two adjacent antennas for the 5GHz OFDM
channel is highly stable at a fixed location.

We find CSI amplitude values exhibit great stability for continuously received
packets at a given location. Fig. 1.4 presents the cumulative distribution functions
(CDF) of the standard deviations (STD) of (i) the normalized CSI amplitude aver-
aged over two adjacent antennas, (ii) the normalized CSI amplitude from a single
antenna, and (iii) the normalized RSS amplitude from a single antenna, for 90 posi-
tions. At each position, 50 consecutive packets are received by the Intel 5300 NIC
operating on the 5GHz band. It can be seen that 90% of the testing positions are
blow 10% of the STD in the case of averaged CSI amplitudes, while the percentage
is 80% for the case of single antenna CSI and 70% for the case of single antenna
RSS. Thus, averaging over two adjacent antennas can make CSI amplitude highly
stable for a fixed location with SGHz OFDM channels. We conduct the measure-
ments over a long period of time, including midnight hours and business hours. No
obvious difference in the stability of CSI is observed over different times, while RSS
values exhibit large variations even for the same position. This finding motives us to
use average CSI amplitudes of two adjacent antennas as one of the features of deep
learning in the BiLoc design.

Recall that the PDF of the amplitude response of a single antenna is Gaussian
in the high SNR regime. Assuming that the CSI values of the two antennas are i.i.d.
(true when the antennas are more than a half wavelength apart [17]), the average CSI
amplitudes also follow the Gaussian distribution, as .4 (1/|CSIy|2 + 62, 62/2), but
with a smaller variance. This proves that stability can be improved by averaging CSI
amplitudes over two antennas [47](as observed in Fig. 1.4). On the other hand, we
consider the average CSI amplitudes over two antennas instead of three antennas or
only one antenna, because BiLoc system employs a bi-model data, such as estimated
AOAs and average amplitudes. This requires that we use the same number of nodes
as the input for deep network.

1.3.3.2 Hypothesis 2
The difference of CSI phase values between two antennas of the 5GHz OFDM chan-
nel is highly stable, compared to that of the 2.4GHz OFDM channel.

Although the CSI phase information is also available from the Intel 5300 NIC,
it is highly random and cannot be directly used for localization, due to noise and
the unsynchronized time and frequency of the transmitter and receiver. Recently,
two useful algorithms are used to remove the randomness in CSI phase. The first
approach is to make a linear transform of the phase values measured from the 30
subcarriers [18]. The other one is to exploit the phase difference between two anten-
nas in 2.4GHz and then remove the measured average [17]. Although both methods
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can stabilize the CSI phase in consecutive packets, the average phase value they pro-
duce is always near zero, which is different from the real phase value of the received

signal.

Switching to the 5GHz band, we find the phase difference becomes highly sta-
ble. In Fig. 1.5, we plot the measured phase differences of the 30 subcarriers be-
tween two antennas for 200 consecutively received packets in the SGHz (in blue)
and 2.4GHz (in red) bands. The phase difference of the SGHz channel varies be-
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Figure 1.6 The multi-radio hardware design for calibrating the unknown phase
offset difference AB.

tween [0.5, 1.8], which is considerably more stable than that of the 2.4GHz channel
(varies between [—m,7]). To further illustrate this finding, we plot the measured
phase differences between the 5th subcarrier of two antennas using polar coordi-
nates in Fig. 1.7. We find that all the 5GHz measurements concentrate around 30°,
while the 2.4GHz measurements form four clusters around 0°, 90°, 180°, and 270°.
It is because of the firmware design of the Intel 5300 NIC when operating on the
2.4GHz band, which reports the phase of channel modulo 7 /2 rather than 27 on the
5GHz band [19]. Comparing to the ambiguity in the 2.4GHz band, the highly stable
phase difference in the SGHz band could be very useful for indoor localization.

As in Hypothesis 1, we also provide an analysis to validate the observation from
experiments. Let /CSI ; denote the measured phase of subcarrier i, which is given
by [48, 14]

LCSI; = LCSLi+ (Ay + Aymi+ Ac+ B+ Z, (1.4)

where ZCSI; is the true phase from wireless propagation, Z is the measurement
noise, B is the initial phase offset because of the phase-locked loop (PLL), m; is the
subcarrier index of subcarrier i, 7Lp, As and A, are phase errors from the packet bound-
ary detection (PBD), the sampling frequency offset (SFO) and central frequency off-
set (CFO), respectively [48], which are expressed by

Ap =2mh
Ay =2m(TFL) on (1.5)
Ae =2nAfTin,

where At is the packet boundary detection delay, N is the FFT size, T’ and T are the
sampling periods from the receiver and the transmitter, respectively, 7, is the length
of the data symbol, 7 is the total length of the data symbol and the guard interval, n
is the sampling time offset for current packet, Af is the center frequency difference
between the transmitter and receiver. It is noticed that we cannot obtain the exact
values about At, L;T’ n, Af, and B in (1.4) and (1.5). Moreover, A,, A, and A, vary
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for different packets with different A# and n. Thus, the true phase ZCSI; cannot be
derived from the measured phase value.

However, note that the three antennas of the Intel 5300 NIC use the same clock
and the same down-converter frequency. Consequently, the measured phases of sub-
carrier i from two antennas have identical packet detection delay, sampling periods
and frequency differences (and the same m;) [19]. Thus the measured phase differ-
ence on subcarrier i between two antennas can be approximated as

A/CSI; = AZCSI; + AB + AZ, (1.6)

where AZCS]; is the true phase difference of subcarrier i, Af is the unknown differ-
ence in phase offsets, which is in fact a constant [19], and AZ is the noise difference.
We can find that AZC/‘S\I,- is stable for different packets because of the above equa-
tion (1.6) without Az and n.

In the high SNR regime, the PDF of the phase response of subcarrier i for each
of the antennas is .4 (0, (c/|CSIp|)?). Due to the independent phase responses, the
measured phase difference of subcarrier i is also Gaussian with .4 (AB,262(1 +
1/|CSIp|?)). Note that although the variance is higher comparing to the true phase
response, the uncertainty from the time and frequency differences is removed, lead-
ing to much more stable measurements (as shown in Fig. (1.7)).

1.3.3.3 Hypothesis 3

The calibrated phase difference in SGHz can be translated into the angle of arriving
(AOA) with considerable accuracy when there is a strong LOS component.

The measured phase difference on subscriber i can be translated into an estima-
tion of angle of arrival (AOA), as

[ A/CSI;A
0= _— 1.7
arcsin ( md ) , (1.7)

where A is the wavelength and d is the distance between the two antennas (set to
d = 0.5\ in our experiments). Although the measured phase difference A/CSI i 18
highly stable, we still wish to remove the unknown phase offset difference Af to
further reduce the error of AOA estimation. For commodity WiFi devices, the only
existing approach for a single NIC, to the best of our knowledge, is to search for A
within an AOA pseudospectrum in the range of [—, 7], which, however, has a high
time complexity [19].

In this chapter, we design a simple method to remove the unknown phase offset
difference AS using two Intel 5300 NICs. As in Fig. 1.6, we use one Intel 5300 NIC
as transmitter and the other as receiver, while a signal splitter is used to route signal
from antenna 1 of the transmitter to antennas 1 and 2 of the receiver through cables
of the same length. Since the two antennas receive the same signal, the true phase
difference AZCSI; of subcarrier i is zero. We can thus obtain Af as the measured
phase offset difference between antennas 1 and 2 of the receiver. We also use the
same method to calibrate antennas 2 and 3 of the receiver, to obtain the unknown
phase offset difference between them as well. We find that the unknown phase offset
difference is relatively stable over time.
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Figure 1.7 The measured phase differences of the 5th subcarrier between two
antennas for 200 consecutively received packets in the 5SGHz (blue
dots) and 2.4GHz (red crosses) bands.

Having calibrated the unknown phase offset differences for the three antennas,
we then use the MUSIC algorithm for AOA estimation [49]. In Fig. 1.8, the AOA
estimation using MUSIC with the calibrated phase information for the 30 subcarriers
is plotted for a high SNR signal with a known incoming direction of 14°. We can see
that the peak occurs at around 20° in Fig. 1.8, indicating an AOA estimation error of
about 6°.

We can obtain the true incoming angle with MUSIC when the LOS component
is strong. To deal with the case with strong NLOS paths (typical in indoor envi-
ronments), we adopt a deep network with three hidden layers to learn the estimated
AOAs and the average amplitudes of adjacent antenna pairs as fingerprints for indoor
localization. As input to the deep network, the estimated AOA is obtained as follows.

0 — arcsin ((ME\SI,- —Aﬁ) 2;) " g (1.8)

where A is measured with the proposed multi-radio hardware experiment. The
estimated AOA is in the range of [0, 7].
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Figure 1.8 The estimated AOAs from the 30 subcarriers using the MUSIC
algorithm, while the real AOA is 14°.

1.4 The BiLoc System

1.4.1 BiLoc System Architecture

The overall architecture of BilLoc is illustrated in Fig. 1.9. The BiLoc design uses
only one access point and one mobile device, each equipped with an Intel 5300 NIC,
servicing as receiver and transmitter, respectively. All the communications are on the
5GHz band. The Intel 5300 NIC has three antennas; at each antenna, we can read
CSI data from 30 subcarriers. Thus we can collect 90 CSI data for every received
packet. We then calibrate the phase information of the received CSI data using our
multi-radio hardware design (see Fig. 1.6). Both the estimated AOAs and average
amplitudes of two adjacent antennas are used as location feature for building the
fingerprint database.

A unique feature of BiLoc is its bi-modal design. With the three receiving an-
tennas, we can obtain two groups of data: (i) 30 estimated AOAs and 30 average
amplitudes from antennas 1 and 2, and (ii) that from antennas 2 and 3. BiLoc uti-
lizes estimated AOAs and average amplitudes for indoor fingerprinting for two main
reasons. First, these two types of CSI data are highly stable for any given position.
Second, they are usually complementary to each other under some indoor circum-
stances. For example, when a signal is blocked, the average amplitude of the signal
will be significantly weakened; but the estimated AOA becomes more effective. On
the other hand, when the NLOS components are stronger than the LOS component,
the average amplitude will help to improve the localization accuracy.

Another unique characteristic of BiLoc is the use of deep learning to produce
feature-based fingerprints from the bi-modal data in the offline training stage, which
is quite different from the traditional approach of storing the measured raw data
as fingerprints. Specifically, we use the weights in the deep network to represent
the features-based fingerprints for every position. By obtaining the optimal weights
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Figure 1.9 The BiLoc system architecture.

with the bi-modal data on estimated AOAs and average amplitudes, we can establish
a bi-modal fingerprint database for the training positions. The third feature of BiLoc
is the probabilistic data fusion approach for location estimation based on received
bi-modal data in the online test stage.

1.4.2  Offline Training for Bi-Modal Fingerprint Database

In the offline stage, BiLoc leverages deep learning to train and store the weights to
build a bi-modal fingerprint database, which is a deep autoencoder that involves three
phases: pretraining, unrolling, and fine-tuning [50]. In the pretraining phase, a deep
network with three hidden layers and one input layer is used to learn the bi-modal
data. We denote A' as the hidden variable with K; nodes at layer i, i = 1,2,3, and
0 as the input data with K, nodes at the input layer. Let the average amplitude data
be v! and the estimated AOA data be v>. To build the bi-modal fingerprint database,
we set 1% = v! and h° =12 for database 1 and 2, respectively, each of which is a set
of optimal weights. We denote W, W, and W3 as the weights between input data
and the first hidden layer, the first and second hidden layer, and the second and third
hidden layer, respectively.
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We define Pr(h°,h', h?,h®) as the probabilistic generative model for the deep
network. To derive the optimal weights, we maximize the marginal distribution of
the input data for the deep network, which is given by

max Pr(h°,h', %, 1?). 1.
{WWaW}’ZhZhZ ANANAN! (1.9)

Because of the large number of nodes and the complex model structure, it is
difficult to find the optimal weights for the input data with the maximum likelihood
method. To reduce the computational complexity, BiLoc utilizes a greedy learning
algorithm to train the weights layer by layer based on a stack of RBMs [51]. We con-
sider an RBM as a bipartite undirected graphical model [51] with joint distribution
Pr(h=!,h'), as

i1 iy exp(—E(h", 1))
P = Y exp(—E(h )’

where E(h~!, i') denotes the free energy between layer (i — 1) and layer i, which is
given by

E(h~'h) = —b W — b — i Wik (11D

(1.10)

where b"~! and b’ are the biases for the units of layer (i—1) and that of layer i,
respectively. To obtain the joint distribution Pr(hi~!, i), the CD-1 algorithm is used
to approximate it as [51]

Pr(hi ! |W) = TT5 Pr(il i) (L12)

Pe(ii-1) =TT, P ), '
where Pr(h' " |h'), and Pr(hf|h""") are given by the sigmoid belief network as fol-
lows.

. —1
i1 i-1_ vk 1
Pr (K’ \hl):(1+exp(—b’j 7 h,))

- A % o ~1 (1.13)
Pr(hi | ~1) = (14exp (~b) — T WA )

We propose a greedy algorithm to train the weights and biases for a stack of
RBMs. First, with the CD-1 method, we use the input data to train the parameters
{BO,b", W1} of the first layer RBM. Then, the parameters {h°, W; } are frozen and we
sample from the conditional probability Pr(h! |h°) to train the parameters {b', 5%, W, }
of the second layer RBM. Next, we freeze the parameters {bo,bl,Wl ,Wr} of the
first and second layers and then sample from the conditional probability Pr(h?|h')
to train the parameters {b? b3, W3} of the third layer RBM. In order to train the
weights and biases of each RBM, we use the CD-1 method to approximate them.
For the layer i RBM model, we estimate 2°~' by sampling from the conditional
probability Pr(hi~'|h’); by sampling from the conditional probability Pr(h|hi=1),
we can estimate /', Thus, the parameters are updated as follows.

AW; = g(hi—lhi 7;,\11'—1;\11')
Ab = g(hi — ht) (1.14)
Ab—! = S(hifl _ilifl)’
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where € is the step size.

After the pretraining phase, we obtain the near-optimal weights for the deep
network. We then unroll the deep network with forward propagation to obtain the
reconstructed input data in the unrolling phase. Finally, in the fine-tuning phase, the
backpropagation algorithm is used to train the weights in the deep network according
to the error between the input data and the reconstructed input data. The optimal
weights are obtained by minimizing the error. In BiLoc, we use estimated AOAs
and average amplitudes as input data, and obtain two sets of optimal weights for the
bi-modal fingerprint database.

1.4.3  Online Data Fusion for Position Estimation

In the online phase, we adopt a probabilistic approach to location estimation based on
the bi-modal fingerprint database and the bi-modal test data. We derive the posteriori
probability Pr(;|v!,1?) using Bayes’ law as
Pr(l[) Pr(vl ,Vz‘li)
N Pr(l) Pr(v vl
where N is the number of reference locations, /; is the ith reference location in the bi-
modal fingerprint database, and Pr(/;) is the prior probability that the mobile device
is considered to be at the reference location /;. Without loss of generality, we assume
that Pr(l;) is uniformly distributed. The posteriori probability Pr(/;|v!,v?) becomes
Pr(v',v2|;)

Pr(liv!' V) = ——— 1.16
) = S ooty (.10

Pr(liv' V) = (1.15)

In BiLoc, we approximate Pr(v',v?|l;) with an RBF in the similar form of a
Gaussian function, to measure the degree of similarity between the reconstructed
bi-modal data and the test bi-modal data, given by

127y — ' =o' ||V2—‘72||)
pr(sto2ln) —exp (1) L p M)
where ¥ and ¥? are the reconstructed average amplitude and reconstructed AOA, re-
spectively; o1 and 0, are the variance of the average amplitude and estimated AOA,
respectively; 171 and 1, are the parameters of the variance of the average amplitude
and estimated AOA, respectively; and p is the ratio for the bi-modal data.

For the Eq. (1.17), the average amplitudes ¥' and the estimated AOAs ¥> are
as the input of deep network, where the different nodes of the input can express the
different CSI channels. Then, by employing the test data 9! and %, we compute
the reconstructed average amplitude ¥' and reconstructed AOA 7 based on database
1 and database 2, respectively, which is used to compute the likelihood function
Pr(v!,v2[l;).

The location of the mobile device can be finally estimated as a weighted average
of all the reference locations, which is given by

(1.17)

N
=Y Pr(lip' V) 1. (1.18)
i=1
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1.5 Experimental Study

1.5.1 Test Configuration

We present our experimental study with BiLoc in the 5GHz band in this section. In
the experiments, we use a desktop computer as an access point and a Dell laptop as
a mobile device, both equipped with an Intel 5300 NIC. In fact, we use the desktop
computer instead of the commodity routers that are not equipped with the Intel 5300
NIC nowadays. Our implementation of BiLoc is executed on the Ubuntu desktop
14.04 LTS OS for both the access point and mobile device. We use QPSK modulation
and a 1/2 coding rate for the OFDM system. For the access point, it is set in monitor
model and the distance between two adjacent antennas is d = 2.68 cm, which is half
of a wavelength for the SGHz band. For the mobile device, it transmits packets at 100
packets per second using only one antenna in injection mode. SGHz CSI data can be
obtained by using packet injection technique based on LORCON version 1. Then,
we extract bi-modal data for training and test stages as described in Section 1.4.2.
We also implement three representative schemes from the literature, i.e., Ho-
s [11], FIFS [15], and DeepFi [16]. For a fair comparison, all the schemes use
the same measured dataset captured in the SGHz band to estimate the location of the
mobile device. We conduct extensive experiments with the schemes in the following
two representative indoor environments.
Computer Laboratory: ~This is a 6 x 9 m? computer laboratory, a cluttered envi-
ronment with metal tables, chairs, and desktop computers, blocking most of the LOS
paths. The floor plan is shown in Fig. 1.10, with 15 chosen training positions (marked
as red squares) and 15 chosen test positions (marked as green dots). The distance be-
tween two adjacent training positions is 1.8 m. The single access point is put close
to the center of the room. We collect bi-modal data from 1000 packet receptions
for each training position, and from 25 packet receptions for each test position. The
deep network used for this scenario is configured as {K; = 150, K, = 100, K3 = 50}.
Also, the ratio p for the bi-modal data is set as 0.5.
Corridor: This is a 2.4 x 24 m? corridor, as shown in Fig. 1.11. In this scenario,
the AP is placed at one end of the corridor and there are plenty of LOS paths. Ten
training positions (red squares) and 10 test positions (green dots) are arranged along a
straight line. The distance between two adjacent training positions is also 1.8 m. We
also collect bi-modal data from 1000 packets for each training position and from 25
packets for each test position. The deep network used for this scenario is configured
as {K; = 150, K, = 100, K3 = 50}. Also, the ratio p for the bi-modal data is set as
0.1.

1.5.2  Accuracy of Location Estimation

Tables 1.1 and 1.2 present the mean and STD of localization errors, and the execu-
tion time of the four schemes for the two scenarios, respectively. In the laboratory
environment, BiLLoc achieves a mean error of 1.5743 m and an STD error of 0.8312
m across the 15 test points. In the corridor experiment, because only one access point
is used for this larger space, BiLoc achieves a mean error of 2.1501 m and an STD
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Figure 1.11 Layout of the corridor: training positions are marked as red squares
and testing positions are marked as green dots.

Table 1.1 Mean/STD error and execution time of the laboratory experiment

Algorithm | Mean error (m) ‘ Std. dev. (m) ‘ Mean execution time (s)

BiLoc
DeepFi
FIFS
Horus

1.5743
2.0411
2.7151
3.0537

0.8312
1.3804
1.0805
1.0623

0.6653
0.3340
0.2918
0.2849

error of 1.5420 m across the 10 test points. BiLoc outperforms the other three bench-
mark schemes with the smallest mean error, as well as with the smallest STD error,
i.e., being the most stable scheme in both scenarios. We also compare the online test
time of all the schemes. Due to the use of bi-modal data and the deep network, the
mean executing time of Bil.oc is the highest among the four schemes. However, the
mean execution time is 0.6653 s for the laboratory case and 0.5440 s for the corridor
case, which are sufficient for most indoor localization applications.
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Table 1.2 Mean/STD errors and execution time of the corridor experiment

Algorithm | Mean error (m) ‘ Std. dev. (m) ‘ Mean execution time (s)

BiLoc 2.1501 1.5420 0.5440
DeepFi 2.8953 2.5665 0.3707
FIFS 4.4296 3.4256 0.2535
Horus 4.8000 3.5242 0.2505

Fig. 1.12 presents the CDF of distance errors of the four schemes in the labo-
ratory environment. In this complex propagation environment, BiLoc has 100% of
the test positions with an error under 2.8 m, while DeepFi, FIFS, and Horus have
about 72%, 52%, and 45% of the test positions with an error under 2.8 m, respec-
tively. For a much smaller error of 1.5 m, the percentage of test positions having
a smaller error are 60%, 45%, 15%, and 5% for BiLoc, DeepFi, FIFS, and Horus,
respectively. BiLoc achieves the highest precision among the four schemes, due to
the use of bi-modal CSI data (i.e., average amplitudes and estimated AOAs). In fact,
when the amplitude of a signal is strongly influenced in the laboratory environment,
the estimated AOA can be utilized to mitigate this effect by BiLoc. However, the
other schemes based solely on CSI or RSS amplitudes will be affected.

Fig. 1.13 presents the CDF of distance errors of the four schemes for the corridor
scenario. Only one access point is used at one end for this 24 m long corridor, making
it hard to estimate the location of the mobile device. For BilLoc, more than 90% of
the test positions have an error under 4 m, while DeepFi, FIFS, and Horus have about
70%, 60%, and 50% of the test positions with an error under 4 m, respectively. For a
tighter 2 m error threshold, BiL.oc has 60% of the test positions with an error below
this threshold, while it is 40% for the other three schemes. For the corridor scenario,
BiLoc mainly utilizes the average amplitudes of CSI data, because the estimated
AOAs are similar for all the training/test positions (recall that they are aligned along
a straight line with the access point at one end). This is a challenging scenario for
differentiating different test points and the BiLLoc mean error is 0.5758 m higher than
that of the laboratory scenario.

1.5.3 2.4GHz versus SGHz

We also compare the 2.4GHz channel and 5GHz channel with the BiLoc scheme.
For a fair comparison, we conduct the experiments at night, because the 2.4GHz
band is much more crowded than the SGHz band during the day.

Fig. 1.14 presents the CDF of localization errors in the 2.4GHz and 5GHz band
in the laboratory environment, where both average amplitudes and estimated AOAs
are effectively used by BiLoc for indoor localization. We can see that for Biloc,
about 70% of the test positions have an error under 2 m in 5SGHz, while 50% of the
test positions have an error under 2 m in 2.4GHz. In addition, the maximum errors in
2.4GHz and 5GHz are 6.4 m and 2.8 m, respectively. Therefore, the proposed Bil.oc
scheme achieves much better performance in 5GHz than 2.4GHz. In fact, the phase
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Figure 1.13 CDF of localization errors in 5GHz for the corridor experiment.

difference between two antennas in 2.4GHz exhibits great variations, which lead to
lower localization accuracy. This experiment also validates our Hypothesis 2.

1.5.4  Impact of Parameter p

Recall that the parameter p is used to trade off the impacts of average amplitudes
and estimated AOAs in location estimation as in (1.17). We examine the impact of
p on localization accuracy under the two environments. With BiLoc, we use bi-
modal data for online testing, and p directly influences the likelihood probability
Pr(v!,v?|[;) (1.17), which in turn influences the localization accuracy.

Fig. 1.15 presents the mean localization errors for increasing p for the laboratory
and corridor experiments. In the laboratory experiment, when p is increased from
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Figure 1.15 Mean localization errors versus parameter p for the laboratory and
corridor experiments.

0 to 0.3, the mean error decreases from 2.6 m to 1.5 m. Furthermore, the mean
error remains around 1.5 m for p € [0.3,0.7], and then increases from 1.5m to 2 m
when p is increased from 0.6 to 1. Therefore, BiLoc achieves its minimum mean
error for p € [0.3,0.7], indicating that both average amplitudes and estimated AOAs
are useful for accurate location estimation. Moreover, BiLoc has higher localization
accuracy with the mean error of 1.5m, compared with individual modality such as
the estimated AOAs with that of 2.6m or the average amplitudes with that of 2.0m.
In the corridor experiment, we can see that the mean error remains around 2.1
m when p is increased from 0 to 0.1. When p is further increased from 0.1 to 1, the
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mean error keeps on increasing from 2.1 m to about 4.3 m. Clearly, in the corridor
experiment, the estimated AOAs provide similar characteristics for deep learning,
and are not useful for distinguishing the positions. Therefore BiLoc should mainly
use the average amplitudes of CSI data for better accuracy. These experiments pro-
vide some useful guidelines on setting the p value for different indoor environments.

1.6 Future Directions and Challenges

1.6.1 New Deep Learning Methods for Indoor Localization

This chapter has discussed three deep learning technologies including autoencoder,
CNN, LSTM for fingerprinting based indoor localization. With the rapid growth
in the artificial intelligence (Al) field, new deep learning approaches are proposed
for mainly handling computer vision problems, such as robust object recognition
and detection, data generation, as well as the Go game. For example, generative
adversarial network (GAN) can be used for generating new data samples; deep re-
inforcement learning has been leveraged for AlphaGo; deep Gaussian process can
be utilized for improving the robustness of object detection. In fact, these new deep
learning methods can be also used for solving basic indoor localization problems
such as radio map constructions, environment change, and devices calibration. For
example, deep reinforcement learning [52] can be used for improving localization
performance and reduce cost. Moreover, Bayesian deep learning such as deep Gaus-
sian process [53, 54] has high robustness for environment noise, which can be ex-
ploited for radio map construction, and environment change and devices calibration.
Moreover, generative adversarial network (GAN) can be incorporated for building
radio map and increasing the number of training data samples. In addition, com-
pressed deep learning [55] by using pruning and quantization can be considered for
resource limited mobile devices. Thus, we can implement deep learning models on
smartphones rather than servers for indoor localization.

1.6.2  Sensor Fusion for Indoor Localization Using Deep Learning

In this chapter, we have proposed bi-modal CSI data for indoor localization. In
fact, multiple sensor data sources can be fused for improving indoor localization
performance. Traditionally, sequence models such as Kalman filter, particle fitler,
hidden markov model (HMM), and conditional random field (CRF) can fuse WiFi
and inertial sensor data on smartphones for indoor localization, which requires for
obtaining the sequence data from continuing smartphone movement. Deep learning
techniques can improve the performance of indoor localization using multimodal se-
quence data. For example, LSTM method can be leveraged for indoor localization
using sequence RSS or CSI data, which also fuse multimodal data for improving the
localization accuracy. Considering WiFi and magnetic sensor data from smartphone,
we can integrate them into a large data matrix as input to LSTM for indoor localiza-
tion. In fact, WiFi and magnetic sensor data are complementary to each other. For
example, because of lower resolution of WiFi signals, only using WiFi RSS values
cannot obtain better performance at close locations, while magnetic sensor data at
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such positions is greatly different. LSTM can effectively fuse them for indoor local-
ization [43]. In addition, an integrated CNN and LSTM model can be used for WiFi
RSS or CSI images data, which can be easily created from different access points
or different subcarriers. In fact, the LSTM model can be combined as other deep
learning models such as autoencoder, GAN, deep reinforcement learning, Bayesian
model for different localization problems such as radio map construction, device
calibration, and environment change. For sensor data fusion for indoor localization,
different sensor data sources should be normalized and aligned [23].

1.6.3  Secure Indoor Localization Using Deep learning

For wireless fingerprinting based indoor localization, security becomes increasingly
important, where wireless signals are susceptible to eavesdropping, distributed denial-
of-service (DDOS) attacks, and bad data injection [56]. Specially, for crowd-sourcing
based indoor localization, fingerprints are from different devices at different times,
which greatly exposes the security problem. For attacker models, there are three
general scenarios for RSS fingerprinting based localization [57]. First, the attacker
does not know the true RSS fingerprints and injects fake RSS data at random. Sec-
ond, the attacker knows legitimate RSS fingerprints and add noise to them. Third,
the attacker can change the mapping between RSS fingerprints and positions. For
defense models, they can consider the temporal correlation and spatial correlation
within RSS Traces against different attackers. In fact, deep learning can study the
feature of Localization signals to address the above security problems. Deep learn-
ing can consider different data features from multiple paths of wireless signals to
classify eavesdropping, DDoS attack or bad data injection for fingerprinting based
indoor localization.

On the other hand, deep learning security problems become important, which
mainly focuses on how to recognize adversarial data and clear RSS data. Deep
Learning will have bad performance with adversarial data, which is only obtained
by adding small noise into clear RSS data. Thus, adversarial data should be rec-
ognized before implementing indoor localization systems based on deep learning,
thus guaranteeing good localization performance. In addition, privacy persevering
deep learning can be used for indoor localization problems, which can protect user
location privacy information.

1.7 Conclusions

In this chapter, we proposed a bi-modal deep learning system for fingerprinting-
based indoor localization with 5GHz commodity WiFi NICs. First, the state-of-the-
art deep learning techniques including deep autoencoder network, CNN and LSTM
were introduced. We then extracted and calibrated CSI data to obtain bi-modal CSI
data, including average amplitudes and estimated AOAs, which were used in both
the offline and online stages. The proposed scheme was validated with extensive
experiments. We concluded this chapter with a discussion of future directions and
challenges for indoor localization problems using deep learning.
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