
Bias and Variance of Validation Methods for Function Approximation Neural Networks

Under Conditions of Sparse Data

Janet M. Twomey
Department of Industrial and Manufacturing Engineering

Wichita State University
Wichita, Kansas

Alice E. Smith, Senior Member IEEE
Department of Industrial Engineering

University of Pittsburgh
Pittsburgh, Pennsylvania

Accepted to IEEE Transactions on Systems, Man, and Cybernetics

January 1998

1

Bias and Variance of Validation Methods for Function Approximation Neural Networks

Under Conditions of Sparse Data

Abstract

Neural networks must be constructed and validated with strong empirical
dependence, which is difficult under conditions of sparse data. This paper
examines the most common methods of neural network validation along with
several general validation methods from the statistical resampling literature as
applied to function approximation networks with small sample sizes. It is shown
that an increase in computation, necessary for the statistical resampling methods,
produces networks that perform better than those constructed in the traditional
manner. The statistical resampling methods also result in lower variance of
validation, however some of the methods are biased in estimating network error.

1. INTRODUCTION

To be beneficial, system models must be validated to assure the users that the model

emulates the actual system in the desired manner. This is especially true of empirical models, such

as neural network and statistical models, which rely primarily on observed data rather than

analytical equations derived from first principles. Validation of these models using problem-

specific information, such as theoretic relationships or experiential knowledge, should be

performed where possible. This paper focuses on the empirical aspect of model validation.

Substantial amounts of data must be available to both construct and validate empirical models in

the traditional manner, however, for some systems data is only available at great expense. The

quandary becomes how to best use the relatively sparse data to both construct the model, and

then validate it, prior to use. To this end, the research in this paper focuses on the adaptation and

evaluation of statistical validation methods to the field of neural networks.

While the domain of neural networks originally arose from researchers trying to develop

2

computing mechanisms to emulate the biological brain, neural networks can also be viewed as a

super set of statistics. Neural networks are a super set because they have been theoretically

proven to serve as universal approximators when they include nonlinear activation functions [42].

The trained weights of a neural network are a vector-valued statistic, and training is the process of

computing that statistic. The relationship between neural network models and statistical models

has been the subject of several recent papers by well known statisticians [4, 5, 27] with the

general conclusion that there are many important parallels between the development of neural

network models and the computation of statistical models. Therefore, the approach of this paper

is to construct and validate neural networks under conditions of sparse data1 by adapting the

statistical literature on evaluating estimators of model prediction error. Judging the effectiveness

of an estimator can be broken into two fundamental aspects bias and variance. Bias measures

the expected value of the estimator relative to the true value and variance measures the variability

of the estimator about the expected value. An ideal estimator (and an ideal model) will have no

bias and low variance. To achieve low variance and no bias under conditions of small samples,

the sample observations must be leveraged maximally. That is, they must all contribute to both

the final model itself and to the model validation. The statistical literature contains several error

estimation methods that achieve this by substituting computational effort for the unavailable larger

data sample.

Described below are five error estimation methods used for evaluating prediction models:

1 Under conditions of ample data, model building is less dependent on decisions concerning allocating the sample
between model building and model validation.

3

resubstitution, cross-validation (CV), jackknife, bootstrap and train-and-test (also known as data

splitting). The notation and terminology in this paper are adapted from Efron’s work that

examines three resampling methods (CV, jackknife, bootstrap) used to estimate the error of

statistical prediction models [6-9]. The resampling methods allow the final model to be built on

the entire sample of n observations, while the error estimate is derived from repeated sampling of

n to construct multiple validation models. Throughout this paper, the model that is constructed

and ultimately applied to the problem is referred to as the application model. Models constructed

to estimate the prediction error of the application model are referred to as validation models.

This paper centers on neural network models so that network is used interchangeably with model,

however the discussion may be applicable to other data-driven models as well.

2. ERROR ESTIMATION METHODS

Assume that there is a population F from which a random sample, Tn, of size n is drawn,

Tn={(x
1
, y

1
), (x

2
, y

2
), ... , (x

n
, y

n
)}; where t

i
=(x

i,
y

i
) is a realization drawn iid from F. A training

pair t
i
=(x

i,
y

i
), consists of a predictor (feature) vector, x

i
, and the corresponding output (response)

variable, y
i
. Both xi and y

i
 may be continuous, or in cases where the prediction problem is

classification, binary; furthermore y
i
 may be a vector but, without the loss of generality, is

restricted to a scalar for purposes of simplifying this discussion. $F is the empirical distribution

(the sample of n observations) putting equal mass (1/n) on each observation ti of Tn, for i = 1 to n.

From Tn, a prediction model),(Tˆ xnf is constructed, so that for any x
o
, randomly but

independently chosen from the same population F, y
o
 can be predicted.

Prediction error is measured according to some specified loss function L, typically the

squared or absolute error. For the remainder of this paper L will be the absolute error, as it is

4

commonly used in both statistical and neural network models of continuous and classification

relationships. The expected true error, Err, of the model $f n(T ,)x is defined as the expected error

the model makes on any observation xo taken from F:

[]Err =
1

N
y - T ,

=1

N

i i
i

f$ n x∑ (1)

Err can only be calculated by a census of all N members of the population F; the primary

validation objective is to estimate Err from the available sample, and this estimate is denoted as

$Err .

There are several methods available to perform the validation task. The most common

statistical methods are resubstitution, CV and variants, and bootstrap and variants. The most

common neural network method of prediction error estimation is train-and-test, more commonly

known as data splitting in the statistical literature.

Resubstitution: True error is estimated using the same sample that is used to construct the model

(all data is resubstituted back into the model [18, 29]):

[]$ $Err = - ,Resub
=

1

1n
y fi i

i

n

Tn x∑ (2)

The resubstitution error is also termed apparent error in the statistical literature. Many papers of

statistical models report $

ReErr sub to be a badly biased downwards estimator of Err [8, 12, 18, 19,

24, 30, 31]. Neural networks can be prone to over-parameterization, especially where data is

sparse, therefore there is a greater likelihood for neural network $

ReErr sub to be more seriously

biased downwards. The resubstitution method is computationally efficient and requires

construction of only one model, which is used for both application and validation. Furthermore,

the model utilizes the entire sample of n observations so that the application network is built from

5

the entire set of available data and the validation is over all n.

Cross-validation, Group Cross-validation, and Jackknife: Lachenbruch and Mickey [18] are

responsible for the refinement of cross-validation (CV). $Err CV is determined by constructing n

models on partitions of all data points of $F leaving out one (size n-1), and then testing on the

single omitted point. The cross-validation estimate is:

[]$ $Err =
1

y - T , CV ()
=1n

fj j
j

n

j x∑ (3)

where j is the excluded point and T
(j)

={(x
1
,y

1
), (x

2
 y

2
), ..., (x

j-1
,y

j-1
), (x

j+1
,y

j+1
),... , (x

n
,y

n
)} is the

data set except point j used to construct the model [] T , ()
$f jj x . According to CV, n validation

models plus one application model are built. The application model is built using all n

observations. A computationally less burdensome variation of cross-validation is group cross-

validation (GCV), where (usually) equal-sized groups of data are removed for each validation

model, instead of a single observation. If n = GH, then G = total number of groups and H = total

number of observations per group. The GCV estimate of Err is:

[]$ $,() ()Err =
1

 TGCV ()n
y fg H h g H h

h

H

g

G

− + − +
==

−∑∑ 1 1
11

g x (4)

where g indexes the group left out, and T
(g)

={(x
1
,y

1
), (x

2
,y

2
), ..., (x

(g-1)H
,y

(g-1)H
), (x

(g)H+1
,y

(g)H+1
),... ,

(x
n
,y

n
)} is used to construct the prediction rule []$f g H hT , (-1) +g x . G validation networks plus one

application network are built. The original work on the jackknife methodology was by Quenouille

[22, 26]. It was introduced to reduce the bias of a serial correlation estimator by splitting the data

6

into halves. Since the jackknife method of calculating $Err is equivalent to the CV method, for all

discussions in this paper the jackknife is considered equivalent to CV2.

Bootstrap and Variants: Efron developed the bootstrap method of estimation and showed that it

gives the nonparametric maximum likelihood estimate of the excess error of a prediction rule [6,

9]; i.e., the bootstrap corrects for the bias of the resubstitution error. The bootstrap, like CV, is a

resampling technique, however it differs in the manner in which $F is resampled. Bootstrap data

sets are created by resampling $F with replacement, whereas CV resamples $F without

replacement.

Bootstrap samples are generated as follows. Let $F be the empirical distribution function

for Tn with mass 1/n on t1, t2, ... , tn; and let Tn
* be a random sample of size n taken iid with

replacement from $F , where ti
* is a single random observation, t

i
*=(x

i,
y

i
). Thus if an observation is

selected twice, probability mass 2/n is assigned to that observation. True error is estimated

through independent bootstrap training sets T*1, T*2,, T*B; where B is the total number of

bootstrap samples, each generated as described above. For each Tb, a prediction model is

constructed, []$f b

iT* ,x , built using all n observations. The first term of the bootstrap estimate of

Err is the resubstitution error of the application model. The second term is the difference,

summed over all bootstrap validation models, between the average error over the original sample

and the average error over the bootstrap sample. In other words, this second term subtracts off

2 The jackknife differs from CV is its calculation of resubstitution error of a prediction model.

7

the mean resubstitution error from the mean error over the original sample, using the same

bootstrap model. This is repeated B times.

[]$ $Err =
1

y - T , +BOOT
=1n

fi i
i

n

n x∑ 1 1 1

1 11B n
y f

n
y fi

b
i

i

n

i
b

i
i

n

b

B

- * , * - *

=

T T$ $,* *x x

=

∑ ∑∑ −

=

 (5)

There are a number of variations on the bootstrap. Three variations that are parsimonious

in their required number of models were investigated in this research: E0, .632E and .632E′. The

E0 [7] estimate of Err is the expected error of those observations not included in the bootstrap

sample. Letting A { | P 0} =
*

b i
bi = denote the number of training vectors that do not appear in

the bth bootstrap sample, Err is estimated by averaging over B bootstrap training sets:

[]
$

$

Err =

y - T ,

 | A |
EO

*

A=1
i

b
i

b

B

b
B

f
b

x∑∑

∑
(6)

The .632E combines the resubstitution error with the EO error in proportions derived

from the expected probability of an observation being included in a given bootstrap sample. Efron

[7] reported the .632E estimator to be superior in his experiments. The expected true error is

estimated by:

Err
∧

.632E = 0.368 * []
1

y - T,
=1n

fi i
i

n
$ x∑ + 0.632 *

[]y - T ,

A

*

A=1
i

b
i

b

B

b
B

f
b

$ x∑∑

∑
(7)

Efron showed that GCV with G = 2 and E0 are asymptotically equivalent [7] for large n.

Due to the computational efficiency of using $Err GCV(2) as an estimate of E0, a third variation on

the bootstrap, .632E′, was examined.

8

$Err .632E′ = 0.368 * []
1

y - T,
=1n

fi i
i

n
$ x∑ + 0.632 * []1

 T()
=1

2

n
y fg n h g n h

h

n

g
() / () /

/
$,− + − +

=

−∑∑ 1 2 1 2
1

2

g x (8)

B validation models plus one application model (using all n observations) are constructed for all

versions of the bootstrap (where B has traditionally ranged upwards of 20) excepting the .632E′

which constructs two validation models plus the application model.

Train-and-Test: The most commonly employed method of neural network evaluation is to obtain

the estimate of Err from an independent set of data not used to train the model. This method is

often referred to as “cross validating the network” and is reported as test set error. In the

statistical literature it is called “data splitting.” Given a sample of size n, subdivide it into two

sub-samples such that n
1 + n

2
 = n; where one sample, of size of n

1
, is used for model construction

[]$f T ,
1n x , and one sample, of size n

2
, is used for validation.3. $Err T/T is the error over the

validation set of size n2:

[]$ $Err =
1

y - T ,T/T
2 j= +1

1

1
n

fj j
n

n

n x∑ (9)

Unlike the resubstitution and resampling methods, train-and-test does not utilize all available data

in the construction of the application network. Instead it is built on a reduced set of data, n1.

Like the resubstitution method, only one model is constructed.

The methods just described have been studied in the statistical literature for a number of

decades. CV was shown to provide unbiased estimates of Err for linear regression and statistical

3 A variation of this uses a partition of three randomly chosen sets from n, one for training: one for testing the
final trained network, and one for testing intermittently during training to prevent over-training.

9

classification problems by several authors [16, 18, 31]. Efron and Gong [6, 7, 9, 12] compared

and contrasted the resampling methods on several regression problems involving dichotomous (0,

1) predicted values. According to Efron the methods can give considerably different estimates

when applied to practical problems. CV gives a nearly unbiased estimate of Err but with

unacceptably high variability, especially when n is small. The ordinary bootstrap gives a

downwardly biased estimate of Err, especially in overfitted situations, but with low variability.

Jain et al. [15] compared CV to the ordinary bootstrap and .632E bootstrap for pattern

classification. They found that in most cases the bootstrap confidence intervals for the classifier

error were narrower than those of CV. As an alternative to the resubstitution method, the train-

and-test method has been shown in the statistical literature to provide unbiased estimates of Err

for large sample sizes [13, 16, 18]. However when n is not large, the train-and-test method tends

to give variable and overly pessimistic estimates of Err. When n is small, $Err T/T depends heavily

on the partitioning of that data set [16, 31, 32, 40].

In the neural network literature, network models are primarily validated empirically [3,

19]. While many authors have compared various partitioning schemes for train-and-test, there are

fewer works that attempt to use more computationally laborious forms of validation. CV and

GCV have been suggested for use in evaluating neural network models [2, 4, 14, 20, 25, 38, 40,

42]. Moody [23] proposes a CV variation for nonlinear models which uses the final weights of

the application networks as the initial weights of the validation networks. According to Moody,

the nonlinear cross-validation (NCV) method provides a more suitable estimate since it is based

on the application model. Although the bootstrap has been shown to provide very good estimates

of error for statistical models, there are few instances of its use in the neural network literature.

Recently Ankenbrand and Tomassini applied the bootstrap to a financial application [1], and

10

Lippman, et al. [21] and Huston et al. [14] utilized the bootstrap to evaluate networks built for

medical applications. There has been some interest in the bootstrap as a method to construct

network confidence intervals, and as a method to improve network generalization [17, 35, 36].

This paper provides a thorough and systematic analysis of four general methods for neural

network validation. Specifically, resubstitution, various partitions for train-and-test, CV with

various group sizes, the ordinary bootstrap with various B, and three bootstrap versions are

compared for a simple function approximation problem under three levels of data sparseness.

Several comparisons are pertinent: bias of the validation method, variance of the validation

method, accuracy of the application network and computational effort. Additionally, the

validation errors of the alternative approaches are partitioned into bias and variance components.

While the results hereafter pertain to the function approximation problem, the results are

consistent with those in the statistical literature and with other problems examined by the authors

[14, 33, 34, 36, 37].

3. EXPERIMENTAL METHOD

A function approximation problem, also studied by Geman et al. [11], Efron [10] and

Wahba and Wold [39], was used to examine and compare in detail the performance of the

validation methods applied to neural network prediction models. All networks were trained to

predict y given x,

y e e ex x x= − +− − −4 26 4 32 3. () (10)

where x ranges from 0.0 to 3.10, as shown in Figure 1. This function was chosen because it has

been previously studied in the statistical validation literature, its small size enabled the many

computational experiments required, and its nonlinearity makes it a typical “difficult” function.

11

3.1 Experimental Design

A single experiment, or trial, proceeds as follows. One random sample, Tn, is generated,

where Tn is the data set of n input/output pairs independently randomly sampled from the

population F defined by the domain of the function to be approximated (equation 10). Tn

represents the total sample available for building and evaluating the neural network. To eliminate

effects of the exact sample chosen in any single trial, 100 trials were conducted and these 100 Tn

were used to examine the performance of the validation methodologies.

The train-and-test method included four levels of how n is partitioned for training and

testing (Table 1) and GVC varied on the number of groups G (Table 2). Three levels of total

sample available were used, n = 5, 10 and 20. Therefore, the single research trial just described is

repeated for each level of sample size. A network trained on 5 observations may be considered

excessively small; however since equation 10 is a univariate function, n = 5 is the minimal

acceptable sample size.

3.2 Methods of Assessment

To remove dependence on sampling for both training and testing, a single trial was

replicated 100 times as stated above; Tn
k is a single realization of the random sample, and k = 1 to

100. In other words, for each of the three levels of n, 100 iid samples were pulled from F. The

performance of the validation methodologies was evaluated and compared on several measures

using these 100 Tn
k . The first performance measure is the prediction accuracy of the application

network, where the true error, Err, of a single application network is approximated from N =

5000 independent randomly chosen observations, i.e., a separate set of 5000 was chosen to

calculate the prediction error over the population F. The expected value of Err over the 100

samples drawn from F is given in equation 11.

12

E([]Err) =
1

100

1

5000
y - T ,

=1

5000

=1

100

i i
ik

f$ k x∑∑

 (11)

The variance of Err measures the sensitivity of the prediction performance of a network to

the sample used to construct it, and is calculated over the 100 samples by:

()V(Err) =
1

100 =1

100

k
k∑ −

2

Err E Err() (12)

An informative measure of a validation method’s performance is the mean squared error (MSE) of

$Err , which pairs each $Errk with its corresponding Errk. The MSE approximates the expected

conditional disparity between $Err k and Errk. The relevant equations are:

2)ErrrrÊ(=SE kkk − (13)

∑
=

100

1

SE
100

1
=MSE

k
k (14)

The variance of SE over the 100 networks is given by:

()∑
=

−
100

1

2MSESE
100

1
=V(SE)

k
k (15)

Of practical interest to the modeler is the probability that the error estimate of an individual

network ($Errk) will underestimate the true error of that network (Errk). This is approximated by:

P(Err Err)
1

100
I [if (Err < Err) I o.w. I

1

100
$ $;]< = = =

=
∑ k

k

k k k k1 0 (16)

3.3 Network Architecture and Training

Prior to actual experimentation, network architecture, training parameters and stopping

criteria were selected through experimentation and examination of networks trained on twenty

independent samples Tn, at each level of n. The network architecture used was a multi-layered

13

fully connected perceptron with one input neuron (x), one hidden layer with three neurons and

one output neuron (y). The transfer function was the unipolar sigmoid, and a traditional

backpropagation learning algorithm [28, 41] was used with the learning rate = 0.1 and the

momentum (smoothing) factor = 0.9. All networks were initialized to the same set of random

weights between ±0.5. Network training ceased when mean weight change was below a given

threshold (0.01) for 1000 generations. This termination approach was selected because it permits

the evaluation of each validation method without the confounding effects of network termination

by training set error or by testing set error.

4. RESULTS

This section begins with an analysis of the performance of the application networks. It

continues with results of each method in estimating Err, both in terms of expected value (bias) and

variability (variance).

4.1 Application Network Performance

Recall that the application network is the network constructed to be operational, that is,

the outcome of the construction and validation effort. For the train-and-test method this network

is constructed on the partition n1 of the total sample, Tn, available. Therefore, the partitioning of

Tn into the training sample, n1, and the testing sample, n2, may profoundly affect the performance

of the application network. For resubstitution and the resampling methods, the application

network is constructed on the entire sample, Tn, which is of size n. Therefore the application

networks of all of these methods are identical.

Table 3 displays the expected Err and variance of Err over the 100 samples of each sample

size, n = 5, 10, and 20. These are calculated using equations 11 and 12 for the set of 5000 that

represent the population F. Figure 2 plots the expected Err vs. percentage of n used to construct

14

the application network. As anticipated, increasing a network’s construction set size improves

performance. Also shown in Figure 2, is the variability of Err vs. percentage of total available

sample used for training purposes. The plots reveal substantial increases in the variance of Err as

the training set size decreases. The large variability in Err results from the network’s sensitivity to

the composition of small training sets; i.e. when n is small, the Err of a network is greatly

dependent upon which observations are chosen to make up the training set. Figure 3 shows the

combination of Err and variance of Err for each application network. An ideal network would lie

in the lower left corner (low error and low variability). It can be seen that larger sample sizes

move the application networks toward the origin, while the application networks built using the

entire sample (all but the train-and-test method) are the best networks for each value of n. To

summarize these results, performance degrades and variability of performance increases as the

size of the sample used to construct the application network decreases. These effects are seen

most acutely in the sparser data sets.

4.2 Estimation of Err

This section considers the performance of the validation methods in estimating Err, and

the variability of that estimate across the 100 samples at each sample size. Recall that the

estimate of true error ($Err) is given by equations 2 (resubstitution), 3-4 (cross-validation

approaches), 5-8 (bootstrap and variations) and 9 (train-and-test). An ideal validation method

would have $Err equal to Err on average (be unbiased) and have minimal V($Err) (be insensitive

to the exact sample chosen to estimate Err).

Table 4 provides expected $Err and variance of $Err for n = 5, 10 and 20 for the most

15

typical versions of the validation methods. These are resubstitution, CV, two fold GCV4, train-

and-test with 75% for training and 25% for testing, and the ordinary bootstrap at B = 20. For

comparison, the expected Err over the population set of 5000 is also provided. The last column is

the probability of underestimation of true error from equation 16. An unbiased validation method

would have this value equal to 0.50.

Table 4 confirms the hypothesized results. As sample size, n, increases, both the error of

validation and the variance of the validation estimate decrease. The resubstitution method is badly

biased downwards, but has low variability. The train-and-test method is highly variable compared

to all other methods and is biased upwards. CV is more precise and less variable than GCV,

however this comes at a computational cost. The two fold creates only 2 validation models, while

the non-group version creates 5, 10 and 20 validation models, respectively, for each sample size.

Both versions of CV are relatively unbiased. The bootstrap requires 20 validation models, but

results in less variance than CV. However, the bootstrap is biased downwards, though not nearly

as severely as the resubstitution method.

4.3 Detailed Examination of Results for Train-and-Test and Cross-Validation

Figure 4 shows the MSE (as calculated using equation 14) and 95% confidence intervals

(C.I.) for MSE given by the train-and-test method under different partitions. The C.I. are formed

by:

4 A “fold” for cross validation or jackknife refers to the number of groups, G, created for each sample. For
example, a two fold for n = 10, would involve 2 validation models with a group size of 5 each. A five fold for
n = 100, involves 5 validation models with a group size of 20 each.

16

±

100

V(SE)
MSE

2

αz (17)

where MSE is from equation 14 and V(SE) is from equation 15. For 95% C.I., α = 0.05 and

z1-α/2 = 1.96. Note that all figures showing MSE confidence intervals have a truncated y axis since

each confidence interval is symmetric. As n increases, the estimate is better and less variable. An

interesting result is that the 90%/10% split yields highly variable estimates. This split is

commonly found in the neural network literature, however it appears that a 10% test set for small

sample sizes is inadequate for model validation.

Table 5 shows details of the cross-validation for different grouping strategies. Clearly the

non-grouped cross-validation has superior results; however given the trade off in computational

effort, the grouped versions are fairly effective. Figure 5 highlights this by examining the 95%

MSE C.I. for sample sizes of 10 and 20. For n = 20, hardly anything is lost by going from non-

grouped (20 validation networks) to a two fold approach (2 validation networks). This is an

order of magnitude reduction in computational effort. However, for smaller sample sizes more

groups are clearly better.

4.4 Comparison of Bootstrap Versions

The results of the ordinary bootstrap are presented in Table 6 for levels of bootstrap

samples, B = 1, 2, 5, 10, 20, 50, 60 and 100. Almost counter-intuitively, the results do not

indicate improved accuracy of $Err with an increase in B. The improvement in $Err
BOOT with an

increase in B is shown only in the reduction in variability. $Err
BOOT

 underestimates the true Err

(shown under each sample size) at all levels of B (consistent with Efron’s findings [7]), to a

greater extent for smaller sample sizes.

17

The results on bootstrap variations E0, .632E, and .632E′ are provided in Table 7, along

with the ordinary bootstrap results. The ordinary bootstrap, E0 and .632E are at B = 205. For

comparison, the expected true error (as calculated over the population of 5000) are 0.0874

(n = 5), 0.0551 (n = 10), and 0.0389 (n = 20). Table 7 shows that the .632E and .632E′ versions

correct the downwards bias of the ordinary bootstrap. The EO actually over-corrects and results

in an upwardly biased estimator. The best performing estimator, considering both variability and

bias, is the .632E. The .632E′ also does well considering the order of magnitude reduction in

computational effort.

4.5 Validation Methods Compared at the Same Level of Sample Size

This section focuses on comparing the validation methods in terms of MSE at the same

level of n as shown in Figure 6. The vehicle for comparison is the 95% C.I. of MSE as given by

equation 17. Note that the scales change between graphs A, B and C because of the effect of

sample size. The train-and-test method produces the most variable estimates regardless of sample

size, with extremely high variability using a small testing set (90%/10% split). As indicated

earlier, this is worrisome because this is a typical validation strategy in the neural network

literature. The resubstitution method has low variance, but is more biased for small samples. All

resampling methods have low variance and good performance, except for the two fold GCV.

These results must be considered in conjunction with the performance of the application network

(discussed in Section 4.1), where inferior application networks resulted from the train-and-test

5 Recall that the .632E′ method requires only two validation networks.

18

method.

Turning to comparison of computational effort, both the train-and-test and the

resubstitution methods require the construction of only one network. CV requires the

construction of n+1 networks, while GCV requires G+1. The bootstrap methods (except for

.632E′) require B+1 networks. Choosing the number of validation networks for the bootstrap is a

decision that can be made a priori or iteratively by the analyst. In this case, B = 20 gives low

variability, and it is also the lower bound recommended by Efron. The .632E′ method uses the

two fold GCV to estimate the error on data not included in the construction sample, and requires

two validation networks plus an application network. It is slightly more variable and more biased

than the .632E, but when considering the order of magnitude computational reduction, the .632E′

appears quite promising as a practical neural network validation method.

5. DECOMPOSING THE ERROR OF THE ESTIMATE INTO BIAS AND VARIANCE

Nonparametric estimators, such as neural networks, tend to be highly variable, whereas

parametric estimators tend be biased. For small data sets, nonparametric estimators may be too

sensitive to the chosen data sample, leading to increased variance. There is a bias-variance trade

off; i.e., the decrease in one may cause an increase in the other. Research in estimation theory

aims to achieve an estimator with the lowest possible MSE. The decomposition of MSE into bias

and variance is useful to determine which term contributes the most. Once established, the effort

to reduce MSE will focus on that particular term, or as an alternative, will seek to increase a

positive covariance term (cov($Err , Err)). The general expression for MSE is expanded to

explicitly consider the two components of the difference between $Err and Err, viz. bias and

variance, by:

19

MSE = Bias2 + Variance (18)

where the squared bias of the estimate is given by:

Bias2 =
100

)ErrrrÊ(
100

1

2∑
=

−
k

kk

(19)

and the variance is given by:

() () ()()()

 −−
−

−
+

−
=−

∑∑∑
===

100

)E(ErrErr)rrÊE(rrÊ
2

100

)E(ErrErr

100

)rrÊE(rrÊ
Err)rrÊV(

100

1

2100

1

2100

1 k
kk

k
k

k
k

 (20)

where the last term is twice the covariance between the estimate of Err and Err itself for each of

the k networks.

The bias term is a measure of how well $Err performs as an estimator of Err; i.e. bias is

due to an inappropriate formulation of the estimate. The variance of the estimate, rr)Ê(V ,

measures the stability of the estimate of true error over all realizations of the training set Tn
k . The

variance of Err, V(Err), measures the stability of the actual true error over the same Tn
k . The

covariance term (-2cov ($Err ,Err)) is a measure of how the estimate and the true error vary

together for each training sample.

Figures 7 through 9 show the decomposition by terms for the validation methodologies for

the sample sizes 5, 10 and 20, respectively. The two components from equation 18 are shown in

bold, dashed for the bias2 term and solid for the variance term. The three terms which sum to the

variance, given in equation 20, are shown, with the variance of the estimate dashed, the variance

of the true error solid and the covariance term shaded. Please note that the scales on the three

graphs are not identical both bias and variance decrease with an increase in sample size and

20

that zero is located at the midpoint of each axis. This is due to the negative value of the

covariance term. The graphs are a succinct way to examine the relative magnitudes of the

components that make up the MSE of the estimate. The train-and-test versions are the most

variable, with the two fold GCV the second most variable. The covariance term is negative for

the train-and-test, indicating a positive correlation between the error estimate and the true error

across the 100 data samples. The variance of the true error is identical (and minimal) for all

methods except the train-and-test. It can be viewed as a lower bound of total variance, as the

variance of the true error depends only on the sample size used to construct the application

network (where the method of model construction was held constant). For the train-and-test,

true error is most variable for the 25/75 split because this version reduces the training set by 75%,

resulting in a highly variable application network. As this construction sample grows larger, the

dependency of the application network on the sample reduces, evidenced by reduced variability of

the true error.

Figures 10 through 12 show the relative contributions of the terms of equation 18 to MSE

for each sample size, along with the MSE located on top of each histogram. It is clear that the

resubstitution method is the only one to contain substantial bias, relative to the total MSE.

V($Err) is the main component of MSE for CV, GCV and the train-and-test methods. This

indicates that these methods are more dependent on the sample used for network construction and

validation. The bootstrap’s main contributor to MSE is the variability of the true error itself,

which cannot be avoided, as the performance of predictive models for the population will always

be dependent on the sample used to construct the model, especially for small n. Only an increase

in n will reduce this variability. Also note that the value of MSE for each method is at top of the

histograms, and the bootstrap is clearly the smallest.

21

The train-and-test methods offset some of the variability of the estimate by a positive

covariance between the true error and the estimate of true error. Counter-intuitively, the

correlation between Err and $Err for bootstrap and CV were generally negative. These results are

consistent with Efron’s results [7], who states there is no way to ensure a positive correlation for

statistical prediction models, but the improvement exhibited by the .632E method is a

consequence of driving the correlation to zero.

6. CONCLUSIONS

Based on the investigations of this paper and supported by further investigations by the

authors [14, 33, 34, 36, 37], Table 8 has been assembled to offer general guidance in selecting a

validation method for supervised neural network models. The table gives simplified, but succinct,

information concerning these methods. The analyst can trade off the desired accuracy in the

estimate of Err and the predictive accuracy of the application network with the computational

effort allowed.

There are several standards that should be adopted by all neural network analysts when

faced with constrained amounts of data. First, use the entire sample, n, to construct the final

application network. Assuming a valid sample, a network constructed on more data will generally

be superior to one constructed on less data. Second, the success of the traditional train-and-test

validation using nearly all the sample for training (e.g. 90%) is highly dependent on the small

number of observations left in the test set. This variability creates risk for the neural network

builder and user. Third, the traditional resampling techniques bootstrap, jackknife and CV

as enacted by the statistical community may be computationally impractical for the neural network

community. The less computationally intensive versions of these GCV and .632E′ offer an

attractive trade off. They lose little in the way of variability and bias, but reduce the number of

22

prediction models by order(s) of magnitude. The .632E′ appears particularly encouraging as a

reasonable and effective procedure to validate neural network predictive models.

Finally, validation is a crucial part to the development of a sound empirical model. Neural

networks will not realize their full potential in solving real problems until users are assured that

the models will operate as intended. This can only be accomplished through validation. For large

samples, validation will be adequate regardless of the method used, however for small samples,

the validation approach can result in drastically different application networks and estimates of

performance.

There are a number of extensions to the investigations reported herein. The experiments

performed maintained the same architecture, initial weight set, training algorithm and parameters,

and termination criterion to avoid confounding with the validation results. Research considering

the effects of alterations in network construction and the validation methods would be beneficial.

For example, validation might be more robust over different sets of initial random weights.

Another important aspect for further research is to consider alternative data sampling

methodologies, including imperfect sampling. This paper employed iid sampling (i.e., random

uniform sampling over the data set available), however there are many instances when the neural

network analyst will deliberately select a sample for training or validation using a design of

experiments or problem-specific knowledge. There are also instances when sampling is imperfect

(biased) either by choice or by happenstance. The influence of sampling on the validation

methods is a second important area of further study. A third extension concerns pattern

classification models, which have inherently different error metrics than function approximation

models. Investigating the use of resampling methods for validation of classification neural

networks may yield differing conclusions.

23

ACKNOWLEDGMENTS

The first author acknowledges the support of an NSF EPSCoR First Award. The second

author gratefully acknowledges the support of NSF CAREER grant DMI 9502134.

24

References

[1] Ankenbrandm, T. and M. Tomassini (1996) “Predicting multivariate finical time series using
neural networks: The Swiss bond case,” Proceedings of the IEE/IAFE 1996 Conference on
Computational Intelligence for Financial Engineering, New York, NY: IEEE Press, 27-33.

[2] Ben Brahim, S., A. E. Smith and B. Bidanda (1993) “Relating product specifications and
performance data with a neural network model for design improvement,” Journal of
Intelligent Manufacturing, 4, 367-374.

[3] Burke, L. (1993) “Assessing a neural net: Validation procedures,” PC AI, March/April, 20-
24.

[4] Cheng, B. and D. M. Titterington (1994) “Neural networks: A review from a statistical
perspective,” Statistical Science, 9, 2-54.

[5] Cherkassky, V., J. H. Friedman, and H. Wechsler (Eds.) (1994) From Statistics to Neural
Networks: Theory and Pattern Recognition Applications. (NATO ASI Series) New York,
NY: Springer-Verlag.

[6] Efron, B. (1982) The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM NSF-
CBMS Monograph, 38.

[7] Efron, B. (1983) “Estimating the error rate of a prediction rule: Improvement over cross-
validation,” Journal of the American Statistical Association, 78, 316-331.

[8] Efron, B. (1986) “How biased is the apparent error rate of the prediction rule?” American
Statistical Association, 81, 461-470.

[9] Efron, B. and R. Tibshirani (1986) “Bootstrap methods for standard errors, confidence
intervals, and other measures of statistical accuracy,” Statistical Science, 1, 54-77.

[10] Efron, B. (1979) “Computers and the theory of statistics: Thinking the unthinkable,” SIAM
Review: Society for Industrial and Applied Mathematics, 21, 460-480.

[11] Geman, S., E. Bienenstock and R. Doursat (1992) “Neural networks and the bias/variance
dilemma,” Neural Computation, 4, 1-58.

[12] Gong, G. (1986) “Cross-validation, the jackknife, and the bootstrap: Excess error
estimation in forward logistic regression,” Journal of the American Statistical Association,
81, 108-113.

[13] Highleyman, W. (1962) “The design and analysis of pattern recognition experiments,” The
Bell System Technical Journal, 41, 723-744.

[14] Huston, T. L., A. E. Smith and J. M. Twomey (1994) “Artificial neural networks as an aid
to medical decision making: Comparing a statistical resampling technique with the train-and-
test technique for validation of sparse data sets,” Artificial Intelligence in Medicine:
Interpreting Clinical Data, AAAI Press Technical Report SS-94-01, 70-73.

[15] Jain, A. K., R. C. Dubes and C. Chen (1987) “Bootstrap techniques for error estimation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9, 628-633.

[16] Kanal, L. and B. Chandrasekaran (1971) “On the dimensionally and sample size in statistical

25

pattern classification,” Pattern Recognition, 3, 225-234.

[17] Kindermann, J., G. Paass and F. Weber (1995) “Query construction for neural networks
using the bootstrap,” International Conference on Artificial Neural Networks ‘95, 2, 135-
140.

[18] Lachenbruch, P. and M. Mickey (1968) “Estimation of error rates in discriminant analysis,”
Technometrics, 10, 1-11.

[19] Larsen, L. E., D. O. Walter, J. J. McNew and W. R. Adey (1970) “On the problem of bias
in error rate estimation for discriminant analysis,” Pattern Recognition, 3, 217-223.

[20] Lawrence, J. (1991) “Data preparation for a neural network,” AI Expert, 11, 34-41.

[21] Lippmann, R. P., L. Kukolich and D. Shahian (1994) “Predicting the risk of complications in
coronary artery bypass operations using neural networks,” in G. Tesauro, D. Touretzky and
T. Leen (editors) Advances in Neural Information Processing Systems 7, Cambridge, MA:
MIT Press.

[22] Miller, R.G. (1974) “The Jackknife - a review,” Biometrika, 61, 1-15.

[23] Moody, J. (1994) “Prediction risk and architecture selection for neural networks,” in V.
Cherkassky, J.H. Friedman, and H. Wechser (editors) From Statistics to Neural Networks:
Theory and Pattern Recognition Applications. (NATO ASI Series) New York, NY: Springer-
Verlag.

[24] Mosier, C. I. (1951) “Symposium: The need and the means of cross-validation. I.
Problems and design of cross-validation,” Education and Psychological Measurement, 11, 5-
11.

[25] Nivelle, F., V. Rouy and P. Vergnaud (1993) “Optimal design of neural networks using
resampling methods,” Proceedings of the Sixth International Conference on Neural Networks
and Their Industrial and Cognitive Applications, 95-106.

[26] Quenouille, M. (1949) “Approximate tests of correlation in time series,” Journal of the
Royal Statistical Society Series B, 11, 18-84.

[27] Ripley, B. D. (1994) “Flexible non-linear approaches to classification,” in V. Cherkassky,
J.H. Friedman, and H. Wechler (Eds.) From Statistics to Neural Networks: Theory and
Pattern Recognition Applications. (NATO ASI Series) New York, NY: Springer-Verlag.

[28] Rumelhart, D. E., G. E. Hinton and R. J. Williams (1986). “Learning internal
representations by error propagation,” in Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1: Foundations. D. E. Rumelhart and J. L. McClelland, and
the PDP group, editors, MIT Press, Cambridge, MA, 318-362.

[29] Smith, C. A. B. (1947) “Some examples of discrimination,” Annals of Eugenics, 18, 272-
278.

[30] Snee, R. D. (1977) “Validation of regression models: Methods and examples,”
Technometrics, 19, 415-428.

[31] Stone, M. (1974) “Cross-validatory choice and the assessment of statistical predictions,”
Journal of the Royal Statistical Society Series B, 36, 111-147.

26

[32] Toussaint, G.T, (1974) “Bibliography on estimation of misclassification,” IEEE
Transactions on Information Theory, 20, 472-479.

[33] Twomey, J. M. (1995) Nonparametric Error Estimation Methods For Validating Artificial
Neural Networks, unpublished Ph.D. Dissertation, Department of Industrial Engineering,
University of Pittsburgh.

[34] Twomey, J. M. and A. E. Smith (1993) “Nonparametric error estimation methods for
validating artificial neural networks,” Intelligent Engineering Systems Through Artificial
Neural Networks, Volume 3, (C. H. Dagli, L. I. Burke, B. R. Fernandez, J. Ghosh, editors),
ASME Press, 233-238.

[35] Twomey, J. M. and A. E. Smith (1995) “Committee networks by resampling,” Intelligent
Engineering Systems Through Artificial Neural Networks, Volume 5 (C. H. Dagli, M. Akay,
C. L. P. Chen, B. R. Fernandez and J. Ghosh, editors), ASME Press, 153-158.

[36] Twomey, J. M. and Smith, A. E. (1996) “Artificial neural network approach to the control of a
wave soldering process,” Intelligent Engineering Systems Through Artificial Neural Networks,
Volume 6, ASME Press, 889-894.

[37] Twomey, J. M. and Smith, A. E. (1997) “Validation and Verification,” in Artificial Neural
Networks for Civil Engineers: Fundamentals and Applications (N. Kartam, I. Flood and J.
H. Garrett, editors), ASCE Press, New York, 44-64.

[38] Twomey, J. M., A. E. Smith and M. S. Redfern (1995) “A predictive model for slip
resistance using artificial neural networks,” IIE Transactions, 27, 374-381.

[39] Wahba, G. and S. Wold (1975) “A completely automatic French curve: Fitting spline
functions by regression by cross-validation,” Communications in Statistics Series A, 4, 1-17.

[40] Weiss, S. M. and C. A. Kulikowski (1991) Computer Systems that Learn. Morgan
Kaufmann Publishers, Inc., San Mateo, CA.

[41] Werbos, P.J. (1974) Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences, unpublished Ph.D. Dissertation, Harvard University.

[42] White, H. (1990) “Connectionist nonparametric regression: Multilayer feedforward
networks can learn arbitrary mappings,” Neural Networks, 3, 535-549.

27

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

0 1 2 3

X

Y

Figure 1. Function Approximation Problem.

28

0

0.03

0.06

0.09

0.12

0.15

0.18

5
all

others

5
T/T

90/10

5
T/T

75/25

5
T/T

25/75

10
all

others

10
T/T

90/10

10
T/T

75/25

10
T/T

50/50

10
T/T

25/75

20
all

others

20
T/T

90/10

20
T/T

75/25

20
T/T

50/50

20
T/T

25/75

n /Method/%Train/Test

E
xp

ec
te

d
E

rr
or

0

0.002

0.004

0.006

0.008

0.01

V
ar

ia
nc

e
of

 E
xp

ec
te

d
E

rr
or

E(Err)

V(Err)

Figure 2. Expected Error and Its Variance of Application Networks.

29

0

0.002

0.004

0.006

0.008

0.01

0 0.03 0.06 0.09 0.12 0.15 0.18
Expected Error

Variance

n=5

n=10

n=20

Constructed Using Entire Sample

Figure 3. Variance vs. Expected Error of Application Networks.

30

0.000

0.005

0.010

0.015

0.020

0.025

MSE

n = 5
n = 10 n = 20

90/1075/25 25/75 90/1090/10 75/25 75/2525/75 25/7550/50 50/50

Figure 4. 95% C.I. for the MSE of $Err T/T.

31

0

0.001

0.002

0.003

0.004

0.005

MSE

n = 10 n = 20

2 25 510 10 20Number of Groups

Figure 5. 95% Confidence Intervals for Different Number of Groups in GCV.

32

0.00

0.01

0.02

0.03

MSE

BOOTSTRAP (B =20)GCVT/T

90/10 75/25 25/75

RESUB

G=2 G=5 ORDINARY EO .632E .632E’

A. n = 5.

0.000

0.005

0.010

0.015

MSE

BOOTSTRAP (B =20)GCVT/T
90/10

RESUB
75/25 50/50 25/75 G=2 G=5 G=10 ORDINARY EO .632E .632E’

B. n = 10.

0.000

0.002

0.004

0.006

MSE

BOOTSTRAP (B =20)GCVT/T RESUB
90/10 75/25 50/50 25/75 G=2 G=5 G=10 G=20 ORDINARY EO .632E .632E’

C. n = 20.
 Figure 6. 95% Confidence Intervals for the Validation Methods.

33

-0.03

-0.015

0

0.015

0.03
RESUB

CV

GCV(2)

BOOT(20)T/T 90/10

T/T 75/25

T/T 25/75

BIAS2

var(est)

var(Err)

 -2cov

Tot var

 Figure 7. Components of MSE of $Err for n = 5.

34

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
RESUB

CV

GCV(2)

GCV(5)

BOOT(20)T/T 90/10

T/T 75/25

T/T 50/50

T/T 25/75

BIAS2

var(est)

var(Err)

 -2cov

Tot var

Figure 8. Components of MSE of $Err for n = 10.

35

-0.008

-0.004

0

0.004

0.008
RESUB

CV

GCV(2)

GCV(5)

GCV(10)

BOOT(20)

T/T 90/10

T/T 75/25

T/T 50/50

T/T 25/75

BIAS2

var(est)

var(Err)

 -2cov

Tot var

Figure 9. Components of MSE of $Err for n = 20.

36

-40%

-20%

0%

20%

40%

60%

80%

100%

RESUB CV GCV(2) BOOT(20) T/T 90/10 T/T 75/25 T/T 25/75

Method

C
on

tr
ib

ut
io

n
to

 M
S

E
 -2cov

var(Err)

var(est)

BIAS2

0.0140 0.0109 0.0228 0.0052 0.0240 0.0225 0.0164

 Figure 10. Relative Contribution of Bias and Variance Terms to MSE for n = 5.

37

-40%

-20%

0%

20%

40%

60%

80%

100%

RESUB CV GCV(2) GCV(5) BOOT(20) T/T 90/10 T/T 75/25 T/T 50/50 T/T 25/75

Method

C
on

tr
ib

ut
io

n
to

 M
S

E

 -2cov

var(Err)

var(est)

BIAS2

0.00153 0.00140 0.00424 0.00167 0.00067 0.01428 0.00307 0.00579 0.00634

 Figure 11. Relative Contribution of Bias and Variance Terms to MSE for n = 10.

38

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

RESUB CV GCV(2) GCV(5) GCV(10) BOOT(20) T/T 90/10 T/T 75/25 T/T 50/50 T/T 25/75

Method

C
on

tr
ib

ut
io

n
to

 M
S

E

 -2cov

var(Err)

var(est)

BIAS2

0.0006 0.0006 0.0013 0.0007 0.0007 0.0004 0.0053 0.0013 0.0009 0.0010

 Figure 12. Relative Contribution of Bias and Variance Terms to MSE for n = 20.

39

Table 1. Variations of Train-And-Test.

Levels of Sample Size Levels of Train/Test
(% train / % test)

n = 5 (90/10)*
(75/25)*
(25/75)*

n = 10 (90/10)
 (75/25)+

(50/50)
 (25/75)+

n = 20 (90/10)
(75/25)
(50/50)
(25/75)

* Actual % train/% test is (80/20) (60/40) and (40/60)
+ actual % train/% test is (70/30) and (30/70)

40

Table 2. Variations of the Group Cross-Validation.

Levels of Sample Size Levels of Groups
n = 5 2 groups GCV (3 train & 2 test)

n = 10 2 groups GCV (5 obs./grp)
5 groups GCV (2 obs./grp)

n = 20 2 groups GCV (10 obs./grp)
5 groups GCV (4 obs./grp)
10 groups GCV (2 obs./grp)

41

Table 3. True Error of Application Networks Over 100 Samples on Population F of 5000.

Sample Size Method E(Err) V(Err)
5 Resubstitution, CV, GCV, Bootstrap 0.0874 0.0033

T/T (90/10) 0.1032 0.0051
T/T (75/25) 0.1367 0.0073
T/T (25/75) 0.1764 0.0100

10 Resubstitution, CV, GCV, Bootstrap 0.0551 0.0002
T/T (90/10) 0.0577 0.0003
T/T (75/25) 0.0672 0.0013
T/T (50/50) 0.0880 0.0038
T/T (25/75) 0.1348 0.0061

20 Resubstitution, CV, GCV, Bootstrap 0.0389 0.0002
T/T (90/10) 0.0413 0.0002
T/T (75/25) 0.0475 0.0003
T/T (50/50) 0.0589 0.0003
T/T (25/75) 0.0962 0.0042

42

Table 4. Error of Validation for Typical Methods.

Method n E(Err) E($Err) V($Err) P($Err <Err)
Resubstitution 5 0.0874 0.0157 0.0001 1.00

10 0.0551 0.0200 0.0001 0.99
20 0.0389 0.0197 0.0002 0.98

CV 5 0.0874 0.1047 0.0067 0.47
10 0.0551 0.0577 0.0014 0.59
20 0.0389 0.0415 0.0003 0.47

GCV - 2 Fold 5 0.0874 0.1336 0.0181 0.45
10 0.0551 0.0605 0.0016 0.56
20 0.0389 0.0426 0.0004 0.48

Train-and-Test (75%/25%) 5 0.1367 0.1423 0.0325 0.34
10 0.0672 0.0640 0.0046 0.33
20 0.0475 0.0499 0.0016 0.38

Bootstrap - B = 20 5 0.0874 0.0605 0.0011 0.64
10 0.0551 0.0420 0.0004 0.79
20 0.0389 0.0326 0.0001 0.59

43

Table 5. Comparison of Grouping Strategies for CV.

Sample Size (n) Groups E(Err) E($Err CV) V($Err CV) P($Err CV <Err)
5 2 0.0874 0.1336 0.0181 0.45

5 0.0874 0.1047 0.0067 0.47
10 2 0.0551 0.0848 0.0032 0.35

5 0.0551 0.0605 0.0016 0.56
10 0.0551 0.0577 0.0014 0.59

20 2 0.0389 0.0573 0.0006 0.32
5 0.0389 0.0450 0.0003 0.46

10 0.0389 0.0426 0.0004 0.48
20 0.0389 0.0415 0.0003 0.47

44

Table 6. Ordinary Bootstrap Results.

n = 5 n = 10 n = 20
E(Err) = 0.0874 E(Err) = 0.0551 E(Err) = 0.0389

B E($Err BOOT) V($Err
BOOT

) E($Err BOOT) V($Err
BOOT

) E($Err BOOT) V($Err
BOOT

)

1 0.0556 0.0049 0.0422 0.0009 0.0322 0.0003
2 0.0613 0.0027 0.0416 0.0006 0.0336 0.0002
5 0.0637 0.0018 0.0427 0.0005 0.0332 0.0002
10 0.0610 0.0013 0.0419 0.0004 0.0330 0.0001
20 0.0605 0.0011 0.0420 0.0004 0.0326 0.0001
50 0.0582 0.0009 0.0417 0.0004 0.0327 0.0001
60 0.0573 0.0008 0.0419 0.0004 0.0328 0.0001

100 0.0572 0.0008 0.0419 0.0003 0.0328 0.0001

45

Table 7. Comparisons of Bootstrap Alterations at B = 20.

Measure n Boot E0 .632E .632E′

E($Err) 5 0.0605 0.1289 0.0873 0.0903

10 0.0420 0.0714 0.0525 0.0610
20 0.0326 0.0492 0.0383 0.0434

V($Err) 5 0.0011 0.0083 0.0033 0.0072

10 0.0004 0.0015 0.0007 0.0014
20 0.0001 0.0004 0.0002 0.0003

P($Err <Err) 5 0.64 0.30 0.44 0.58

10 0.79 0.41 0.60 0.54
20 0.59 0.42 0.51 0.46

46

Table 8. Summary of Validation Methods.

Method Computational Effort Application Net
Performance

Bias of Error
Estimate

Variability of
Error Estimate

Resubstitution Minimal (1) Maximum Downwards,
sometimes severely
depending on
amount of training

Low

Cross-validation Large (n+1) Maximum Unbiased Low
Group Cross-
validation

Small to Medium
(3 to n)

Maximum Unbiased Medium for G = 2,
Low G > 2*

Bootstrap Large (10+) Maximum Mildly Downwards Lowest+

.632E′ Bootstrap Small (3) Maximum Unbiased Low
Train-and-Test Minimal (1) Medium to

Minimal@
Mildly Upwards Highly variable

(especially for
90/10)

*Modest improvement with increase in G > 2
+Reduced variability until B = 20
@Best partition is 75/25

47

 Biographical Sketches

 Janet M. Twomey is Assistant Professor of Industrial and Manufacturing Engineering at Wichita

State University. She has degrees from Duquesne University and the University of Pittsburgh,

from which she received the Ph.D. degree in Industrial Engineering in 1995. Her research in

engineering design, simulation and manufacturing processes has been funded by the Boeing

Corporation and the National Science Foundation. Her articles have appeared in IIE

Transactions, Engineering Design and Automation and Journal of Mathematical and Computer

Modelling. She is a member of IIE and INFORMS.

Alice E. Smith is Associate Professor of Industrial Engineering and Board of Visitors Faculty

Fellow at the University of Pittsburgh. She joined the University of Pittsburgh in 1991 after ten

years of industrial experience with Southwestern Bell Corporation, and has degrees in engineering

and business from Rice University, Saint Louis University and University of Missouri - Rolla. Her

research in analysis, modeling and optimization of manufacturing processes and engineering

design has been funded by the National Institute of Standards, Lockheed Martin, ABB Daimler-

Benz Transportation, U.S. Steel, the Ben Franklin Technology Center of Western Pennsylvania

and the National Science Foundation, from which she was awarded a CAREER grant in 1995.

Dr. Smith is an associate editor of INFORMS Journal on Computing, IEEE Transactions on

Evolutionary Computation, International Journal of Smart Engineering System Design and

Engineering Design and Automation and she is on the Design and Manufacturing Editorial Board

of IIE Transactions. Her articles have appeared in many journals including IIE Transactions,

IEEE Transactions on Reliability, INFORMS Journal on Computing, International Journal of

Production Research, The Engineering Economist, IEEE Transactions on Evolutionary

48

Computation and Computers and Operations Research. She is a senior member of IIE, IEEE and

SWE, a member of INFORMS and ASEE, and a Registered Professional Engineer in Industrial

Engineering in the Commonwealth of Pennsylvania.

