
USING A NEURAL NETWORK AS A FUNCTION
EVALUATOR DURING

GA SEARCH FOR RELIABILITY OPTIMIZATION

DAVID W. COIT AND ALICE E. SMITH 1

Department of Industrial Engineering
University of Pittsburgh, Pittsburgh, PA 15261

ABSTRACT:
This paper demonstrates the use of a neural network as a reliability
estimator for calculation of the objective function value during
genetic algorithm (GA) search. The GA searches for the lowest
cost system design by selecting the appropriate components and
levels of redundancy. Using a neural network approximation for
system reliability is computationally efficient for optimization
problems where calculation of the objective function is impractical.

1 Corresponding author.

INTRODUCTION

This paper presents an optimization approach using a genetic algorithm (GA) to
identify the preferred choice of components and the optimal levels of redundancy for
a reliability design problem. The problem is a combinatorial optimization problem
where reliability goals are achieved by discrete choices made from available parts.
For complicated design problems, determination of the reliability of a given solution
(i.e., system configuration) can require considerable effort or even Monte Carlo
simulations. Since GA require numerous objective function evaluations to calculate
fitness, a problem where the evaluation of the objective function is computationally
time consuming may seem ill-fitted to GA. Our approach to this barrier is to develop
a neural network approximation of system reliability.

Design of a hardware system involves numerous discrete choices among
available components based on cost, reliability, weight, etc. If the objective is to
minimize cost for a certain reliability requirement, then a strategy is required to
identify the optimal combination of components. This is an NP-hard problem (Chern,
1992). When there are many functionally similar components to choose from, it
becomes increasingly difficult to find the optimal solution, particularly when
redundancy is considered as a strategy to enhance reliability. Redundancy is the use
of functionally similar (but not necessarily identical) components such that if one
fails, the redundant component will be available to perform the required function.

Figure 1 shows a typical series-parallel system. k-out-of-n redundancy is
defined as a series of n parallel components where any k are required to be operating
for the system to avoid a failure. The total number of components in parallel, ni, for
each function is a variable which is an integer value greater than or equal to ki (for
the i th subsystem). ki, the required number of components for a given subsystem, is
specified while ni remains a variable to be determined through the search.

 1

 2

 3

 :

 1

 2

 n1

 3

 n2

 : :

 ns

 …

 1

 2

 3

 k1 k2 ks

 1 2 s

Figure 1. Typical Series-Parallel System.

The problem for a series-parallel system can be stated formally as:

min Ci i
i

s

()x
=
∑

1

subject to ()R k Ri i i
i

s

x
=

∏ ≥
1

x k iij i
j

mi

≥ ∀
=

∑
1

Ci and Ri(xi|ki) are the cost and reliability of i th subsystem, R is the system
reliability constraint and xi is the solution vector composed of xij values, the index of
the j th available component used in subsystem i. For most problems, it is practical to
establish an upper bound on n (nmax). Then, the total number of possibilities can be
computed by treating the selection of parts for each function as an occupancy
problem (Feller, 1968). The number of available components for each subsystem i is
defined as mi. For a small problem with s = 6, m

i
 = 10 (∀ i) and nmax = 8, there are

6.9 x 1027 possible design configurations. Clearly, a non-enumerative optimization
strategy is required to identify the optimal solution.

Previous reliability optimization studies (Nakagawa, 1981; Bulfin, 1985;
Misra, 1991; Gen, 1993) use integer or dynamic programming. When using dynamic
or integer programming, it is necessary to restrict the search space to solutions of a
particular form (Coit and Smith, 1995). As a result, the global optimum solution may
not be found. GAs have also been applied to this problem (Coit and Smith, 1995;
Painton and Campbell, 1994; Ida, et al, 1994). They treated the system reliability
determination directly during GA search by either algorithms or by simulation. This
is inefficient but the GA approach has no restrictions on the form of the solutions and
has produced superior results.

For each design configuration under consideration, an estimate of system
reliability is required. For complex designs (e.g., all-terminal networks, systems with
multiple k-out-of-n redundancies and non-identical components), determination of
exact solutions is computationally complex. System reliability is usually determined
using probability theory or estimated via simulation. Use of probability theory is
clearly preferred, and it is recommended for small and moderate sized problems.
However, when design problems include significant usage of redundancy,

determination of an analytical solution can become very cumbersome, particularly
when using a GA which explicitly and continually varies the amount of redundancy in
search of the best solution. The below equation calculates system reliability.

()

()

R R k

x

t
r r

s i i
i

s

ij

jj

m

Sl

k

ij
t

ij

x t

i

s i

l

i

j
ij j

()x ,x , .. .x k x1 2 s i=

= −






 −











=

==

− −

=

∏

∏∑∑∏

1

10

1

1

1 1

(1)

where, S t ll
m

j
j

m

i

i

= ∈ℜ =










=
∑t

1

t = (t1, t2, ..., tmi
)

tj = quantity of the j th component functioning properly (unfailed) (0 ≤ tj ≤ xij)
rij = reliability of the j th component available for the i th subsystem

Once a design configuration has been established, Monte Carlo simulation is
often used, in lieu of analytical methods, to provide an estimate of system reliability.
While simulation is an excellent tool to estimate reliability of a static design
configuration, it is not efficient for use in a GA because of the need to recompute
system reliability for each solution encountered during the search.

For large problems where determination of analytical solutions is difficult and
simulation is inefficient, an alternative is the use of neural networks. Neural
networks are a nonlinear robust modeling technique which are developed, or trained,
based on either analytical or simulated results for a subset of possible solutions. The
resulting model is then developed to estimate system reliability as a function of the
component reliabilities and the design configuration. Values of k and n and
individual component reliability values are directly input into the neural network. In
this way, multiple estimates of system reliability are available without solving a new
probability model for each new candidate solution, or performing the multiple
iterations required with simulation. A disadvantage of using neural networks as a
reliability evaluator is that the reliability prediction is only an estimate which may be
subject to bias or variance depending on the adequacy of the neural network.

GENETIC ALGORITHM FORMULATION

A particular solution is characterized by a vector of dimension s × nmax. For each
subsystem, the total number of selected components (ni) are ordered from most
reliable to least reliable and followed by (nmax - ni) of the mi + 1 index corresponding
to no further use of redundancy. For example, consider a system with s = 3, mi = 6
(∀ i) and nmax = 5 for each subsystem. The vector, v = (1 1 6 7 7 3 7 7 7 7 2 2 7 7 7)
represents a solution where two of the most reliable and one of the 6th most reliable
parts are in parallel in the first subsystem, the 3rd most reliable part (for that
particular function) provides the second subsystem and two of the second most
reliable part provides the third subsystem.

We examined population sizes of 50 and 100 based on our problem size and
complexity. The GA search is started by randomly selecting an initial population.

For each subsystem a random number, say n', between ki and nmax is selected, and
then n' of the mi different alternatives (with replacement) are randomly selected. This
is repeated for each of the s subsystems, and then for each member of the population.
Finally all parts within any subsystem are ordered from most to least reliable and
indices are added for potential redundancies which are not filled. The objective
function is the sum of the total cost for the selected parts plus a quadratic penalty
function similar to that devised in Smith and Tate (1993). The penalty function is
applied when the reliability estimation does not meet the requirement.

Parents were selected in the manner of Tate and Smith (1995) and the
breeding operation was uniform crossover. The mutation operation involved uniform
selection and took place after breeding and culling so that each mutated solution
remained in the population for at least one generation. We used probabilities of a
solution be selected for mutation from 25% to 75%. The mutation rate was set at
0.10, so that with a 10% probability, each element in the solution vector was exposed
to mutation. If selected to be mutated, there was a 50% chance that the element is
assigned an index of mi + 1, corresponding to no component, and a 50% chance that
a random component index from the mi alternatives was selected.

After new solutions were generated, the associated reliability was estimated
using the neural network model. Only the best among the parents and children were
kept for the next generation, i.e., inferior solutions were culled to maintain constant
population size. We terminated our GA after 500 generations for populations of 100
and after 1000 generations for populations of 50, resulting in 5 × 104 (non-unique)
solutions generated.

NEURAL RELIABILITY ESTIMATION

For this research, a backpropagation neural network was developed to estimate the
reliability of single k-out-of n subsystems based on k, n and n independent part
choices and their associated reliability levels. The data set used to train and test the
neural network was chosen using a full-factorial design of the critical parameters k, n
and three underlying distributions (uniform, skewed-left and skewed-right) where
reliability ranged from 0 to 1. The skewed distributions were necessary to expose the
neural network to test cases with relatively high and low system reliability.

Using 8 as an upper bound for k and n, there are 192 different combinations
(8×8×3). Analytical calculations of k-out-of n reliability (using Equation 1) were
made for 50 randomly chosen instances for each cell in the factorial design, resulting
in a total of 9,600 data vectors. 90% of these data vectors were used for neural
network training while the remainder were used for validation.

When considering performance and efficiency, the best neural network was
found to consist of inputs for k and each individual part reliability (up to nmax), one
hidden layer with 15 hidden neurons and a single output (the estimation of subsystem
reliability). The resulting network had a mean absolute error of 0.00484 and an RMS
error of 0.00816 for estimating reliability over the validation set. This was an
excellent fit to the analytical data and indicates that the neural network model can
serve as a very acceptable function evaluator for the GA.

Although the neural network provided an excellent fit, there is still always
some error associated with each prediction and some conditions must be introduced
on the use of the neural network as a function evaluator. This approach can best be

applied if the constraint is somewhat “soft” and small deviations can be allowed, or
alternatively, a pseudo-constraint can be determined by making a small conservative
adjustment to the constraint to assure that the original constraint is met even if there
is a small violation of the pseudo-constraint.

EXAMPLES AND RESULTS

We first considered a system with a reliability requirement of 0.80. For 6
subsystems, there were m = 10 different part choices and nmax = 8. Table 1 presents
the reliability values and costs associated with each component alternative. There are
greater than 6.9 x 1027 different possible design configurations, while our GA search
examined < 5 x 104 solutions. The system has a significant need for redundancy, as
indicated by the values of k in the table, and is a complex combinatorial problem.

By varying the size of the population and the relative percentage of breeding
and mutation, we obtained different results (Table 2). For each algorithm, 8 different
random number seeds were used, and the minimum cost, mean cost and standard
deviation are shown. It is evident that the GA was robust across the parameter
alterations tested. Because of the size of the problem, the optimum solution could
not be enumerated, however when generating 1 million random solutions, the best
solution of 1308 found by the GA was 4.5 standard deviations from the mean feasible
random solution (p = 0.0001%).

We wanted to more stringently evaluate the results of our GA search using
the neural network in function evaluation, so we selected the best combination of
parameters and developed a smaller test problem, consisting of the first two
subsystems listed in Table 1. All other problem specifics remained the same. The
search space of this smaller problem was 1.9 x 109 and we enumerated to find the
optimal solution. We ran our GA with 10 different seeds, and all converged to the
optimal design configuration within 1000 generations.

Table 1. Reliability Values and Costs for Each Component for Test Problems.

Part Alternatives - Unit Reliability

subsystem k 1 2 3 4 5 6 7 8 9 10

1 4 0.98 0.93 0.73 0.72 0.71 0.70 0.66 0.62 0.60 0.35

2 2 0.93 0.92 0.89 0.86 0.84 0.81 0.61 0.43 0.39 0.34

3 1 0.94 0.88 0.85 0.76 0.73 0.62 0.60 0.59 0.34 0.31

4 1 0.93 0.67 0.63 0.62 0.62 0.48 0.41 0.41 0.39 0.32

5 2 0.95 0.95 0.90 0.86 0.67 0.66 0.64 0.54 0.38 0.38

6 3 0.96 0.85 0.84 0.76 0.75 0.66 0.65 0.61 0.50 0.48

Part Alternatives - Unit Cost

subsystem k 1 2 3 4 5 6 7 8 9 10

1 4 95 86 80 75 61 45 40 36 31 26

2 2 137 132 127 122 100 59 54 41 36 30

3 1 118 113 108 59 54 49 45 35 30 25

4 1 149 84 74 69 64 58 38 31 26 21

5 2 131 120 103 93 60 43 36 31 26 21

6 3 149 104 96 79 45 40 35 30 25 20

Table 2. Variations of Genetic Algorithm Parameters Used on Larger Test Problem.

Gen. Popul-
ation

Breed %/ Mut.
%

Min. Cost Avg. Cost Std. Dev. Coef. Variation

500 100 50/50 1318 1348.63 25.46 0.0189

1000 50 50/50 1308 1337.50 21.76 0.0163

1000 50 75/25 1308 1375.75 40.72 0.0296

1000 50 25/75 1318 1374.34 32.22 0.0234

CONCLUSIONS AND FUTURE WORK

We have formulated and tested a unique approach to the optimization of complex
reliability design problems using a GA and a neural network approximation of the
system reliability. Clearly more research is needed on the effectiveness and relative
efficiency of this approach. We are working on a more difficult “all terminal
network” reliability problem where the system reliability cannot be calculated directly
and must be simulated. We are also pursuing a hybrid objective function evaluation
approach where the neural network estimation is used early in the search, and a more
exact method is used directly in later phases of the search.

REFERENCES

Bulfin, R. L., Liu, C. Y., (1985). Optimal allocation of redundant components for large systems,
IEEE Trans. Reliability, vol R-34, Aug, pp 241-247.

Chern, M. S., (1992). On the computational complexity of reliability redundancy allocation in a
series system, Operations Research Letters, vol 11, Jun, pp 309-315.

Coit, D. W., Smith, A. E., (1995). Optimization approaches to the redundancy allocation problem
for series-parallel systems, Proc. of the 4th Industrial Engineering Research Conference.

Feller, W., (1968). An Introduction to Probability Theory, John Wiley & Sons.

Gen, M., Ida, K., Tsujimura, Y., Kim, C., (1993). Large-scale 0-1 fuzzy goal programming and its
application to reliability optimization, Computers and Industrial Engineering, vol 24, pp 539-549.

Ida, K., Gen, M., Yokota, T., (1994). System reliability optimization with several failure modes by
genetic algorithm, Proc. of 16th International Conference on Computers and Industrial

Engineering, Mar, pp 349-352.

Misra, K. B., Sharma, U., (1991). An efficient algorithm to solve integer programming problems
arising in system reliability design, IEEE Trans. Reliability, vol 40, Apr, pp 81-91.

Nakagawa, Y., Miyazaki, S., (1981). Surrogate constraints algorithm for reliability optimization
problems with two constraints”, IEEE Trans. Reliability, vol R-30, Jun, pp 175-180.

Painton, L., Campbell, J., (1994). Identification of components to optimize improvements in system
reliability, Proc. of the SRA PSAM-II Conf., Mar, pp 10-15 - 10-20.

Smith, A. E., Tate, D. M., (1993). Genetic optimization using a penalty function, Proc. of the 5th

International Conf. on Genetic Algorithms, pp 499-505.

Tate, D. M., Smith, A. E., (1995). A genetic approach to the quadratic assignment problem,
Computers and Operations Research, vol 22, pp. 73-83.

