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ABSTRACT:

This paper demonstrates the use aofeairalnetwork as aeliability
estimator for calculation othe objective function value during
genetic algorithm (GA) search. The GA searchesterlowest
cost system design by selectirtbe appropriate components and
levels ofredundancy. Using a neumaétwork approximation for
system reliability is computationally efficientfor optimization
problems where calculation of the objective function is impractical.

INTRODUCTION

This paper presents an optimization approasing a genetic algorithriGA) to
identify the preferred choice of components anddpemal levels of redundancy for

a reliability designproblem. The problem is a combinatorial optimization problem
wherereliability goals are achieved by discrete choiogsde from availablgarts.

For complicated design problems, determinationhafreliability of a givensolution

(i.e., system configuration) can require considerable effort or éente Carlo
simulations. Since GA require numerous objective function evaluations to calculate
fitness, a problem wheithe evaluation ofthe objective function is computationally
time consuming may seem ill-fitted to GRur approach tthis barrier is to develop

a neural network approximation of system reliability.

Design of a hardware systemvolves numerous discrete choices among
availablecomponents based arost, reliability, weight, @c. If the objective is to
minimize cost for acertain reliability requirement, then a strategy is required to
identify the optimal combination of components. This is an NP-hard problem (Chern,
1992). \Whenthere aremany functionally similacomponents to choose from, it
becomes increasingly difficult tdind the optimal solution, particularlywhen
redundancy is considered as a strategy to enhahability. Redundancy ithe use
of functionally similar(but notnecessarily identicalfomponents suckhat if one
fails, the redundant component will be available to perform the required function.

Figure 1 shows aypical series-parallel systemk-out-ofn redundancy is
defined as a series ofparallelcomponents wheranyk are required to be operating
for thesystem to avoid a failure. Thetal number of components in parallgl, for
each function is a variable which is emeger valuggreater than oequal tok; (for
thei™ subsystem).k, the requirechumber of componenfsr a given subsystem, is
specified whilen; remains a variable to be determined through the search.
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Figure 1. Typical Series-Parallel System.

The problem for a series-parallel system can be stated formally as:

min > G(x)
subjectto [ R(Xi|k)2 R

=1

Ci and R(xik) are the cosand reliability of i™ subsystemR is the system
reliability constraint and; is the solution vector composed>gfvalues,the index of
thej™ availablecomponent used isubsystem. For mosiproblems, it is practical to
establish ampper bound om (ny.). Then, the totahumber of possibilities can be
computed by treating the selection pérts for each function as an occupancy
problem (Feller1968). Thenumber of availableomponents for eacsubsystem is
defined asn. For asmallproblem withs = 6,m = 10 (J i) andnmax = 8, there are
6.9 x 107" possible design configurations. Clearly, a non-enumerative optimization
strategy is required to identify the optimal solution.

Previous reliability optimization studies (Nakagawa, 198Rulfin, 1985;
Misra, 1991; Gen, 1993) use integerdynamicprogramming. When usindynamic
or integer programming, it is necessaryréstrict the search space to solutions of a
particular form (Coit and Smith, 1995). As a result, the global optimum solution may
not befound. GAs have also been applied to this probl€wmit and Smith, 1995;
Painton and Campbell,994; Ida, efal, 1994). They treated thesystemreliability
determination directly during GA search by either algorithms or by simulafibis
is inefficient but the GA approach has no restrictions on the form of the solutions and
has produced superior results.

For each design configuration under consideration, an estimasystém
reliability is required. Focomplex designée.g.,all-terminalnetworks,systems with
multiple k-out-of-n redundancies and non-identical components), determination of
exact solutions is computationally complex. Systefability is usuallydetermined
using probabilitytheory or estimatedia simulation. Use of probability theory is
clearly preferred, and it is recommended fmall and moderate sized problems.
However, when design problems include significantsage of redundancy,



determination of an analyticalolution can become very cumbersome, particularly
when using a GA which explicitly and continually variee amount of redundancy in
search of the best solution. The below equation calculates system reliability.

R (e X)) = [ R(x/K)

N3 Tlse

(1)

t = (tl, tz, . t’f})
t, = quantity of thg"™ component functioning properly (unfailed)<@, < x;)
r; = reliability of thej"™ component available for th& subsystem

Once a design configuration has been establidfledte Carlosimulation is
often used, in lieu ohnalyticalmethods, to provide an estimate of systefiability.
While simulation is anexcellent tool to estimateeliability of a static design
configuration, it isnot efficient for use in a GA because of the need to recompute
system reliability for each solution encountered during the search.

For largeproblems where determination afialyticalsolutions idifficult and
simulation is inefficient, an alternative the use ofneural networks. Neural
networks are aonlinearrobust maleling technique whichre developed, or trained,
based on eithaanalytical or simulatedesults for a subset giossible solutions. The
resulting model is then developed to estimate sysédiability as afunction of the
componentreliabilities and the design configuration. Values d¢ and n and
individual componenteliability valuesaredirectly input intothe neuralnetwork. In
this way, multiple estimates of systesiiability are availablewithout solving a new
probability modelfor each new candidate solution, or performitig multiple
iterations required with simulation. A disadvantage of using new&vorks as a
reliability evaluator is that theeliability prediction is only amstimate whichmay be
subject to bias or variance depending on the adequacy of the neural network.

GENETIC ALGORITHM FORMULATION

A particular solution is characterized by a vectodmhensions X nn.. Foreach
subsystemthe total number of selected components)(are ordered from most
reliable toleastreliableand followed by fmax - N;) of them + 1 indexcorresponding
to no further use of redundancyor example, consider a system with s 8= 6
(O1) andnmax = 5 for each subsystem. Thectorv=(11677377772277%7
represents a solution whetrgo of the mostreliableand one of the 6th mostliable
parts are inparallel inthe first subsystemthe 3rd mostreliable part (for that
particular function) provides the secosdbsystem andwo of the second most
reliable part provides the third subsystem.

We examinegopulation sizes of 50 artdD0 based oour problem size and
complexity. The GA search sarted byrandomly selecting amitial population.



For each subsystem a random number, rsapetweenk; and nna is selected, and
thenn' of them different alternatives (with replacement) emadomlyselected.This
is repeated for each of tesubsystems, and then for each rbhenofthe population.
Finally all partswithin any subsystenare orderedrom most to leasteliable and
indices are added for potential redundancigkich are notfilled. The objective
function isthe sum ofthe total cost for theelected partplus a quadratipenalty
function similar to thatdevised in Smith and@ate (1993). Theenalty function is
applied when the reliability estimation does not meet the requirement.

Parents were selected in theamimer of Tate and Smith(1995) and the
breeding operation was uniform crossover. The mutation opermatioived uniform
selection andook place after breeding ancllling so thateach mutated solution
remained inthe population for at least one generation. We ysedabilities of a
solution be selected for mutation fra% to 75%. The mutatiorate was set at
0.10, so that with a 10% probability, each element in the solution vector was exposed
to mutation. If selected to be mutated, there was a &@¥ace thathe element is
assigned an index of + 1, corresponding to no component, ariiD& chancethat
a random component index from timealternatives was selected.

After new solutions were generated, the associedkability was estimated
usingthe neuralnetworkmodel. Qnly the best among the parents ahddrenwere
kept for the next generation, i.eferior solutionswere culled to maintairconstant
population size. We terminatedir GA after 500 generations for populations of 100
and after 1000 generations for populations@fresulting in 5x 10" (non-unique)
solutions generated.

NEURAL RELIABILITY ESTIMATION

For this research, a backpropagation neuedivork was developed to estimate the
reliability of single k-out-of n subsystems based dn n and n independentpart
choices and their associatetliability levels. The data set used tmin andtest the
neuralnetwork was chosemsing a full-factorial design dhe critical parameterg, n

and threeunderlying distributions (uniform, skewed-left asdewed-right) where
reliability ranged from O to 1. The skewed distributions were necessary to expose the
neural network to test cases with relatively high and low system reliability.

Using 8 as ampper bound fok andn, there are 198ifferent combinations
(8x8x3). Analytical calculations ok-out-of n reliability (using Equation 1) were
made for 5aandomly chosen instancts each cell in the factorial desigmsulting
in a total of 9,600 data vectors. 90% of these data vectors were useeufal
network training while the remainder were used for validation.

When considering performance aefficiency, the bestneuralnetwork was
found to consist of inputs fde and eachndividual part reliability (up to Nmay, One
hidden layer with 15 hidden neurons and a singlput (theestimation of subsystem
reliability). The resulting network had a mean absolute error of 0.00484 and an RMS
error of 0.00816 forestimating reliabilityover thevalidation set. This was an
excellent fit tothe analyticaldataand indicates thahe neuralnetwork model can
serve as a very acceptable function evaluator for the GA.

Although theneuralnetwork provided arexcellent fit,there isstill always
someerror associated with each prediction and some conditions must be introduced
on the use of theeuralnetwork as dunction evaluator.This approach can best be



applied ifthe constraint is somewhat “soft” asthall deviations can be allowed, or
alternatively, a pseudo-constraint can be determinadaiyng a smaltonservative
adjustment to the constraint to assure thabtignal constraint is met even if there
is a small violation of the pseudo-constraint.

EXAMPLES AND RESULTS

We first considered a system with raliability requirement of0.80. For 6
subsystemghere weran = 10 differentpartchoices andh,.x = 8. Table 1 presents
the reliability values and costs associated with each component alternative. There are
greater than 6.8 10° different possible design configuratiomghile our GA search
examined < 5 10" solutions. The system hassignificantneed for redundancy, as
indicated by the values &fin the table, and is a complex combinatorial problem.

By varyingthe size ofthe population and theslative percentage direeding
and mutation, we obtained different results (T&})le Foreach algorithm, 8 different
random number seedgere used, and theinimum cost, meancostand standard
deviationare shown. It i®vident thatthe GA was robust across the parameter
alterations tested. Because of #ime ofthe problem, theptimum solution could
not beenumerated, however when generatingillion random solutions, the best
solution of 1308 found by the GA was 4.5 standard deviations froméhe feasible
random solution (p = 0.0001%).

We wanted to more stringently evalusite results obur GA searchusing
the neuralnetwork infunction evaluation, so we selectéte bestcombination of
parameters and developed saaller test problem, consisting othe first two
subsystems listed in Table JAll other problem specifics remaindgtie same. The
search space of th@naller problemwas 1.9x 10° and we enumerated find the
optimal solution. We ranur GAwith 10 different seeds, arall converged to the
optimal design configuration within 1000 generations.

Table 1. Reliability Values and Costs for Each Component for Test Problems.

Part Alternatives - Unit Reliability
subsystem k 1 2 3 4 5 6 7 8 9 10
1 4 0.98 0.93 0.73 0.72 0.71 0.70 0.66 0.62 0.60 0.35
2 2 0.93 0.92 0.89 0.86 0.84 0.81 0.61 0.43 0.39 0.34
3| 1] o094 08 08 076 073 062 060 059 034 031
4 1 0.93 0.67 0.63 0.62 0.62 0.48 0.41 0.41 0.39 0.32
5 2 0.95 0.95 0.90 0.86 0.67 0.66 0.64 0.54 0.38 0.38
6 3 0.96 0.85 0.84 0.76 0.75 0.66 0.65 0.61 0.50 0.48
Part Alternatives - Unit Cost
subsystem k 1 2 3 4 5 6 7 8 9 10
1 4 95 86 80 75 61 45 40 36 31 26
2 2 137 132 127 122 100 59 54 41 36 30
3 | 1] 18 113 108 59 54 49 45 35 30 25
4 1 149 84 74 69 64 58 38 31 26 21
5 2 131 120 103 93 60 43 36 31 26 21
6 3 149 104 96 79 45 40 35 30 25 20




Table 2. Variations of Genetic Algorithm Parameters Used on Larger Test Problem.

#Gen. | Popul- | Breed %/ Mut. Min. Cost Avg. Cost Std. Dev. Coef. Variation
ation %
500 100 50/50 1318 1348.63 25.46 0.0189
1000 50 50/50 1308 1337.50 21.76 0.0163
1000 50 75/25 1308 1375.75 40.72 0.0296
1000 50 25/75 1318 1374.34 32.22 0.0234

CONCLUSIONS AND FUTURE WORK

We have formulated ansted aunique approach tthe optimization ofcomplex
reliability designproblems using a GA and a neuratwork approximation of the
system reliability. Clearlynore research is needed on #ffectiveness and relative
efficiency of this approach. We are working on a matdficult “all terminal
network” reliability problem wheréhe system reliabilitycannot be calculatedirectly
and must be simulated. Vége also pursuing laybrid objective function evaluation
approach where the neural netwestimation is usedarly inthe search, and a more
exact method is used directly in later phases of the search.
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