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Static neural network process models: considerations and case studies

D. W. COIT² , B. T. JACKSON³ and A. E. SMITH³ *

Neural networks are beginning to be used for the modelling of complex manu-
facturing processes, usually for process and quality control. Often these models
are used to identify optimal process settings. Since a neural network is an empiri-
cal model, it is highly dependent on the data used in construction and validation.
Using data directly from production ensures availability and ® delity, however, the
samples may not re¯ ect the entire range of probable operation and, in particular,
may not include the optimal process settings. Supplementing production data
with observations gathered from designed experiments alleviates the problem of
overly focused or incomplete production data sets. This paper considers practical
aspects of building and validating neural network models of manufacturing pro-
cesses, and illustrates the recommended approaches with two diverse case studies.

1. Introduction

Neural networks have many attractive properties for the modelling of complex
production systems: universal function approximation capability (Gong 1986,
Fahlman and Lebiere 1990), resistance to noisy or missing data, accommodation
of multiple non-linear variables with unknown interactions, and good generalization
ability. For manufacturing processes where no satisfactory analytic model exists or
where a low-order empirical polynomial models is inappropriate, neural networks
are a good alternative approach. Recent overviews of neural network applications in
manufacturing were compiled by Udo (1992) and Zhang and Huang (1995) who cite
such diverse venues as milling, metal cutting, injection moulding, arc welding and
spray painting, among others. Other manufacturing process modelling applications
can be found in (Andersen et al. 1990, Sathyanarayanan et al. 1992, Hou and Lin
1993, Smith 1993, Wang et al. 1993, Lampinen and Taipale 1994, Yang et al. 1994).
One motivation for development of neural network process models is that they do
not depend on simpli® ed assumptions such as linear behaviour or production heur-
istics. If a trained neural network model represents the process with ® delity, the
neural network can be used to optimize controllable process parameters with
regard to some cost metric that measures ® nal product quality, rework and scrap-
ping, labour during production, or use of raw materials. Optimization takes place by
searching over controllable (control) variables for the combination of settings that
yields the best performance on the cost function. This can be done by ® xing the
uncontrollable (state) variables at their value or range for the particular time, day,
product design, machine and/or operator that are the expected conditions.
Alternatively, optimization could be done by letting the state variables become a
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search dimension so that their values complement the optimized values of the control
variables. This approach, while it might yield a better process outcome, assumes
some degree of control over the state variables. Note that the process models refer-
enced and discussed in this paper are static models, that is, there is no explicit e� ort
to capture the dynamics of the process. Static models are applicable to processes
where the settings for each piece (or lot) are determined up front, and are not altered
for that piece (or lot) using feedback during the process.

A neural network predictive model has the advantages listed above; however,
there are drawbacks as well. A primary concern is that neural networks usually act as
`black boxes’ , and moreover, are empirical black boxes. While process knowledge
and physical relationships may guide the formulation of the neural network model,
most ® nal models are too complex to explicitly interpret the model components, e.g.
interpreting network weighted connections as is done with interpreting slope and
intercept coe� cients in regression models. To assure con® dence in a black box
model, the model must be constructed and validated using data which adequately
and accurately re¯ ects the process domain. This domain will often include settings
and process interactions not commonly seen during production (novel, rare or
extreme values), but which it is imperative that the neural model properly handle.
This is especially important when the model is used for process optimization, as it is
possible that the best combination of process and/or state variable settings will not
be found among existing process data. This is also important for process assurance,
where the network needs to react properly to uncommon situations to move the
process towards normal operating conditions. In such cases, it is proposed that the
data used to construct the model should include the results obtained from design of
experiments (DOE) along with production data.

This paper is aimed at the technology transfer aspects of neural networks to
manufacturing process modelling and optimization by focusing on two highly
non-linear processes where there are many variables which a� ect the ultimate out-
come. These are wave soldering of printed circuit boards (PCBs) and slip casting of
large ceramic products. Both processes had been controlled using simple regression
models and heuristics, yet the manufacturers experienced undesirable levels of
rework. Optimizing the processes by trial and error was impractical due to resource
and time constraints, so neural models were developed to be used in process opti-
mization. After a discussion of important considerations for building useful neural
network process models, the balance of the paper focuses on these two case studies
with attention to the interleaving of production data with experimental data.

2. Considerations of neural manufacturing process models

The ® rst step in building manufacturing models is to identify the outcome vari-
able(s) of interest. These may be ® nal or intermediate measures of the product, such
as tolerance adherence, or attribute or variable defect measurements. The outcome
variables may also be surrogates for the cost metrics of interest, that is, good indi-
cators of the cost metric and more expedient to collect. The surrogate approach was
used in both case studies of this paper for reasons discussed later. Once outcome
variables have been identi® ed, the process and state variables a� ecting them must be
identi® ed. These may be numerous and will usually fall into general categories of
process or machinery settings, ambient conditions, workforce variables, raw material
properties, temporal or sequential considerations, and product design aspects. The
modeller will want to include those variables which most impact the process as it
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may not be feasible to include all variables, and if data integrity is in doubt, addi-
tional variables may cause erroneous neural predictions or classi ® cations.

Obviously of concern is the size of the data set. More data are bene® cial to neural
models, as the data are used to both construct and validate the model prior to
operation in the production environment. How much data is adequate to model a
process is an extremely di� cult and problem-speci® c dilemma. The information
imparted to the empirical model by each additional observation (each increase in
sample size) is generally monotonically diminishing if the data are sampled uni-
formly from a population. To minimize the uncertainty in the prediction model,
the information content of the data set used to construct the model should be
maximized. This implies that data which are non-redundant and which are relevant
to the process prediction will impart the most additional information. A designed
experiment can be used to choose data which are most bene® cial from an informa-
tion theoretic perspective. There have been a number of discussions on the subject of
information theory and neural network training in the literature; Klir and Folger
(1988) provide an excellent introduction to information theory and speci® c aspects
are contained in Ahmad and Tesauro (1989), Mhaskar (1993) and Ratsaby and Meir
(1996).

Often, it is not possible to collect large data sets because of the cost and time
required. If the data set is sparse relative to the number of input and output variables
and the complexity of the process to be modelled, special attention must be paid to
model training and validation. Over® t is often a symptom of a small data set (White
1989, Geman et al. 1992) and can be mitigated by terminating training before the
error on the training set is minimized (Twomey and Smith 1993). Validation of
models built using small data sets can also be improved by exerting more computa-
tional e� ort and performing a data set resampling, such as cross validation, jackknife
or bootstrap (Efron 1982, Gong 1986, Twomey and Smith 1998). With these
methods, the accuracy of both the network model and the validation are improved
because the entire data set is used for both training and testing. These resampling
validation methods are beginning to be used in the neural network community
(Weiss and Kapouleas 1989, Huston et al. 1994, Twomey et al. 1995) and may be
especially applicable to manufacturing process modelling where data is often costly
to obtain. A resampling validation method was used in the ® rst case study in this
paper due to the relatively small data set.

2.1. Aspects of production data
There are attributes of production data which are attractive. First, it is almost

always available in some form, and often in generous quantities. Production data is
usually gathered as a matter-of-course, so additional data gathering costs are
avoided. Production data includes the e� ects of the actual production environment.
There is no bias towards certain operators, certain procedures or certain machines.
For better or worse, the production data includes all the variances encountered
during manufacture, ensuring ® delity with operational conditions.

The attributes just cited have their corresponding drawbacks. First, the data may
be gathered without rigour, thus including incorrect, erroneous or inexact observa-
tions. Some of these may be spotted during an analysis for outliers, but more often it
will be impossible to distinguish g̀ood’ observations from `bad’ in the mass of multi-
variate production data. Second, the production data re¯ ects the process as experi-
enced. That is, the products, settings, workers, machines, ambient conditions, etc.
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are those most often encountered during the immediate past. If the production
environment has long term shifts, or might experience future changes, production
data alone will be inadequate.

2.2. Aspects of designed data
Designed data is not simulated or fabricated data; it is actual observation data,

but collected under prespeci® ed conditions. When an experiment is designed and
performed, the data collected is much more tightly controlled. Exact levels of the
input variables (the treatments) are stated, experiments can be blocked to avoid
confounding, experiments may be replicated (tests of repeatability) and the sampling
distribution is controlled by the designer. Choosing an experimental design to
accommodate constraints on sample size and experimental conditions, while also
considering interactions, replications and non-linearities, is an important ® rst step.
Experimental design for neural network modelling has not been the explicit subject
of many papers in the literature; however, a Latin hypercube approach is described
by Lunani et al. (1995). Experimental data is often collected with more care than
production data. Only a single operator, machine or ambient condition may parti-
cipate. Special tests or measurements might be made which would be impractical
during production. Data can be analysed during the course of the experiments to
modify the experimental design or the data collection procedures, as needed.

Again, these attributes have undesirable aspects as well. First, designed experi-
ments are usually costly and time consuming. If they are done on production lines,
the lines will not be available to produce product. The products manufactured
during experimentation will often be scrapped. The conditions may substantially
di� er from production. For example, tests done in a laboratory setting may be
much less variable or contain certain biases not re¯ ective of the manufacturing
setting.

2.3. Combining production data with experimental data in neural networks
To mitigate the problems describe above, a combined data set is recommended.

The production data can be ® rst assessed for representation of past and expected
future values. If the production data set is de® cit (few or no observations) with
regard to certain ranges or interactions, this de® ciency can be corrected with experi-
mental data. If the repeatability of the process is unknown, this can be explicitly
studied with designed experimentation. It is desirable to characterize not only the
variability of the outcome cost measure due to changes in the process, but also the
natural variability of the process. Adding experimental data will increase the data set
size, but more importantly, will increase the information content of the data set.
Extrapolation with any empirical model is imprudent, so use of the model should be
con® ned to data ranges used in model construction and validation.

A possible result of combining production data with experimental data will be an
unbalanced training set. For example, if 1000 production observations are available
and 50 designed points are taken, the production data may overwhelm the designed
data during neural network training. This will especially happen when using a global
training procedure such as backpropagation (Werbos 1974, Rumelhart et al. 1986)
where all trained weights are a� ected by all training samples and each training
observation is (normally) given equal probability mass. A supervised training algor-
ithm that is local, such as radial basis function networks (Moody and Darken, 1989,
Poggio and Girosi 1990, Park and Sandberg 1981, Leonard et al. 1992) or cascade
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correlation networks (Fahlman and Labiere 1990) or a self organizing approach such
as counter-propagation networks (Whittaker and Cook 1995), will be less susceptible
to dominance by the production data. When using global training, the dominance
can be eliminated by arti® cially in¯ ating the probability mass placed on the rarer
observations either through:

(1) Direct copying of rare observations to increase their numbers in the training
set when using order based training presentation;

(2) Using a probabilist ic selection and presentation for training and increasing
the probability mass placed on rarer observations (Derouin and Brown 1991)
or;

(3) Copying the rare observations and also introducing a small amount of white
(Gaussian) noise into the output and/or input(s). This procedure has been
sometimes noted to improve the generalization ability and robustness of the
® nal model (Minnix 1991).

There have also been many adjustments to the learning process of supervised
neural networks to improve the models in certain circumstances, such as iterative
training (Sun et al. 1995) or backpropagation speed-ups (Piramuthu et al. 1993).
These improvements primarily focus on reducing the computational time needed to
train a backpropagation network (sometimes at the expense of accuracy in the ® nal
network); since training time was not an issue for the case studies of this paper, a
conservative and conventional training approach was used. An additional considera-
tion in these case studies was the ease with which the trained network could be
translated to compiled source code for use in the plants, further motivating the
use of the straightforward backpropagation algorithm.

The next two sections of the paper detail case studies on wave soldering of PCBs
and slip casting of ceramics that use the approaches and procedures described.
Though each manufacturing process and data characteristics are quite di� erent
from the other, the generic approach is appropriate to both. Di� erences in the
experimental facilities, the available production data and the anticipated complexity
of the process model were accommodated by customized experimental designs for
each manufacturer. The de® cits in production data and the values for the designed
experiments were identi® ed using the expert knowledge of the process engineers in
each case study. These projects have been completed and the resulting neural process
control systems have been implemented for use by plant personnel.

3. A wave soldering case study

The wave solder process involves (1) ¯ uxing, (2) preheating, (3) soldering using a
wave of solder, (4) cleaning and (5) quality control as shown in ® gure 1. The process
must be adapted according to the PCB design (mass, size, component density, com-
ponent type, etc.) to optimize quality, viz. minimize solder connection defects.
Primary controllable process parameters are the preheater temperatures and the
conveyor belt speed. Circuit card manufacturers produce products of great diversity
in small lot sizes, compounding the selection of good process settings by trial and
error, or by using linear models to select process settings based on predicted average
surface temperature of the circuit card (Scheuhing and Cascini 1990, Brinkley 1993).
These models can work well, but are limited by their assumption of simple functional
form. Malave et al. (1992) applied a neural network approach to wave soldering by
using circuit card design characteristics as input variables and preheater tempera-

Static neural network process models 2957

D
ow

nl
oa

de
d 

by
 [

A
ub

ur
n 

U
ni

ve
rs

ity
] 

at
 1

3:
39

 0
5 

M
ar

ch
 2

01
4 



tures and line speed as the output variables. This implicitly assumes that the current
process settings are optimal and they were unable to achieve successful results.

The approach taken in this case was to model the single most important deter-
minant of soldering quality ± summary of thermal condition (mean and standard
deviation of surface temperature, and mean rate of change of surface temperature) of
the PCB as it enters the solder wave. Thus, known physical characteristics of the
process were incorporated into the model by the selection of the thermal variables to
be modelled. Thermal condition at the wave is only observable through special
experimentation, as described below, and it is not feasible to measure the thermal
characteristics of each PCB during production. To measure thermal condition, tem-
perature probes were attached on top of the PCB, and fed into two MOLE (multi-
channel occurrent logger evaluator) data recording devices. This setup allowed
accurate sampling at 1 Hertz of 8 to 10 temperatures at distinct locations on the
PCB. Figure 2 presents a typical thermal pro® le of the wave soldering process,

2958 D. W. Coit et al.

Figure 1. Wave solder process.

0

20

40

60

80

100

120

140

160

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Time

P
ro

b
e 

T
em

p
er

at
u

re
 (

C
)

Preheater 1

Preheater 2

Wave

Figure 2. Typical thermal pro® le of the wave soldering process.
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showing the temperature of each probe as the PCB travels through ¯ uxing, preheat-
ing and the solder wave. The temperatures were dependent not only on the wave
solder process settings (preheater temperatures and conveyor belt speed), but also on
the design characteristics of the PCB itself (e.g., size, thickness, type and distribution
of component). Therefore, the choice of probe locations was customized for each
PCB design so that both average temperature and temperature extremes, such as
those encountered near a heat sink, or near a large component, could be properly
characterized.

3.1. Production data
In this case study, even the production data had to be gathered especially for the

model. This is because detailed thermal condition of the circuit cards requires the
special testing apparatus described above, and cannot be done on an ongoing basis.
However, these special measurements were incorporated for a two month period into
regular production, where one or two PCBs per lot were instrumented and measured.

Using the experimental setup described, the manufacturer gathered 44 produc-
tion observations of thermal production data showing the design speci® cations of
each PCB, the settings of the four preheaters and the line speed. Because of the small
lot sizes, a good variety of PCB designs were measured. Missing from the production
data was the e� ect of alterations in preheater temperatures and line speed for a given
PCB design, and an assessment of natural process variability.

3.2. Experimental data
For the wave soldering process, the independent variables can be classi® ed as

card design parameters or process settings. The process parameters (conveyor belt
speed and four preheater temperatures) could be fully and independently adjusted
over the range of possible process levels. It was not, however, as easy to adjust the
design variables with the same degree of latitude. For example, the number of
ground and power planes and the cumulative component mass are both variables
which will a� ect PCB surface temperature, but they could not be independently
adjusted because there was a small number of PCB designs available for testing.
Therefore, the DOE was concerned with altering the ® ve process settings only for
two typical PCB designs. Conserving the number of experimental runs was impor-
tant because the experiments were conducted on the actual production equipment,
which precluded production during the experiments. A bene® t of this setup was that
the conditions observed and personnel involved during experimentation were the
same as those which would be experienced during production.

It was important to investigate non-linear e� ects, but there was an insu� cient
number of test cards to support a comprehensive three-way or four-way fractional
factorial design. As a compromise, a composite star experimental design with fewer
test trials (56) was chosen as presented in table 1. As indicated in the table the
experimental runs were randomized. This design collects data at ® ve levels for
each independent variable and allows for the characterization of linear e� ects,
linear interactions and quadratic e� ects, but will not model any interaction e� ects
involving the quadratic terms. Two typical, but dissimilar PCBs were selected to
characterize the design limits of the production cards. The complete experimental
design was performed separately for each PCB. The only replication occurred at the
origin (all factors set to 0 level); however previous experiments had indicated that the
process was very repeatable, i.e. had minimal natural variability.
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3.3. Wave solder neural models
A combined data set of production data (n = 44) and the DOE data (n = 56) was

used for neural network development. Since the number of observations of each data
set were similar (44 and 56), no compensation was needed to eliminate the e� ects of
one data set overwhelming the other during backpropagation training. A set of
neural networks was trained to predict the temperature condition of the circuit
card at the banks of preheaters and at the solder wave as a function of fourteen
inputs that described card design parameters (length, width, thickness, card mass,
component mass, number of layers, ground planes and connections, presence or
absence of a heat sink) and process settings (four preheater temperatures and con-
veyor belt speed). The temperature condition was characterized by mean tempera-
ture, standard deviation and rate of change (temperature gradient) at the wave.
Separate models were developed to predict each of these temperature condition
metrics (mean, standard deviation, gradient) calculated over the 8 to 10 probes
(described in more detail in Coit et al. 1994).

2960 D. W. Coit et al.

Preheat 1 Preheat 2 Preheat 3 Preheat 4 Speed Run

- 1.664 0 0 0 0 26
- 1 - 1 - 1 1 - 1 5
- 1 - 1 - 1 - 1 1 19
- 1 - 1 1 1 1 21
- 1 - 1 1 - 1 - 1 23
- 1 1 - 1 - 1 - 1 7
- 1 1 - 1 1 1 16
- 1 1 1 1 - 1 3
- 1 1 1 - 1 1 4

0 - 1.664 0 0 0 25
0 0 - 1.664 0 0 6
0 0 0 - 1.664 0 22
0 0 0 0 - 1.664 13
0 0 0 0 0 1
0 0 0 0 0 15
0 0 0 0 1.664 11
0 0 0 1.664 0 2
0 0 1.664 0 0 17
0 1.664 0 0 0 9
1 - 1 - 1 1 1 10
1 - 1 - 1 - 1 - 1 24
1 - 1 1 1 - 1 12
1 - 1 1 - 1 1 28
1 1 - 1 - 1 1 8
1 1 - 1 1 - 1 20
1 1 1 - 1 - 1 14
1 1 1 1 1 27

1.664 0 0 0 0 18

Preheat: - 1.664 = 400Ê F Speed: - 1.664 = 1.4 ft /m
- 1 = 460Ê F - 1 = 1.8 ft /m

0 = 550Ê F 0 = 2.2 ft /m
1 = 640Ê F 1 = 2.6 ft /m

1.664 = 700Ê F 1.664 = 3.0 ft /m

Table 1. Experimental design for the wave soldering process.
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Since the combined data set was still relatively small, a resampling approach to
training and validation was adopted. A ® ve fold cross validation (also called the
jackknife validation method) of the 100 observations of the combined data was used.
Grouped cross validation divides the available data n into k groups, each of size n/k.
k models are then constructed, each using all but one of the data groups for model
construction, and the held out group for the kth model is used for validation. A ® nal
model, which is used for application, is built using all the data. Prediction error of
the ® nal model is estimated using the mean of testing set errors of the k grouped
cross validation models. Grouped cross validation uses all available data for both
model construction and model validation, but requires the construction of k + 1
models, i.e. training k + 1 neural networks. The error is estimated as the mean
squared error over all k networks for each point in the testing set as shown in
equation 1:

ErrorGCV =
1
n

k

l=1

n /k

j=1
[ylj - ^f [T(k) ,xlj]]2, (1)

where ^f [T ,x]is the neural network output for input vector x and y is the actual
output. Using this approach, ® ve neural networks were trained, each using 4/5 of the
data set for training and 1/5 for testing. A di� erent 1/5 for testing was used for each
cross validation network. Then a ® nal neural model was built using all 100 observa-
tions for training. This ® nal model is actually used in production, while the ® ve cross
validation networks are used to estimate the prediction error of this ® nal network
(which cannot be calculated directly because all observations are used in its con-
struction). Therefore, a total of 18 networks were developed; ® ve cross validation
networks plus one ® nal network for three di� erent outputs (mean, standard devia-
tion and rate of change of surface temperature). An ordinary backpropagation
algorithm with a smoothing factor (equation 2) and a unipolar sigmoid transfer
function was used for all networks, which were fully connected with one hidden
layer.

D wt,i = h ( a D wt- 1,i + (1 - a )oi d i), (2)

where D wi is the change in weight connecting to neuron i, oi is the output of neuron
i, d i is the error of the output of neuron i times the derivative of the sigmoid function,
h is the training rate (0.10) and a is the smoothing term (0.90) for training iteration t.

Training terminated when the marginal improvement in the error over the train-
ing set became close to zero. The number of epochs required to reach this conver-
gence point varied with the network, ranging from 200 to 7700. A variety of network
architectures and training parameters were tested, before the settings were ® xed.
Network training was not sensitive to learning rate or exact termination point,
however, it was somewhat sensitive to the number of hidden neurons.

The network architectures and results are shown in table 2. It can be seen that the
networks do a good job of predicting thermal condition, especially mean card tem-
perature. When all three predictions were combined, a good categorical assessment
of solder quality could be made. Another neural network was trained to take the
prediction of the three thermal indicators at the wave and predict category of solder
quality (excellent, good, fair). This ® nal neural network performed at a rate of 82.6%
correct predictions for the test set.
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4. A slip casting case study

In contrast to the wave solder process, slip casting of large ceramic pieces is
labour intensive with many controllable and uncontrollable variables. Product
design does not change frequently, but process conditions can change substantially
from day to day. The manufacturing steps consist of the following: (1) preparation of
slip, (2) casting slip in a mould, (3) drying the slip and removing the mould, (4) air
drying of cast piece (5) spray glazing the dried product, (6) ® ring the glazed product
and (7) inspection of the ® nished product. Step 2 of the process is slip casting, where
a suspension (the slip) is poured into a mould and the liquid phase is separated by
capillary phenomena, leaving a solid piece that takes the shape of the mould (Lambe
1958). The primary causal factor for cast fractures and/or deformities is the distribu-
tion of moisture content inside the cast before ® ring in a kiln. When the moisture
di� erential, or moisture gradient, inside the wall of the cast is too steep, it results in
stress di� erences that cause the piece to deform and eventually fracture. In order to
have a good cast, and therefore a solid, durable product, the moisture gradient
should be as uniform as possible. Another important output measure is cast rate,
which is actually the thickness of the cast achieved during the time the slip is in the
mould. A larger cast rate will result in more e� cient production, as cast time
decreases.

The quality of the cast and the cast rate depend on the chemical properties of the
slip, the ambient conditions in the plant and the mould conditions. Ceramic engin-
eers run a series of tests that emulate the behaviour of the slip during casting. On the
basis of these tests the engineers can modify the slip’s composition to produce a
f̀orgiving’ slip. An ideal forgiving slip compensates for the e� ects of other, less
controllable, variables involved in slip casting including ambient conditions and
mould conditions. The manufacturer in this case study routinely measured ten slip
property variables, two ambient variables, time in the cast and two outcome vari-
ables. These are named and de® ned in table 3.

Although there have been a few computer-aided improvements in the slip casting
process, such as an expert system aimed at slip particle e� ects (Dinger 1990) it still
remains basically an art. This is because there are no satisfactory analytic descrip-
tions of casting dynamics. It is a� ected by many human and non-human variables,
and the e� ect of the interdependencies of these variables are only manifested at the
end of the process, after the ® ring of the cast. This provided the motivation for the
project to develop a predictive model of the slip casting process which would allow
the manufacturer to optimize controllable process parameters without wasteful and
time consuming test casts.
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Training set Test set

Output MAE % MAE MAE % MAE
Network

architecture

Mean temperature 5.22 5.57 6.63 7.19 14, 10, 1
Temperature gradient* 0.2397 17.55 0.3176 24.02 14, 9, 1
Temperature standard 1.92 20.95 2.44 27.26 14, 6, 1

deviation

* In Ê C second.

Table 2. Performance of predicting PCB thermal condition averaged over ® ve cross valida-
tion networks.
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4.1. Production data
The manufacturer had over two years of daily production describing the par-

ameters of table 3 for the quality metric of cast rate, and nearly one year of the same
data with the quality metric of moisture gradient. Therefore, the production data set
was relatively large and formed the sole basis of preliminary neural models as
described in Martinez et al. (1994). Although a variety of process settings was
included in these data sets, extreme values of three key parameters were missing.
Two were extreme ambient conditions (very high and very low temperatures, and
very high and very low humidities), both state variables. The third was the sulfate
content in the slip, which is adjusted daily to achieve the desired f̀orgiving’ slip. In
order to optimize this process, which is substantially dependent on these three vari-
ables, a neural model which could operate e� ectively over an expanded range of
values was required.

4.2. Experimental data
To explore the extreme ranges of sulfate, plant temperature and plant humidity,

designed experiments were performed. This experimentation was also used to gauge
the e� ect of mould condition on the cast. Whether the mould is relatively wet (old) or
relatively dry (new) will a� ect the cast. Since the manufacturer did not gather pro-
duction data on mould condition, this factor could only be explored through experi-
mentation. For the slip casting operation, a traditional fractional factorial design,
presented in table 4, was developed with ® ve factors at two levels. The main concern
was to conserve test casts, as they were quite expensive to develop and had to be
scrapped. This design is a 2V-I design with the ability to model two-way and three-
way interactions, but no non-linear terms. The experimental constraints di� ered
from the wave soldering case study, as here the experimental products were produced
by personnel not normally involved in daily production, and involved pouring the
slip from buckets rather than the hoses which are used in production. Therefore,
there could be confounding of the results since these conditions were somewhat
dissimilar from production conditions.
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Parameter What does it measure?

Cast time The time the liquid slip is left in the mould before draining.
Slip temperature The temperature of the slip.
Brook® eld ± 10 rpm Viscosity of the slip at 10 revolutions per minute.
Brook® eld ± 100 rpm Viscosity of the slip at 100 revolutions per minute.
Initial reading Initial slip viscosity (taken at 3 1

2 minutes).
Build up Change in slip viscosity from initial reading (taken after 18 minutes).
Filtrate rate The rate at which the slip ® ltrates.
Gelation Thixotropy (viscosity versus time).
Slip cake weight Approximation of the cast rate without considering a mould.
Cake weight water

retention
Moisture content of the cake. See slip cake weight.

Sulfate Proportion of soluble sulfates in the slip.
Temperature The temperature of the plant.
Relative humidity % The humidity level of the plant.
Cast rate Inches of cast build up during a speci® ed time interval, 50± 80 min.
Moisture gradient Quantitative measure of the moisture di� erential in a cast wall.

Table 3. Slip casting process parameters.
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The high (+) and low (- ) levels were selected to characterize the expanded range
over operating conditions found in the plant. As indicated in table 4, the sulfate
content is confounded with the day number. This was undesirable but necessary,
because it was not possible to concurrently maintain two types of slip given the
constraints of the plant. Each run consisted of casting a large piece for a predeter-
mined time, draining the excess slip and then measuring the cast rate and the moist-
ure gradient at three locations of each piece and averaging them. Two replications
were performed for each run.

4.3. Slip casting neural models
Two neural networks were developed to predict the cast rate and the moisture

gradient as a function of the variables listed in table 3. Since the data sets were large
(n = 1000 for cast rate and n = 350 for moisture gradient), a resampling approach
was not needed, and the more common random splitting of the data into a testing set
(20%) and a training set (80%) was used. The experimental data set was small
relative to the production data set, so it might seem that some arti® cial increase in
the sampling weight of the experimental data was needed. However, the experi-
mental data was taken only from the very extreme ranges of the variables studied.
Therefore, the only information the neural models had on the output variables’
behaviour in these extreme ranges was from the experimental data, thus arti® cial
in¯ ation of its numbers during training was not needed.

All networks were developed and trained in the same manner as in the wave
soldering project, the only di� erence being the network architectures and the learn-
ing rate, h , which was increased to 0.30. The cast rate neural network had thirteen
inputs (ten slip variables, two ambient variables and cast time), two hidden layers,
with eight hidden neurons in each layer, and a single output. Training converged
after 2600 epochs. It was able to predict the cast rate with a normalized mean
absolute error of 3.20% on the test set of 200 observations. The mean moisture
gradient neural model was developed in a similar way using the same input variables,
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Day
number

Sulfate
content

Relative
humidity

Plant
temp.

Cast
time

Mould
condition

Run
number

1 + + + + + 5
1 + + + - + 3
1 + + - + - 4
1 + + - - - 2
1 + - + + - 8
1 + - + - - 7
1 + - - + + 1
1 + - - - + 6
2 - + + + - 14
2 - + + - - 16
2 - + - + + 12
2 - + - - + 9
2 - - + + + 10
2 - - + - + 15
2 - - - + - 13
2 - - - - - 11

Table 4. Experimental design for the slip casting process.
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but with a single hidden layer of eight neurons and a smaller combined data set of
350 observations. It converged after 2000 epochs with a normalized mean absolute
error of 6.04% on the test set of 70 observations. These two neural networks were
used as the foundation for a larger system which selected optimum values of con-
trollable variables given ® xed values of the state variables. Optimum is the sense of
maximum cast rate, as predicted by one neural network, and minimum moisture
gradient, as predicted by the other neural network.

5. Conclusions

When using a neural network to control and optimize a manufacturing process,
the integrity and balance of the training and validation data sets dictate the quality
of the resultant model. Optimization thoroughly searches the feasible region of
allowable process settings, and therefore, unbiased and accurate predictions are
essential for combinations of process settings which may not have been regularly
encountered during historic operating scenarios. The use of experimental design
strategies is often necessary to provide the required complementary data to the
production data.

Two diverse manufacturing case studies were presented. While the manufacturing
processes and the speci® c experimental designs were di� erent, the overall modelling
procedure was similar. Development of sound models was accomplished by ® rst
de® ning interim surrogates for product quality, and then by determining problem-
speci® c experimental designs. The experimental data was combined with the produc-
tion data, and neural networks were trained and validated on the combined data set.
After careful validation of the prediction accuracy over the entire range of antici-
pated operating conditions, the ® nal neural network models have been implemented
at the manufacturing plants. Assurance and user con® dence were vital considera-
tions of implementation because of concerns about using opaque models to support
critical decision making. Inappropriate, sub-optimal and incorrect decisions based
on ¯ awed neural predictions would not be recognized until the decisions had been
implemented and caused undesirable outcomes in the plant or products. This was
circumvented by including data from all anticipated ranges of production operation.
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