Toward Model-Driven Engineering Principles and
Practices to Support Model Replicability

Joseph Ledet®, Alejandro Teran-Somohano®, Zachary Butcher
Levent Yilmaz ¢, Alice E. Smith?,
“Computer Science and Software Engineering
bIndustrial and Systems Engineering
Samuel Ginn College of Engineering
Auburn University

Halit Oguztiiziin, Orcun Dayibas, Bilge Kaan Goriir
Department of Computer Engineering
School of Engineering
Middle East Technical University

Keywords: Model Replicability, Model-driven Repro-
ducibility, Transformation-driven Replication, Experiment
Modeling

Abstract

Recent years have seen a proliferation of the use of simula-
tion models in computational science. Most of these models
have never been independently replicated by anyone but the
original developer. Furthermore, there is a growing credibility
gap due to widespread, relaxed attitudes in communication
of experiments, models, and validation of simulations used
in computational research. We examine various issues and
challenges involved in model replication and simulation ex-
periment reproducibility. Model-driven simulation engineer-
ing principles and model transformation concepts are adopted
as solution strategies to improve replicability of models and
reproducibility of experiments. A process model, an archi-
tectural framework, and an implementation strategy is intro-
duced to address identified issues in simulation experiment
management and model replication.

1. Introduction

Reproducible research is a fundamental principle of the
scientific method (Morin et al., 2012; Fomel & Hennenfent,
2007). It refers to the ability to reproduce the experiments,
and, if needed, independently replicate computational arti-
facts associated with published work. Emergence of repro-
ducibility as a critical issue is based on growing credibility
gap due to wide spread presence of relax attitudes in commu-
nication of the context, experiments, and models used in com-
putational science (Mesirov, 2010; Stodden, 2010; Donoho,
Maleki, Rahman, Shahram, & Stodden, 2009; Peng, 2009).

Replicability involves implementation of a conceptual
model in a simulation study that is already implemented by

a scientist or a group of scientists. Unlike reproducibility of
results by (re)using the original author’s implementation via
executable papers (Nowakowski et al., 2011), workflow sys-
tems and repositories (Davidson & Freire, 2008; Freire, Bon-
net, & Shasha, 2011), or provenance-based infrastructures
(Koop et al., 2011), replications creating a new implemen-
tation differ in some way (e.g., platform, modeling formal-
ism, language) from the original. Yet the original and repli-
cate are sufficiently similar so that experiments conducted
on both generate results that achieve pre-specified similar-
ity criteria: they cross-validate. The premise of independent
replication is based on the following observation. Although
eventual exposure to the original model and its source code
is important, if done too early, it may result in “groupthink”
whereby the replicater, possibly unintentionally, adopts some
of the original developer’s practices: features of the origi-
nal model are essentially “copied”. In so doing the replicater
has failed to maintain scientific independence. In other situ-
ations, replicaters may have different implementation tools
and infrastructure, or may be unfamiliar with the original
model’s platform. Therefore, providing the ability to imple-
ment a conceptual model under specific experimental condi-
tions and analysis constraints across multiple platforms and
formalisms is critical to lowering the barrier to — and en-
abling broader adoption of — the practice of reproducibility.
Furthermore, by ignoring the biases of the original model and
replicating a model, differences between the conceptual and
implemented models may be easier to observe.

To facilitate replicability, it is critical to provide the larger
community with an extensible and platform neutral inter-
change language for specification, distribution, and trans-
formation of model, simulator, and experimental frame el-
ements. Support for — and a lowered technical barrier to —
independent replication will increase trust in computational
experimentation. Cross-validation will demonstrate (or not)
that the original findings and observed results are not ex-

ceptional. Successful replications will strengthen the theo-
ries represented by the models. The objective of this article
is to present a technical strategy to streamline the replicabil-
ity of simulation-based computational research. The premise
of our proposed approach stems from integrating platform
neutral model, simulator, experiment design, and constraint
specification languages with software engineering advances
in model transformation to enable practical independent repli-
cation of computational research for cross-validation.

2. Related Work

Increasing number of computational science com-
munities are emphasizing the role and significance of
reproducibility. For instance, the MultiScale Modeling Con-
sortium of the Interagency Modeling and Analysis Group
(http://www.nibib.nih.gov/Research/IMAG)
promoted credibility in multiscale modeling in biomedical,
biological, and behavioral systems as a critical challenge.
Among the proposed strategies include executable papers
and scientific workflow environments. The Elsevier 2011
Executable Paper Grand Challenge provided a venue for ex-
ploring such practical and promising solutions. For instance,
the Collage environment (Nowakowski et al., 2011), enables
authors to seamlessly embed chunks of executable code
(called assets) into scientific publications and allow repeated
execution of such assets on underlying computing and data
storage resources. SHARE (Sharing Hosted Autonomous
Research Environments) is a web portal that enables authors
to create, share, and access remote virtual machines that
can be cited from research papers (Van Gorp & Mazanek,
2011). Gavish and Donoho (2011) introduce web and
cloud-computing oriented concepts, which exploit the web
infrastructure to achieve standard, simple and automatic
reproducibility in computational scientific research.

In addition to executable papers, the scientific workflow
systems research resulted in e-Science environments that im-
prove reproducibility. While scientific workflow systems and
repositories (Freire et al., 2011) such as Swift, Taverna, Ke-
pler, and Pegasus/Wings describe experiments at different
levels of abstraction and support reproducibility (Oinn et al.,
2004; De Roure, Goble, & Stevens, 2009), they often lack
support for tracing data, models, and computations to pub-
lished manuscripts. Vistrails (Koop et al., 2011), however, as
an open-source scientific workflow and provenance manage-
ment system, allows users to create papers and Web publi-
cations whose figures and results can directly be tied to the
computations that generated them. Sites like crowdLabs and
myExperiment also support the sharing of workflows which
describe computational workflows, data analyses, and visual-
izations. Crowdlabs also supports a Web-based interface for
executing workflows and displaying their results on a Web
browser. Code and text weaving systems such as Sweave and

Compendium also provide support for reproducing papers,
but rather assume availability of derived data to dynamically
generate contents of a manuscript. Both tools enable embed-
ding code in LaTeX documents in a way similar to the liter-
ate programming concept to create dynamic reports that are
updated automatically if data or analysis change. However,
text weaving tools do not provide packaging, distribution, in-
trospective access to specifications for dynamic workflow in-
terpretation, annotations, source files, dynamic updating for
consistency management, and traceability between research
artifacts encapsulated in a package. Ongoing efforts in exe-
cutable papers and workflow systems are critical and made
substantial advances toward reproducibility using the compu-
tational artifacts provided by the original developers. How-
ever, while reusing existing workflow and code scripts help
verify published results, they carry the biases of the original
implementation. Ongoing reproducibility work can be com-
plemented with new strategies that exclusively aim to sup-
port independent replication of a study. To this end, we adopt
a different perspective and unique approach to facilitate in-
dependent replication while streamlining cross-validation of
computational research.

3. Issues and Challenges in Model Replication
and Reproducibility

Replicating a simulation model in a target platform, possi-
bly under a new formalism, requires transforming an existing
representation into a behaviorally consistent version that can
be used to conduct at least the same experiments for the pur-
pose of the investigation. This requires the provision or gen-
eration of a platform-independent representation of both the
problem and the solution space. Filtering platform-specific
details while also focusing on aspects critical to replicating a
model in a new platform, one has to identify the minimal in-
formation needed to facilitate cross-validation after a model is
replicated. Manual mapping of a platform-specific model to
a target platform-specific representation is error-prone. Fur-
thermore, most developers are not familiar with the syntax
and semantics of multiple platforms and/or formalisms, re-
quiring automation of the process. High-level principles for
automating the replication of simulation models include the
following:

e Models must be defined in a well-defined notation
allowing effective communication of their machine-
processable abstract syntax.

e Specifications of simulations must be organized around
a set of models and associated transformations facili-
tating mappings from their abstract syntax to common
standard models that bridge multiple platforms.

e Models of both the abstract syntax and the semantics

of simulations must be explicitly defined to formulate
meaningful and behavior-preserving mappings.

e For each modeling platform, using dedicated formats
(e.g., SLX for SimuLink XML), syntactic mappers
should inject simulation software as models . Similarly,
extractors should be provided to map target abstract syn-
tax onto target simulation software.

e Semantic mappers need to be provided to align the con-
cepts, mechanisms, and constraints in the source formal-
ism to the concepts, mechanisms, and constraints in the
target formalism.

Following the replication of a model in the target formal-
ism, simulation experiments need to be conducted to repro-
duce results for cross-validation. Experiments drive simula-
tors that interpret and execute models to generate their behav-
ior and hence are critical in reproducing results. To facilitate
systematic reproducibility, we promote the following require-
ments in relation to experiment models:

e Experiments should have an explicit model and be man-
aged in a way similar to simulation models. In practice,
however, experiments are not explicitly modeled, com-
municated, and transformed.

e Experiment designs should at least conform to standard
Design of Experiments (DOE) model and be interpreted
by a repeatable and executable experiment workflow that
coordinates simulators in accordance with the experi-
ment model.

e Experiment models should be specified at a high-level
and platform-neutral abstraction consistent with the
DOE model and be amenable to translation into low-
level scripts that execute experiments on a selected (dis-
tributed) platform.

4. Model-Driven Engineering: Principles and
Practical Implications

The purpose of Model-Driven Engineering (MDE) is to en-
hance the development of software artifacts by creating do-
main models during each phase of the software development
process. In this way, the team developing software can de-
velop the functionality and the high-level aspects for a system
using modeling tools rather than implementing in a particu-
lar programming language (Atkinson & Kuhne, 2003). MDE
can be useful for addressing the issues discussed in Section
3. Meta-models provide a standard structure for the models
they represent. This provides for greater likelihood of mod-
els to be well-defined, provided the meta-models are prop-
erly defined. MDE’s use of model transformation processes

allows for multiple platforms to be used to represent mod-
els used in simulations. Automated transformations allow for
the development of models in multiple simulation environ-
ments without requiring the developers to have knowledge of
both platforms involved in the transformation. In fact, if Plat-
form Independent Models (PIMs), another artifact in MDE,
is utilized, then a developer would not need familiarity with a
particular modeling platform.

4.1. Metamodeling and Model Transformation

One of the hallmarks of MDE is the use of meta-modeling
to define the structure of a domain model (Schmidt, 2006).
Each model can be considered to be an instance of the meta-
model defining the relationships among the components.
Also, each level is connected strongly to the one above it in
that any artifacts created at one level must conform to the def-
initions given in the level above it.

Meta-modeling is a useful tool in properly performing
model transformations. The relationships between the source
and target models and their respective meta-models determine
one aspect of the type of transformation being performed. In
endogenous transformations, target and source models con-
form to same meta-model. On the other hand, in exogenous
transformations, meta-models of target and source models are
distinct. The relative abstraction levels of the source and tar-
get models determine the other aspect of the transformation.
Horizontal transformations are performed when target and
source models are at the same abstraction level; vertical trans-
formations are when target and source models have differing
abstraction levels (Mens & Van Gorp, 2006). The nature of
the transformation performed using the intersection of these
aspects is shown in Table 1.

Table 1. Orthogonal dimensions of model transformations

Horizontal Vertical
Endogenous | Refactoring Formal Refinement
Exogenous | Language Migration | Code Generation

In terms of the above definitions, simulation model replica-
tion is a language migration type of transformation and repro-
ducibility involves code generation from explicit experiment
models to conduct simulation experiments.

4.2. Megamodeling

To facilitate registration of various models and simula-
tions that will be used for enhancing replicability, we will
make use of the megamodeling technology (Bézivin, Jouault,
& Valduriez, 2004). Megamodeling is an effective strategy
for maintaining a repository of models, algorithms, simula-
tors, experiment models, and experiment results. By storing
and sharing the details and results of simulation experiments,

model replicability and computational reproducibility can be
improved.

The Simulation Experiment Markup Language (SED-ML)
is developed to exchange models in the biological modeling
domain (Waltemath et al., 2011). A complete SED-ML spec-
ification of an experiment can be formalized as a megamodel
allowing us to leverage the principles established by SED-ML
to address the pertinent challenges expressed in Section 3.
SED-ML encapsulates multiple combinations of models and
algorithms within the same SED-ML file. A SED-ML file can
also include changes to the underlying details of a model (pa-
rameter values, constraints, etc.) without altering the source
model. These features allow for researchers to change the de-
tails of a simulation experiment without requiring knowledge
of the modeling platform nor making changes to the original
model.

5. Transformation-driven Model Replication

In order to precisely address the issues presented in Sec-
tion 3, we now present a specific proposal to implement the
concepts presented in Section 4.

5.1. Models and Simulators

There are numerous modeling technologies representing a
range of modeling paradigms. In an effort to enhance model
replication by producing a horizontal, exogenous transfor-
mation process (see Table 1), following a vertical transfor-
mation from a Platform-Specific Model (PSM) to Platform-
Independent Model (PIM), the selection of source and target
modeling platforms is needed. We have selected MATLAB
Simulink as our source platform. This modeling paradigm
is focused on structural elements and complex mathematical
operations. On the other hand, our target platform, RePast,
is agent-based and deals with activity flows. These two plat-
forms were selected due to the differences in paradigms to
give a broader range for our transformation process to rep-
resent. A sufficient platform independent environment will
have components that are able to represent the elements of
the source model. The modeling paradigm selected should be
a widely accepted standard in the field of engineering. We
believe SysML is a strong candidate for representing PIMs
generated from our transformation process for the following
reasons:

e Similar to Simulink, SysML uses blocks, ports, and con-
nections to represent the flow of data.

e SysML is considered an industry standard for model de-
velopment.

e SysML includes the types of analysis diagrams, such as
the Requirements Diagram, that are useful in the devel-
opment life cycle.

e Extensible tools exist to view and create SysML dia-
grams (e.g., Eclipse - Papyrus, Rational Rhapsody, Mod-
elio, Visual Paradigm).

5.2. A Process Model for Transformation-Driven
Replication

The process for creating a PIM in SysML from a given
source model in Simulink is shown in Figure 1. As can be
observed, a user or model developer will submit a Simulink
model file. The sub-process for generating an XMI represen-
tation of the Simulink source model for use in an ATL trans-
formation is expanded in Section 5.2.1.

5.2.1. Model Discovery

Simulink supports two file formats, MDL and SLX. If, the
format received is MDL, the equivalent SLX file is generated
using a similar script to the one that is available at (SLXTrans-
lator, 2013) The source XML is derived from the Simulink
model by extracting the contents of the SLX file and navi-
gating to the sub-directory named “simulink”. In this folder,
”blockdiagram.xml” contains the details of the model in an
XML format. The details of how this XML file is translated
into the equivalent XMI representation is shown in Figure 3.
The primary necessity for generating the XMI representation
is that ATL identifies the values of properties as attributes of
the object. Therefore, through an XSL Transformation, the
XML tag elements in the Simulink XML are converted to at-
tributes with the attribute name ”Value”. The parsing of XML
Tags, performed prior to the conversion of elements to at-
tributes, is due to the nature of the non-standard represen-
tation that Simulink uses for array values. This sub-activity
generates a standard array format.

Once the XMI representation for the Simulink model is re-
alized, it is used in the ATL transformation process as shown
in Figure 2. The ECORE meta-model and the meta-model
for ATL rules are defined in EMF. However, the three meta-
models for the individual models (Simulink, Source, and
SysML) and the two sets of transformation rules (Simulink-
to-Source and Source-to-SysML) must be defined.

For illustration, we present the corresponding SysML
block diagram for the Team 1 Strategy model file. This model
is a sub-model of the Robot Soccer model (RoboSoccer,
2011) used in our case study. The model includes three in-
puts (Simulink Inport Blocks), two outputs (Simulink Out-
port Blocks), and a Code Block (Simulink S-Function Block)
with the MATLAB code embedded. The Simulink GUI rep-
resentation of this example is given in Figure 5.

This model can reasonably be represented by the SysML
Diagrams shown in Figure 6. The SysML representation for
the Internal Block Diagram, which is shown in Figure 6(b),
has a similar structure to the Simulink GUI source. However,
in the source model file, for the Simulink S-Function block,

Simulink2 SysML

.% User uploads Simulink model file

Simulink2XMI ——> ATL Transformation

ATL Transformation takes XMI file
conforming to Simulink

Meta-Model and produces XMl file

conforming to SysML Meta-Model

Figure 1. Process for SysML Model Generation

User Chooses Platform to view SysML File

Display SysML Diagrams %@
Application for selected
Platform is opened.

SysML XMI File Translated

SysML XMI File Translated
into Platform's syntax

Ecore
Meta-Meta-model

conformsTo

conformsTo

conformsTo ATL Meta-model ATL Meta-model conformsTo
(ECORE) conformsTo (ECORE)
Simulink Meta-model Source Meta-model SysML Meta-model
(ECORE) conformsTo (ECORE) conformsTo (ECORE)
Transformation Rules Transformation Rules
conformsTo (ATL) conformsTo (ATL) conformsTo
Block Diagram uses Source Model e SysML Model
(XMI) Transformation (XMI) Transformation (XMI)
Figure 2. ATL Transformation
S — n Simulink Blocks of type “Inport”, each with Port
‘ l number i connected to ”in” port number i of the
X Outputs XM S-Function Block.
H —;‘DN s Read Next Tag > LorE IR File
[ies X — m Simulink Blocks of type ”Outport”, each with

Parameter

XSLT > Change XML Header Information%@
EOF

Converts
XML
Elements to
Attributes

Figure 3. XML transformed to XMI

we observe additional Simulink blocks. The general structure
of the source model is as follows:

e Embedded Code block is represented as a Simulink
Block of type ”SubSystem”.

e This block has a Simulink System with the following
structure:

— One Simulink Block of type ”S-Function” with a
Property called ”Tag” that connects to the State-
flow section for the source code behind the block.
This block has n input ports and m+1 output ports
where n and m are the number of inputs and out-
puts to the Embedded Code block, respectively.

Port number k connected to ”out” port number k+ /
of the S-Function Block.

— One Simulink Block of type "Demux” with its ’in”
port connected to “out” port number 1 of the S-
Function Block.

— One Simulink Block of type “Terminator” with its
”in” port connected to “out” port of the Demux
Block.

This format is visually represented using the Team 1 Strat-
egy example in Figure 7. As such, we include in the ATL
specification a rule for this given structure and transform the
block properly. For instance, the ATL rule shown in Figure 4
aims to map a SimuLink block with an SFunction to a SysML
block annotated as Embedded Code.

The source MATLAB code from the Embedded Code
Block is given in Figure 8. The corresponding SysML Ac-
tivity Flow diagram is shown in Figure 9.

rule SFunction2Block {
from

s: Simulink!Block (s.isSubSystem() AND s.hasSFunction

to
t: SysML!Block (
name <- ‘Embedded..Code’

operations <- ’‘Function(’ + s.getInports() + ')’

Figure 4. An ATL Rule

8 00

File Edit Wiew Simulation

% Team_1_Strategy

Format Tools Help

biall_pposition

Ball Position

actustor_force_1 —@

Actuator Force 1

T ——mpower 4\

Power fcn

actustor_force_2

robot_position Actuator Force 2

Rokot Position

Emhbedded MATLAB

Figure 5. Simulink GUI for Team 1 Strategy

5.2.2. Model Understanding

In order to accurately transform models from our SysML
PIM representation into a target formalism, a process is
needed for generating a version of the model that conforms
to the target environment. While this representation would
not be accurately defined as a PSM (i.e. it can still be consid-
ered a PIM), it will be based on features that are relevant and
similar to the constructs of the target environment than the
SysML block structure. The Simulink Blocks that can be rou-
tinely translated to SysML block elements, such as the Inte-
grator Block, need to be refined into an activity flow for use in
an agent-based environment, such as RePast. These represen-
tations can still be represented using SysML, but unlike the
SysML representations generated from the Simulink trans-
formation, these PIMs will place less emphasis on the block
structure and gradually change the focus to the process-flow.

5.2.3. Model Generation

Once the bridge PIMs discussed in Section 5.2.2 are re-
alized, a process for transforming these PIMs into an agent-
based modeling paradigm is needed. This transformation is

Team_1_Strategy

chlocks
Team_1_Strategy|
properties

in Ball Position: Array |—
in Power: Array

out Actuator Force 1: Array

out Actuator Force 2: Array
in Robot Position: Array

shlocks
Embedded Code
properties

in ball_position: Array

. out actuator_force_1: Array
in power: Array

operations
Function()

in robot_position: Array >

out actuator_force_2: Array

(a) Block Definition Diagram

whlocks
Team_1_Strategy

«parts
embedded code: Embedded Code

in Ball Position: Array

=Y in ball_position: Array
out actuator_force_1: Array

3| in power: Array

out Actuatar Force 10 Array

d >
out Actuator Force 2: Array
2|

out actuator_force_2: Arra
in robot_position: Array - =

in Robot Position: Array

(b) Internal Block Diagram
Figure 6. SysML Structural Diagrams for Team 1 Strategy

“ball_position” “Demux” “Terminator”
Inport Demux Terminator
Port 1
“power” “ SFunction ” “actuator_force_1"
Inport S-Function Outport
Port 2 Port 1
“robot_position” “actuator_force_2”
Inport Outport
Port 3 Port 2

Figure 7. Simulink Block Structure for Embedded Code
Block

performed in a similar manner as the process for creating the
PIM from the Simulink source. Initially, an XMI represen-
tation should be created from an ATL transformation. Once
this XMI representation is complete, a translation process to
create agent files that conform to RePast activity flow specifi-
cation can follow. When the agent specifications are finalized,

function [actuator_force_1,
actuator_force_2] =
fcn(ball_position, power, robot_position)
dl=(robot_position(l:2,1)-ball_position);
d2=(robot_position(3:4,1)-ball_position);
if dot (dl,dl1)>5
actuator_force_1=-22xdl;
else
rl=(ball_position- [200;501]);
actuator_force_1=-11%rl;
end
if dot (d2,d2)>5
actuator_force_2=-25%d2;
else
r2=(ball_position-[200;50]);
actuator_force_2=-15%r2;
end

Figure 8. Embedded Code

RePast creates the necessary Groovy files to complete the
model replication process. With the RePast model, simulation
experiments need to be performed to verify that the replicate’s
behavior is sufficiently similar to the original model’s behav-
ior.

5.3. Future Work

Once the MDE-based process for transforming source
models to/from a specific platform from/to a PIM is complete,
we will start developing the megamodeling facility and im-
plement a user interface to reproduce simulation experiments
over the replicated model. A user will be able to submit a
source model along with details such as range of variable val-
ues, experiment design, and the output styles. The system will
present the simulation results using the output styles and the
analysis types defined in the explicit experiment model. In
this paper, we overviewed a process for creating Platform In-
dependent Models from Platform Specific Models with a fo-
cus on replicability and reproducibility, This process, which
is coupled with the Model-Driven Engineering principles and
practices, contribute to model replicability, thereby enhanc-
ing experimental reproducibility. These models can be used
to re-run simulations to cross-validate results of previous ex-
periments or with altered details, such as simulation environ-
ment or change in parameter values, to expand existing un-
derstanding resulting from previous experiments. A focus on
model replication and simulation reproducibility is expected
to increase the credibility of simulation-based scientific re-
search.

Function

—

(dl=frubot_pusiti-:}r1[:2.1]—bal|_pnsition]:|

=

Lad

[:d2 ={robot_position(3:4,1}-ball_pos ition]:l

<=

{1=(ball_position- [200;50])

(actuator_fnrce_l=-22*d l)

{@ctuator_force 1=-11*rD)

A4

Z2=iball_position-[200;50])

{actuator force 2=-25*d)

factuator_force 2=-15%rd)

AN |

.

Figure 9. SysML Activity Flow Diagram for Team 1 Strat-
egy

6. Conclusion

In this article, we define replicability and reproducibil-
ity as critical criteria to improve assurance and independent
cross-validation of simulation systems. The principles and
the methodology underlying the Model-Driven Engineering
paradigm are described and proposed as a solution strategy to
address issues and challenges in model replication and simu-
lation reproducibility. A case study based on the SimuLink
platform is used to introduce the concepts and to propose
transformation-driven independent replication of models. Ex-
plicit separation of simulation experiment models from sim-
ulation models facilitate application of the MDE methodol-
ogy to synthesize executable experiment scripts that serve as
workflows coordinating the simulators and analysis engines
to perform goal-directed experimentation. Besides its support
for independent replication of models, the MDE approach
can be used to support interoperability, model longevity, and
modernization of legacy simulation systems.

In distributed simulation systems, interoperability refers to
the ability of system models or components to exchange and
interpret information in a consistent and meaningful man-
ner. This requires both syntactic and semantic congruence

between systems either through standardization or mediators
that can bridge the syntactic and semantic gap between peer
components. The transformation models used in the MDE
approach can also serve as mediator or adapter components
by aligning the concepts of a simulation system with those
adopted by a standard specification. Many organizations are
facing challenges in maintaining, managing, and moderniz-
ing or replacing simulation systems and infrastructures that
have been actively used for a long time. These simulation
systems may continue to play critical roles in training, educa-
tion, or decision-making, but they are often based on obsolete
technology, and this makes them difficult to port and interop-
erate with applications developed using emergent advanced
technologies. Modernization of such legacy simulation appli-
cations can also take advantage of MDE to generate useful
high-level representations and model-based views of systems.

References

Atkinson, C., & Kuhne, T. (2003). Model-driven develop-
ment: a metamodeling foundation. Software, IEEE,
20(5), 36-41.

Bézivin, J., Jouault, F., & Valduriez, P. (2004). On the
need for megamodels. In Proceedings of the oopsla/g-
pce: Best practices for model-driven software develop-
ment workshop, 19th annual acm conference on object-
oriented programming, systems, languages, and appli-
cations.

Davidson, S. B., & Freire, J. (2008). Provenance and scien-
tific workflows: challenges and opportunities. In Pro-
ceedings of the 2008 acm sigmod international confer-
ence on management of data (pp. 1345-1350).

De Roure, D., Goble, C., & Stevens, R. (2009). The design
and realisation of the myexperiment virtual research
environment for social sharing of workflows. Future
Generation Computer Systems, 25, 561-567.

Donoho, D. L., Maleki, A., Rahman, I. U., Shahram, M., &
Stodden, V. (2009). Reproducible research in compu-
tational harmonic analysis. Computing in Science and
Engineering, 11(1), 8-18.

Fomel, S., & Hennenfent, G. (2007). Reproducible compu-
tational experiments using scons. In Acoustics, speech
and signal processing, 2007. icassp 2007. (Vol. 4, pp.
IV-1257).

Freire, J., Bonnet, P., & Shasha, D. (2011). Exploring the
coming repositories of reproducible experiments: Chal-
lenges and opportunities. Proceedings of the VLDB En-
dowment, 4(12), 9-27.

Gavish, M., & Donoho, D. (2011). A universal identifier for
computational results. Proceedings of the International
Conference on Computational Science, 4, 637-647.

Koop, D., Santos, E., Mates, P., Vo, H. T., Bonnet, P., Bauer,
B.,etal. (2011). A provenance-based infrastructure to

support the life cycle of executable papers. Procedia
Computer Science, 4, 648—657.

Mens, T., & Van Gorp, P. (2006). A taxonomy of model
transformation. Electronic Notes in Theoretical Com-
puter Science, 152(125-142).

Mesirov, J. P. (2010). Accessible reproducible research. Sci-
ence, 327(5964), 415-416.

Morin, A., Urban, J., Adams, P. D., Foster, 1., Salli, A., Baker,
D., et al. (2012). Shining light into black boxes. Sci-
ence, 336, 159-160.

Nowakowski, P., Ciepiela, E., Harezlak, D., Kocot, J.,
Kasztelnik, M., Bartynski, T., et al. (2011). The collage
authoring environment. Procedia Computer Science, 4,
608-617.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Green-
wood, M., et al. (2004). Taverna: a tool for the com-
position and enactment of bioinformatics workflows.
Bioinformatics, 20(17), 3045-3054.

Peng, R. D. (2009). Reproducible research and biostatistics.
Biostatistics, 10(3), 405—408.

Robosoccer. (2011). http://www.mathworks.com/matlabcentral
/fileexchange/28196-robot-soccer-an-exercise-in-
learning-the-key-features-of-simulink.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-
driven engineering. Computer, 39(2), 25-31.

Sixtranslator. (2013). http://www.mathworks.com/help/simulink

/examples/converting-from-mdl-to-slx-model-file-
format-in-a-simulink-project.html.

Stodden, V. (2010). The scientific method in practice: Repro-
ducibility (Tech. Rep. No. 4773-10). MIT Sloan Re-
search Paper.

Van Gorp, P.,, & Mazanek, S. (2011). Share: a web portal for
creating and sharing executable research papers. Pro-
ceedings of the International Conference on Computa-
tional Science, 4, 589-597.

Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M.,
Kolpakov, F., Miller, A. K., et al. (2011). Repro-
ducible computational biology experiments with sed-
ml-the simulation experiment description markup lan-
guage. BMC systems biology, 5(1), 198.

