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A General Neural Network Model for Estimating
Telecommunications Network Reliability

Fulya Altiparmak, Berna Dengiz, and Alice E. Smith, Senior Member, IEEE

Abstract—This paper puts forth a new encoding method for
using neural network models to estimate the reliability of telecom-
munications networks with identical link reliabilities. Neural
estimation is computationally speedy, and can be used during
network design optimization by an iterative algorithm such as
tabu search, or simulated annealing. Two significant drawbacks
of previous approaches to using neural networks to model system
reliability are the long vector length of the inputs required to
represent the network link architecture, and the specificity of
the neural network model to a certain system size. Our encoding
method overcomes both of these drawbacks with a compact,
general set of inputs that adequately describe the likely network
reliability. We computationally demonstrate both the precision of
the neural network estimate of reliability, and the ability of the
neural network model to generalize to a variety of network sizes,
including application to three actual large scale communications
networks.

Index Terms—All-terminal network reliability, estimation,
neural network.

ACRONYM! & NOMENCLATURE

ANN artificial neural network

BP ANN trained by back propagation of errors

MAD mean absolute deviation

ND node degree

p-value  probability of occurrence of sample statistics if
the compared results are s-identical

RMSE  root mean squared error

t test two sample statistical test of means using Student
t distribution

UB upper bound on network reliability
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IThe singular and plural of an acronym are spelled the same.
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Fig. 1. Typical ANN components, and structure.

I. INTRODUCTION

N Studies on the design of communications networks, reli-
I ability has been defined in a number of ways. In this study,
a probabilistic measure, all-terminal reliability, is considered
(this is sometimes termed overall network reliability). All-ter-
minal reliability is the probability that a set of operational edges
provides communication paths between every pair of nodes. A
communications network is typically modeled as a graph with
N nodes, and L edges; nodes represent sites (computers), and
edges represent communication links. Each node, and each edge
has an associated probability of failure, and the reliability of the
network is the probability that the network is operational. The
definition of reliability thus depends on which components are
operational.

In the literature, generally, researchers have made the fol-
lowing assumptions:

i) Nodes are completely reliable; failure of links is the only
cause of network failure.

ii) Link failure probabilities are s-independent. This is con-
sistent with the hypothesis that the agent causing failures
is random [1], [2].

iii) Link failures are equally probable. This assumption is
often made because no detailed information about link
failures is available, whereas information about the av-
erage failure is available [3].

There exists no algorithm with a polynomial time to com-
pute all-terminal network reliability; therefore, the problem is
NP-hard [4]. Although simulation is suitable for large networks,
and is generally more flexible than analytical methods, it has dis-
advantages. The most notable is that it gives approximations;
and when a high degree of accuracy is necessary, the running
time to provide a desired confidence interval can grow large [5].
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TABLE 1
A COMPARISON OF OUR ENCODING WITH A TRADITIONAL ONE FOR THE NETWORK WITH 10 NODES

Fig. 2. A network with ten nodes, and twelve links.

In a communications network topology design, the reliability
computation with analytical methods or simulation is a critical
part of the design problem [1], [6]-[8].

In this paper, we propose a new method, based on an arti-
ficial neural network (ANN), to estimate the reliability of net-
works with identical link reliability. Although the application
of ANN has been extensively used for prediction and modeling,
there are few studies for estimating the reliability of a system
or a network [9]-[11]. Coit & Smith [12] used an ANN to es-
timate the reliability of series-parallel systems, and combined
it with genetic algorithms to obtain an optimal or near optimal
design. Cheng et al. [13] developed an ANN training algorithm
and architecture for reliability analysis of a simplex system, and
a triple modular redundant system that includes the effects of
permanent and intermittent faults. Rajpal er al. [14] used an
ANN to combine reliability, availability, and maintainability to
gauge the behavior of a transportation system. Srivaree-ratana
et al. [15] used an ANN to estimate all-terminal reliability, and
used the estimation during iterative network design. Zhongding
& Xiongjian [16] used a Hamming ANN to evaluate reliability
indexes of communication networks. Snow et al. [17] employed
an ANN to investigate availability, reliability, maintainability,
and survivability attributes of a wireless network. Douglas et
al. [18] developed a methodology implementing rules extracted
from a trained ANN and a support vector machine to estimate

Encoding Network Topology NL| C | LR UB
Specific [000101000100000100100]_ _ 0.90 |0.9460
ANN 001010001000001010100
100]

General [22322332320000000000] | _ 1 0.90 | 0.9460

ANN-1

General [22322332320000000000] |12 _ | 0.90 |0.9460

ANN-2

General [22322332320000000000] | _ 2 | 0.90 | 0.9460

ANN-3

General [22322332320000000000] |12 2 | 0.90 |0.9460

ANN-4

General 2230000000 0000000000] |12 2 |0.90 | 0.9460

ANN-5

TABLE II
AVERAGE FIVE FOLD CROSS VALIDATION RESULTS FOR THE DIFFERENT INPUT
GROUPINGS
Input Combinations RMSE
Validation Fold Training Testing | Upper Bound

ND, LR, UB (1) 0.02831 0.03005 0.05123
ND, NL, LR, UB (2) 0.02791 0.02982 0.05123
ND, C, LR, UB (3) 0.02811 0.02983 0.05123
ND, NL, C, LR, UB (4) 0.02789 0.02961 0.05123
ND(min, med, max) NL,C,LR,UB | 0.03174 0.03325 0.05123

the reliability of complex networks. Yeh et al. [19] proposed a
methodology based on Monte Carlo simulation and ANN to es-
timate the reliability of a threshold voting system, which is a
generalization of k-out-of-n systems. Leite da Silva ef al. [20]
developed a methodology for evaluating the reliability of large
composite power systems based on Monte Carlo simulation, and
ANN. Dana et al. [21] proposed an effective, efficient protocol
for selecting a backup & disjoint path set in ad hoc wireless net-
works, and also developed an ANN to estimate the reliability
of links between nodes in ad hoc networks. Altiparmak et al.
[22] investigated the effects of designed network reliability data
generated by random, and designed sampling for ANN models.
These ANN experiments were promising, but a significant draw-
back of all of them is the specificity of the ANN model to a cer-
tain network or system size, and / or configuration.

In this paper, a generalized artificial neural network (General
ANN) is proposed to estimate all-terminal network reliability
for networks. We use an input encoding that, unlike previous ap-
proaches, does not rely on a vector of all possible links between
nodes. There are two significant advantages to this. The first is
that a single ANN model can be used for multiple network sizes
and topologies. The second advantage is that the input informa-
tion to the ANN is compact, which makes the method tractable,
even for large sized networks. We use the approach for networks
of widely varying reliability, and then consider only highly re-
liable networks.

The rest of the paper is organized into four sections. Section II
gives a brief overview of ANN. The definition of the General
ANN, and its computational results are given in Section III.
Section IV applies the General ANN method to three real
large scale systems, and also demonstrates the use of a focused
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Fig. 3. Comparison of estimation error for networks with 20 nodes.

TABLE III
RMSE, AND MAD VALUES OVER THE TEST SET FOR ALL MODELS

TABLE IV
RMSE, AND MAD VALUES FOR NETWORKS WITH NODES
BETWEEN 10 AND 20

General ANN Specific ANN Upper Bound

Network | RMSE | MAD | RMSE | MAD | RMSE | MAD General ANN Upper Bound
10 nodes |0.01878 | 0.01374 [0.02284 | 0.01555 | 0.03653 | 0.01870 Number of Nodes RMSE MAD RMSE MAD
15 nodes | 0.02356 | 0.02080 [0.03042 | 0.02750 | 0.05634 | 0.04363 11 0.01844 | 0.01481 | 0.02870 | 0.01627
20 nodes | 0.02756 | 0.03300 | 0.03003 | 0.03503 | 0.04681 | 0.04915 12 0.01663 | 0.01272 | 0.03216 | 0.01859
13 0.01960 | 0.01567 | 0.02666 | 0.01734
approach for only highly reliable communications systems. 14 0.01485 | 0.01608 | 0.02821 0'0%392
Section V is the concluding discussion. 16 0.03007 | 0.02724 | 0.04432 | 0.03184
17 0.02294 | 0.02816 | 0.03768 | 0.03597
IL. ARTIFICIAL NEURAL NETWORKS 18 0.02293 | 0.02145 | 0.03635 | 0.03174
19 0.03619 | 0.03970 | 0.06473 | 0.09133

An ANN (see Fig. 1) has the ability to learn relationships
between given sets of input and output data by changing the
weights. This process is called: training the ANN. The most
well known training algorithm is the Back Propagation (BP)
algorithm [23], [24]. It minimizes the total sum of square error,
which is the difference between the desired and actual output,
using the gradient descent method. One of the most important
properties of a trained ANN is its ability to generalize, which
means that ANN can generate a satisfactory set of outputs from
inputs that are not used during its training process [25].

The performance of the ANN model is a function of sev-
eral design parameters such as the number of hidden layers,
the number of hidden neurons in each hidden layer, the size of
the training set, and the training parameters. Theoretical work
in ANN has shown that a single hidden layer is sufficient to
approximate any complex nonlinear function under quite gen-
eral conditions [26], [27]. While too many hidden neurons can
hinder the ANN’s ability to generalize data not seen during
training by causing over-fitting, too few hidden neurons can
cripple its ability to learn the mapping at hand [28]. Experimen-
tation, and validation are used to choose the proper hidden unit
size.

One of the most difficult issues is that of validation. The tech-
nique of cross validation is particularly useful because it makes
the most of a limited size data set. In this approach, the data set

is divided (randomly) into multiple sets (cross validation would
include n sets, where n is the data set size, while grouped cross
validation would include < n sets). Network training takes part
on all but one set, and that held-out set is used as a test set for
that ANN. This is repeated for the number of sets chosen, each
time using a different hold-out set. Errors are averaged over all
tested ANN; this average error is used as an estimate of an ANN
trained on all members of the data set, and then tested on the
population of the domain being modeled [29].

III. THE GENERAL ANN METHOD

We identified compact, easily calculated measures of network
connectivity and reliability as the candidate set of inputs: ND (of
each node, 0 if the node is not present), minimum node degree
of the network (Ndnin ), median node degree of the network
(NDped ), maximum node degree of the network (Ndmax ), link
reliability (LR), number of links (NL), link connectivity (C), and
a network reliability upper bound (UB) (that of Jan [30]). Five
input configurations were studied:

1) ND, LR, UB

2) ND, NL, LR, UB
3) ND, C, LR, UB
4) ND, NL, C, LR, UB
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TABLE V
FIVE FOLD CROSS VALIDATION RESULTS FOR LARGE NETWORKS
RMSE
Fold Training | Testing | Upper Bound

1 0.04183 | 0.04275 0.08124

2 0.04186 | 0.04370 0.07323

3 0.04252 | 0.04417 0.09483

4 0.04011 | 0.04049 0.08075

5 0.04309 | 0.04516 0.09517

Average | 0.04188 | 0.04325 0.08504
TABLE VI

RMSE, AND MAD VALUES FOR LARGE NETWORKS

Number GNN-L Upper Bound

of Nodes | RMSE | MAD | RMSE MAD
31 0.03847 | 0.04277 | 0.05014 | 0.08868
32 [0.03770 | 0.03534 | 0.07563 | 0.06719
33 0.04388 ] 0.05978 | 0.04975 | 0.07732
34 [0.03974 | 0.03836 | 0.08916 | 0.09593
36 |0.043410.03416 | 0.08328 | 0.07714
37 [0.04561 | 0.05920 | 0.07286 | 0.09403
38 [0.04364 | 0.04708 | 0.08723 | 0.07401
39 [0.055330.05861 | 0.07823 | 0.05738

5) NDmin> NDmed, NDpmax, NL, C, LR, UB.

We now show the method for a General ANN for design
of networks from 10 to 20 nodes. Twenty input neurons are
reserved for node degrees (to accommodate networks up to
20 nodes). For example, when data are sampled from a network
with 10 nodes, node degrees are assigned to the first 10 input
neurons, and the remaining 10 input neurons are set to zero.
There are 22 input neurons for the first configuration, 23 for the
second and third configurations, 24 for the fourth configuration,
and 7 for the fifth configuration. While this topology represen-
tation uses up to 24 input neurons for a network with 20 nodes,
the representation previously employed in the literature would
use 190 input neurons just to represent the links for the same
network. Fig. 2, and Table I show a network with 10 nodes,
and the alternative encodings.The output of the ANN is the
estimation of all-terminal network reliability (one real valued
neuron). The target network reliability of each network is
estimated using a Monte Carlo simulation method [31].

We used randomly generated data sets for training and valida-
tion considering five different link reliabilities (0.80, 0.85, 0.90,
0.95, and 0.99), and five different link connectivity values (1 to
5), so that there are 25 design points. An equal number of net-
work topologies were generated for each design point. Networks
of 10, 15, and 20 nodes were generated with L from N —1 (min-
imally connected) to N(N — 1)/2 (fully connected) inclusive. ~ Fig. 6. Gazi University Network [6].
(The labeling algorithm given in [32] is used to check network

connectivity for each generated network.) After a preliminary TABLE VII

experimental study, the number of hidden neurons, and training PROPERTIES OF THE REAL COMMUNICATIONS NETWORKS
data size were set to 15, and 2400, respectively. The model was

validated using five-fold cross validation [29], where each vali- Name Number of Nodes and Links
dation network was trained and tested using 2400, and 600 ob- Arpanet G =(20,32)
servations, respectively. A final application network was trained European Optical Net G=(9.3%)

using all members of the data set, i.e. 3000 observations, and its Gazi Univ. Campus Net G=(1,13)

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 13, 2009 at 14:53 from |IEEE Xplore. Restrictions apply.



TABLE VIII
RESULTS FOR ARPANET
Link Monte | Upper | Specific | General ANN
Reliability | Carlo | Bound | ANN (R(x) >0.90)
0.85 0.9192 | 0.9482 | 0.8908 0.9275
0.90 0.9765 | 0.9841 | 0.9367 0.9771
0.95 0.9972 | 0.9980 | 0.9648 0.9943
0.99 1 1 0.9804 0.9976
TABLE IX
RESULTS FOR EUROPEAN OPTICAL NETWORK
Link Monte | Upper | Specific | General ANN
Reliability | Carlo | Bound | ANN (R(x) >0.90)
0.90 0.9307 | 0.9390 | 0.9478 0.9285
0.95 0.9848 | 0.9848 | 0.9875 0.9841
0.99 0.9994 | 0.9994 | 1.0050 0.9989
TABLE X

RESULTS FOR GAZI UNIVERSITY NETWORK

Link Monte | Upper | Specific | General ANN
Reliability | Carlo | Bound | ANN | (R(x)>0.90)
0.95 0.9525 | 0.9786 | 0.9243 0.9632
0.99 0.9978 | 0.9991 | 0.9646 0.9908

validation was inferred using the average of the prediction error
of the five validation networks.

A. Comparison of Input Data Groupings

In this section, we give the results of five-fold cross validation
for the neural networks considering the five different configura-
tions. Five fold cross validation divides the data set randomly
into five groups, then uses four to train the ANN, and one to test
it; the procedure is repeated four more times, each with a dif-
ferent training group. Table II gives the s-average five-fold cross
validation RMSE results for the five groupings. The error used
to calculate RMSE is the difference between the Monte Carlo
simulation, and the neural network estimation of the all-terminal
network reliability. Ordering all input data configurations from
the best to the worst according to their average RMSE values
of the test set gives a sequence of 4, 2, 3, 1, 5. The UB RMSE
column represents the RMSE of the UB only (no ANN estima-
tion) for the testing set.

A statistical analysis using all 3000 observations shows that
neural network estimations for input combination 4 were s-iden-
tical to the Monte Carlo estimation, while the upper bound was
s-different from the Monte Carlo estimation. A paired t-test be-
tween the neural network and the Monte Carlo estimation has a
p-value of 0.205 with a mean difference of 6.49 x 10~%, while
the same test between the UB and Monte Carlo estimation has
a p-value <0.0001 with a mean difference of 1.66 x 10~2 for
the same test.

B. Comparison of the General ANN, and Specific ANN Models

The performance of the chosen configuration (scheme 4) was
further evaluated. The results compare network reliability esti-
mations between this General ANN model, and ANN models
specifically developed for each network size (10, 15, and 20
nodes). These latter networks were encoded in the traditional

IEEE TRANSACTIONS ON RELIABILITY, VOL. 58, NO. 1, MARCH 2009

way with binary link inputs, LR and UB (see Table I), and were
trained on 1000 randomly generated instances of the specific
size designated for that ANN.

The performance of the general model was compared with
three specific models: ANN10, ANN15, and ANN20. For this
comparison, a new test set containing 75 observations not used
in training was generated randomly. Fig. 3 shows the estima-
tion errors between the specific ANN, our General ANN, and
the UB for a network size of 20 nodes. From this figure, it can
be seen that all neural network estimations of reliability are un-
biased, and very close to each other. Table III gives the perfor-
mance measures (RMSE, and MAD) of all models. All RMSE
values of the General ANN are smaller than the specific ANN,
and the UB. This is surprising as the individual ANN are devel-
oped specifically for a certain network size. It appears that the
information of summarizing aspects of a network architecture
that affect all-terminal reliability (ND, NL, C) are used more
efficiently by the neural network than a binary input of link pres-
ence or absence. (Both the general neural network, and the spe-
cific ANN include LR, and UB as inputs.)

C. The Performance of the General Model on New Network
Sizes

We examined the performance of the General ANN for net-
works with node sizes from 10 to 20 not used in the training
set (that is, other than 10, 15, and 20 nodes). The aim of this
evaluation is to see how well our model can extend to network
sizes unseen in training. The test set had 100 randomly gener-
ated instances of each network size. Table IV gives the RMSE,
and MAD values for the General ANN, and the UB. We see no
systematic error patterns in terms of network size. Therefore, it
appears that the General ANN can be used to estimate all-ter-
minal network reliability for any network size from 10 to 20
nodes with similar estimation error.

D. Scaling Up to Large Networks

To gauge scale up, we built & validated a General ANN in
the same manner just described for networks from 30 through
40 nodes in size. As above, three different network sizes (30, 35,
and 40 nodes) were used for training, and input configuration 4
was used. Table V gives five-fold cross validation results. While
the average RMSE value is 0.04325 for the General ANN, it is
0.08504 for the upper bound. A paired t-test between the Gen-
eral ANN and Monte Carlo has a p-value of 0.1135 with a mean
difference of 0.0011, while the paired t-test between the UB and
Monte Carlo has a p-value <0.00001 with a mean difference of
0.0502 for the same test.

As before, we examined the performance of the General
ANN for networks with node sizes from 30 to 40, other than
the training node sizes of 30, 35, and 40. Table VI gives the
RMSE, and MAD values. See that there are no systematic error
patterns in terms of network size. These results show that the
scale up of the General ANN approach is good, and that this
approach is viable for networks of realistic size.

IV. APPLICATION TO REAL COMMUNICATIONS SYSTEMS

We considered three real networks to better investigate
the effectiveness of the General ANN approach. These are
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Fig. 7. Networks with ten 20 and 30 links nodes having same topological characteristics.

TABLE XI
TOPOLOGICAL CHARACTERISTICS FOR SAMPLE NETWORKS WITH 20 NODES

Node

123456789
Degrees

|3 3 3333333
Connectivity 2

Number of 30

Links

11 12 13 14 15 16 17 18 19 20

3 3 3 3 3 3 3 3 3 3|

Arpanet [33], the European Optical Network [34], [35], and
the communications network of Gazi University [6], a large
urban institution in Ankara Turkey with several campuses (see
Figs. 4 through 6). The topological properties of the networks
are shown in Table VIIL

Because these communications networks are highly reliable,
we trained & validated the ANN only on highly reliable net-
works, those with system reliability > 0.90. The General ANN
estimates of system reliability were compared with the actual
system reliability (using Monte Carlo simulation), the upper

bound of system reliability, and the estimate of system relia-
bility using a specific ANN developed for that network archi-
tecture. Results are shown in Tables VIII through—X. The Gen-
eral ANN developed expressly for R(x) > 0.90 performed very
well, better than both the UB, and the Specific ANN. In de-
sign optimization, one might use the General ANN for screening
many designs to gauge the trade off between system reliability
and cost. An exact method or computationally laborious Monte
Carlo simulation should be used on the final few candidate net-
work designs to ascertain the precise system reliability.
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Fig. 8. Reliability estimations for the five networks of Fig. 7 from the four different methods.

V. DISCUSSION

This paper presented a novel method of encoding commu-
nications networks for ANN that accommodates networks of
varying node and link sizes. The inputs are compact (relatively
few in number), and easily calculated. By using such an en-
coding, an ANN that is manageable in size, and flexible for
many network design problems, can be trained & validated. This
contrasts with previous work in neural network estimation of
network reliability where the encoding was lengthy, and the re-
sulting ANN could only be used for a single node size network.

Computational work shows that the General ANN is equiv-
alent or superior in estimation accuracy to ANN models devel-
oped for a specific sized network. It was also shown that the
General ANN could estimate network reliability with similar
precision for sizes included in the training set, and not included
in the training set, within the size domain considered (a range of
ten nodes). Applying the method to larger, actual networks was
successful.

We must note that there are different network topologies which
yield the same values of the inputs to the General ANN. We
studied this aspect by generating some differing networks with
the same number of nodes, links, node degrees, link reliabilities,
etc.; but which have different all terminal network reliability. The
appendix gives one example of our studies. The General ANN ap-
proach cannot discriminate among networks with the same topo-
logical inputs. However, this does not invalidate using this ap-
proachduring the screening of candidate designs, and then turning
to the Monte Carlo approach for the few competitive designs for
a more accurate reliability estimation.

APPENDIX

Five different topologies of a 20 node/30 link network are
shown in Fig. 7. Their topological characteristics are summa-
rized in Table XI.

The reliabilities as estimated by the UB, Monte Carlo simu-
lation (MC), the General ANN approach, and a specific ANN
trained for that topology are shown in Fig. 8 for link reliabilities
of 0.85. Of course, the General ANN gives the same estimation
for all five networks; but it is more accurate than the UB for all
networks, and similar to the specific ANN for several networks.
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