Basic Equations in LTTEX

Stan Reeves

Department of Electrical and Computer Engineering

July 2, 2010

Equations in ${ }^{A} T_{E} E$

Equations may be the best reason to use ${ }^{\Delta T} T_{E} \mathrm{X}$.
Basic $\operatorname{LT}_{\mathrm{E}} \mathrm{X}$ equations are extended by $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{L} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.

- $\mathcal{A}_{\mathcal{M}}$ stands for the American Mathematical Society
- can be used by including the amsmath package
- $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX will be covered in a separate presentation

Two types of equations:

- inline
- displayed

Basic

Equations in LATEX

Inline Equations

Stan Reeves

The goal is to recover an estimate \$ \backslash hat $\{x\} \$$ of $\$ x \$$ given only $\$ y \$$ and $\$ A \$$.

The goal is to recover an estimate \hat{x} of x given only y and A.

Comparison to PowerPoint

PPT is a massive pain!

Displayed Equations

\author{

Basic

 Equations in LATEX
 Stan Reeves}

Introduction

```
    \begin\{equation\} \|y - Ax\|^\{2\} }
        + \alpha \|Lx\|^\{2\}
\label\{eq:reg\}
\end\{equation\} }
The minimizer of (\ref\{eq:reg\}) is given
by \ldots
```

$$
\begin{equation*}
\|y-A x\|^{2}+\alpha\|L x\|^{2} \tag{1}
\end{equation*}
$$

The minimizer of (1) is given by ...

Equation Numbering and Referencing

- The equation environment automatically numbers equations.
- Equations may be referenced if they are labeled as \backslash label \{ name \}
- The reference can be anywhere in the body, with the form \ref \{name \}

Basic

Equations in LATEX

Stan Reeves

Suppressing Equation Numbering

Sometimes we may want to display an equation without numbering:

```
\begin{equation*}
\|y - Ax\|^{2} + \alpha \|Lx\|^{2}
\label{eq:reg}
\end{equation*}
```

or

$$
\|y - Ax \|^\{2\} + \alpha \|Lx\|^\{2\}
$$

$$
\|y-A x\|^{2}+\alpha\|L x\|^{2}
$$

Multi-line Equation Derivations

Basic

Equations in LATEX

Stan Reeves

Introduction
\begin \{eqnarray\} }
\hat $\{x\} _\{\text {\alpha\} } \&=\text { \& }$ $B A^{\wedge} T y+B a _a^{\wedge} T\left[I-a _a B a _a^{\wedge} T\right]^{\wedge}\{-1\} a _a B A^{\wedge} T y$
\nonumber

$\&=\& B A^{\wedge} T y+B a _a^{\wedge} T w$ nonumber $\backslash \backslash$
 w \end\{array\} \right] }
\label \{eq:solsplit\}
\end \{eqnarray\} }

$$
\begin{align*}
\hat{x}_{\alpha} & =B A^{T} y+B a_{a}^{T}\left[I-a_{a} B a_{a}^{T}\right]^{-1} a_{a} B A^{T} y \\
& =B A^{T} y+B a_{a}^{T} w \\
& =B A_{c}^{T} P^{T}\left[\begin{array}{c}
y \\
w
\end{array}\right] \tag{2}
\end{align*}
$$

Multi-line Equation Derivations

Things to note:

- \& = \& lines up the equal signs
-
 ends each line
- must use \nonumber on each line where numbering is to be suppressed
- eqnarray* form suppresses all numbering

Arrays are probably best covered in $\mathcal{A} \mathcal{M} \mathcal{S}$ - $\mathrm{LA}^{\mathrm{E}} \mathrm{EX}$.

Fractions and Delimiters

Basic

Equations in LATEX

Stan Reeves

Introduction

$$
\backslash\left[\backslash \operatorname{frac}\{1+x\}\left\{3+x^{\wedge} 2\right\} \backslash\right]
$$

$$
\frac{1+x}{3+x^{2}}
$$

$$
\left (\frac \(\left.\left.\{1+x\}\left\{3+x^{\wedge} 2\right\} \backslash r i g h t\right) \wedge 2 ~ \\right]\)
\[
\left(\frac{1+x}{3+x^{2}}\right)^{2}
$$

Symbols

Basic

Equations in LATEX

Stan Reeves

- Symbol guide (linked from web site) contains 178 pages of ${ }^{L A} T_{E X}$ symbols!
- Use drop-down menu for symbols, but you'll memorize the common ones.
\ [\int $\backslash \cos x \backslash, d x=\backslash \sin x+C \backslash]$

$$
\int \cos x d x=\sin x+C
$$

oops: cos x renders $\cos x$

