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ASIC CAD tools available in ECE
 Modeling and Simulation

 Active-HDL  (Aldec)
 Questa ADMS = Questa+Modelsim+Eldo+ADiT (Mentor Graphics)
 Verilog-XL, NC_Verilog, Spectre (Cadence)

 Design Synthesis (digital)
 Leonardo Spectrum (Mentor Graphics)
 Design Compiler (Synopsys), RTL Compiler (Cadence)
 FPGA: Xilinx ISE; CPLD: Altera Quartus II

 Design for Test and Automatic Test Pattern Generation
 Tessent DFT Advisor, Fastscan, SoCScan (Mentor Graphics)

 Schematic Capture & Design Integration
 Design Architect-IC (Mentor Graphics)
 Design Framework II (DFII) - Composer (Cadence)

 Physical Layout
 IC Station (Mentor Graphics)
 SOC Encounter, Virtuoso (Cadence)
 Xilinx ISE/Altera Quartus II – FPGA/CPLD Synthesis, Map, Place & Route

 Design Verification
 Calibre DRC, LVS, PEX (Mentor Graphics)
 Diva, Assura (Cadence)
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Hardware Description Languages

 VHDL = VHSIC Hardware Description Language 
(VHSIC = Very High Speed Integrated Circuits)

 Developed by DOD from 1983 – based on ADA
 IEEE Standard 1076-1987/1993/2002/2008
 Based on the ADA language

 Verilog – created in 1984 by Philip Moorby of 
Gateway Design Automation (merged with Cadence)
 IEEE Standard 1364-1995/2001/2005
 Based on the C language
 IEEE P1800 “System Verilog” in voting stage & will be merged 

with 1364



Other VHDL Standards
 1076.1–1999: VHDL-AMS (Analog & Mixed-Signal 

Extensions)
 1076.2–1996: Std. VHDL Mathematics Packages
 1076.3-1997: Std. VHDL Synthesis Packages
 1076.4-1995: Std. VITAL Modeling Specification 

(VHDL Initiative Towards ASIC Libraries)
 1076.6-1999: Std. for VHDL Register Transfer Level 

(RTL) Synthesis
 1164-1993: Std. Multivalue Logic System for VHDL 

Model Interoperability



HDLs in Digital System Design
 Model and document digital systems
 Hierarchical models
 System, RTL (Register Transfer Level), Gates

 Different levels of abstraction
 Behavior, structure

 Verify circuit/system design via simulation
 Automated synthesis of circuits from HDL models 
 using a technology library
 output is primitive cell-level netlist (gates, flip flops, etc.)



Anatomy of a VHDL model
 “Entity” describes the external view of a component
 “Architecture” describes the internal behavior and/or 

structure of the component

 Example: 
1-bit full adder

A

B

Cin

Sum

Cout

Full Adder



Example: 1-Bit Full Adder
entity full_add1 is

port ( -- I/O ports
a:       in   bit; -- addend input
b:       in   bit; -- augend input
cin:     in   bit; -- carry input
sum:   out bit; -- sum output
cout:   out bit); -- carry output

end full_add1 ;
Comments follow double-dash

Type of signal

Signal direction (mode)Signal name

I/O Port
Declarations



Port Format:   name:  direction data_type;

 Direction
 in - driven into the entity from an external source 

(can read, but not update within architecture)
 out - driven from within the entity 

(can drive but not read within architecture)
 inout – bidirectional;  drivers both within the entity 

and external 
(can read or write within architecture)

 buffer – like “out” but can read and write
 Data_type:   any scalar or aggregate signal type



8-bit adder - entity

-- Interconnect 8 1-bit adders for 8-bit adder
entity Adder8 is 
port (A, B: in BIT_VECTOR(7 downto 0); 

Cin: in BIT; 
Cout: out BIT; 
Sum: out BIT_VECTOR(7 downto 0)); 

end Adder8; 



Built-in Data Types
 Scalar (single-value) signal types:
 bit          – values are ‘0’ or ‘1’
 boolean  – values are TRUE and FALSE
 integer   - values [-231 … +(231-1)] on 32-bit host

 Aggregate (multi-value) signal types:
 bit_vector – array of bits

signal b: bit_vector(7 downto 0);
signal c: bit_vector(0 to 7);
b <= c after 1 ns;
c <= “01010011”;





Numeric literals
 String of scalar values:
 ‘1’ - scalar value
 “11010101” - aggregate value (array of scalar values)
 “1101_0101”       - underline is ignored (improves readability)

 Based literals: designate number base between 2 and 16
 1st Format =  base#digits#

 2#11010101# - base 2
 16#D5# - base 16
 8#325”
 16#2E4F_327F# - underline ignored

 2nd Format = base_specifier”digits”
 B”11010101” = B”1101_0101” - binary
 X”2E4F327F” = X”2E4F_327F” - hexadecimal
 O”325” - letter “O” for octal



VHDL “Package”
 Package = file of type definitions, functions, procedures to 

be shared across VHDL models
 User/vendor created
 Standard lib’s/3rd party – usually distributed in “libraries”
 Example: IEEE libraries, Xilinx/Altera “primitives” libraries, etc.

package name is
--type, function, procedure declarations

end package name;
package body name is    -- only if functions to be defined
-- function implementations
end package body name;



-- Provides additional logic states as data values
package Part_STD_LOGIC_1164 is
type STD_ULOGIC is ( 'U',   -- Uninitialized

'X',   -- Forcing Unknown
'0',   -- Forcing 0
'1',  -- Forcing 1
'Z',  -- High Impedance
'W',  -- Weak Unknown
'L',  -- Weak 0
'H',  -- Weak 1
'-' -- Don't Care);

type STD_ULOGIC_VECTOR is array (NATURAL range <>) of STD_ULOGIC;

IEEE std_logic_1164 package



Bus resolution
 subtype STD_LOGIC is resolved STD_ULOGIC;
 Most common data type in system design
 Bus resolution function specifies value when there are  

multiple drivers of this type

function resolved (s : STD_ULOGIC_VECTOR) return STD_ULOGIC; 

 type STD_LOGIC_VECTOR is array (NATURAL 
range <>) of STD_LOGIC;
 Use for multi-bit values in RTL designs



Bus resolution function

std_logic type includes a “bus resolution function” to determine 
the signal state where there are multiple drivers

‘0’ ‘1’ ‘Z’ ‘X’

‘0’ ‘0’ ‘X’ ‘0’ ‘X’

‘1’ ‘X’ ‘1’ ‘1’ ‘X’

‘Z’ ‘0’ ‘1’ ‘Z’ ‘X’

‘X’ ‘X’ ‘X’ ‘X’ ‘X’

Driver
A

Driver
B

Driver B value

Driver A value Resolved
Bus
Value



Example: 1-Bit Full Adder
library ieee;                        --supplied library
use ieee.std_logic_1164.all;  --package of definitions
entity full_add1 is

port ( -- I/O ports
a:        in   std_logic;    -- addend input
b:        in   std_logic;       -- augend input
cin:      in   std_logic;       -- carry input
sum:    out std_logic;       -- sum output
cout:    out std_logic);     -- carry output

end full_add1 ;



Example: 8-bit full adder
-- 8-bit inputs/outputs
library ieee;                        --supplied library
use ieee.std_logic_1164.all;  --package of definitions
entity full_add8 is

port ( a:     in std_logic_vector(7 downto 0);
b:     in std_logic_vector(7 downto 0);
cin:   in std_logic;
sum: out std_logic _vector(7 downto 0);
cout: out std_logic);

end full_add8 ;



User-Defined Data Types
 Any abstract data type can be created
 Examples:

type mnemonic is (add,sub,mov,jmp);
signal op: mnemonic;

type byte is array(0 to 7) of bit;
signal dbus: byte;

 Subtype of a previously-defined type:
subtype int4 is integer range 0 to 15;
subtype natural is integer range 0 to integer’high;



Miscellaneous – for RTL design
 “Alias” for existing elements

signal instruction: bit_vector(0 to 31);
alias opcode: bit_vector(0 to 5) is instruction(0 to 5);
alias rd: bit_vector(0 to 4) is instruction(6 to 10);
alias rs: bit_vector(0 to 4) is instruction(11 to 15);

 Fill a vector with a constant (right-most bits):
A <= (‘0’,’1’,’1’, others => ‘0’);
A <= (others => ‘0’);   -- set to all 0
B(15 downto 0) <= C(15 downto 0);
B(31 downto 16) <= (others => C(15)); -- sign extension!

 Concatenate bits and bit_vectors
A <= B & C(0 to 3) & “00”; -- A is 16 bits, B is 10 bits



entity Half_Adder is
port (X, Y : in std_logic:= '0'; -- formals 

Sum, Cout : out std_logic); -- formals 
end; 

architecture Behave of Half_Adder is
begin

Sum <= X xor Y;   -- use formals from entity
Cout <= X and Y; 

end Behave; 

“Architecture” defines function/structure



Behavioral architecture example 
(no circuit structure specified)

architecture dataflow of full_add1 is
begin

sum <= a xor b xor cin;
cout <= (a and b) or (a and cin) or (b and cin);

end;



Example using an internal signal
-- can both drive and reference an internal signal
architecture dataflow of full_add1 is

signal x1: std_logic; -- internal signal
begin

x1 <= a xor b; --drive x1
sum <= x1 xor cin; --reference x1
cout <= (a and b) or (a and cin) or (b and cin);

end;



Signal assignment statement
 Model signal driven by a value (signal value produced 

by “hardware”)
a <= b and c after 1 ns;

 Data types must match (strongly typed)
 Delay can be specified (as above)
 Infinitesimally small delay “delta” used if no delay 

specified:
a <= b and c; 

 Signals cannot change in zero time!
 Delay usually unknown in behavioral & RTL 

models and therefore omitted



VHDL Signals and Simulation
 Signal assignment creates a “driver” for the signal
 An “event” is a time/value pair for a signal change

Ex.  (‘1’, 5 ns) – Signal assigned value ‘1’ at current time + 5ns
 Driver contains a queue of pending events

 Only one driver per signal (except for special buses)
 can only drive signal at one point in the model

 Statements appear to be evaluated concurrently
 Time held constant during statement evaluation
 Evaluate each statement affected by a signal event at time T
 Resulting events “scheduled” in the affected signal driver
 New values assigned when time advances to scheduled 

event time



Event-Driven Simulation Example

a <= b after 1ns;
c <= a after 1ns;

Time   a     b    c
T      ‘0’   ‘0’   ‘0’
T+1  ‘0’   ‘1’   ‘0’    - external event on b
T+2  ‘1’   ‘1’   ‘0’    - resulting event on a   
T+3  ‘1’   ‘1’   ‘1’    - resulting event on c



Structural architecture example
(no behavior specified)
architecture structure of full_add1 is

component xor -- declare component to be used
port (x,y: in bit;

z: out bit);
end component;
for all: xor use entity work.xor(eqns); -- if multiple arch’s
signal x1: bit; -- signal internal to this component

begin
G1: xor port map (a, b, x1); -- instantiate 1st xor gate
G2: xor port map (x1, cin, sum);  -- instantiate 2nd xor gate
…add circuit for carry output…

end; A
B

X1
Sum

Cin



Example: adder behavioral model
library ieee;
use ieee.numeric_std.all; --defines arithmetic functions

--on types SIGNED/UNSIGNED
entity adder is

port ( a:       in   signed(31 downto 0);  -- “signed” type
b:      in   signed(31 downto 0);  -- related to
sum:  out signed(31 downto 0);  -- std_logic type

end adder ;
architecture behave of adder is

begin
sum <= a + b;   -- adder to be synthesized

end;



Example: D flip-flop
entity DFF is

port (Preset: in bit; 
Clear: in bit;
Clock: in bit;
Data: in bit;
Q: out bit;
Qbar: out bit);

end DFF;

Data

Clock

Q

Qbar

Preset

Clear



7474 D flip-flop equations
architecture eqns of DFF is

signal A,B,C,D: bit;
signal QInt, QBarInt: bit;

begin
A <= not (Preset and D and B) after 1 ns;
B <= not (A and Clear and Clock) after 1 ns;
C <= not (B and Clock and D) after 1 ns;
D <= not (C and Clear and Data) after 1 ns;
Qint <= not (Preset and B and QbarInt) after 1 ns;
QBarInt <= not (QInt and Clear and C) after 1 ns;
Q <= QInt;
QBar <= QBarInt;

end;



4-bit Register (Structural Model) 
entity Register4 is
port ( D: in bit_vector(0 to 3);

Q: out bit_vector(0 to 3);
Clk: in bit;
Clr: in bit;
Pre: in bit);

end Register4; D(3)

Q(3)

D(2) D(1) D(0)

Q(2) Q(1) Q(0)

CLK
PRE
CLR



Register Structure

architecture structure of Register4 is
component DFF -- declare library component to be used

port (Preset: in bit; 
Clear: in bit;
Clock: in bit;
Data: in bit;
Q: out bit;
Qbar: out bit);

end component;
signal Qbar: bit_vector(0 to 3); -- dummy for unused FF output

begin  -- Signals connected to ports in order listed above
F3: DFF port map (Pre, Clr, Clk, D(3), Q(3), Qbar(3));
F2: DFF port map (Pre, Clr, Clk, D(2), Q(2), Qbar(2));
F1: DFF port map (Pre, Clr, Clk, D(1), Q(1), OPEN);
F0: DFF port map (Pre, Clr, Clk, D(0), Q(0), OPEN);

end; -- keyword OPEN may be connected to unused output



Register Structure
(short cut – “generate” statement)

begin
for k in 0 to 3 generate

F: DFF port map (Pre, Clr, Clk, D(k), Q(k), OPEN);
end generate;

end;

 Generates multiple copies of the given statement(s)
 Value of k inserted where specified
 Iteration number k is appended to each label F
 Result is identical to previous example



Conditional Signal Assignment

signal a,b,c,d,y: bit;
signal S: bit_vector(0 to 1);

begin
with S select

y <= a after 1 ns when “00”,
b after 1 ns when “01”,
c after 1 ns when “10”,
d after 1 ns when “11”;

(or:   d after 1 ns when others;)

00

01

10

11

a

b

c

d

S

y

4-to-1 Mux



32-bit-wide 4-to-1 multiplexer

signal a,b,c,d,y: bit_vector(0 to 31);
signal S: bit_vector(0 to 1);

begin
with S select

y <= a after 1 ns when “00”,
b after 1 ns when “01”,
c after 1 ns when “10”,
d after 1 ns when “11”;

a,b,c,d,y can be any type, as long as they are the same

00

01

10

11

a

b

c

d

S

y

4-to-1 Mux



Conditional Signal Assignment –
Alternate Format

y <=  a after 1 ns when (S=“00”) else
b after 1 ns when (S=“01”) else
c after 1 ns when (S=“10”) else
d after 1 ns;

Any boolean expression can be
used for each condition.

Ex.  y <= a after 1 ns when (F=‘1’) and (G=‘0’) …

00

01

10

11

a

b

c

d

S

y

4-to-1 Mux



Unconstrained Bit Vectors
 Model a component with variable data widths

entity mux is
port (a,b: in bit_vector;  -- unconstrained

c: out bit_vector;
s: in bit );

end mux;
architecture x of mux is
begin

c <= a when (s=‘0’) else b;
end;



Unconstrained Bit Vectors

 Vector constrained when instantiated:
signal s1,s2: bit;

signal a5,b5,c5: bit_vector (0 to 4);
signal a32,b32,c32: bit_vector (0 to 31);
component mux 
port (a,b: in bit_vector;  -- unconstrained

c: out bit_vector;
s: in bit );

end component;
begin

M5:   mux port map (a5,b5,c5,s1);       -- 5-bit mux
M32: mux port map (a32,b32,c32,s2); -- 32-bit mux



Parameterized models
 Allows a generic component with variable sizes:

entity mux is
generic (N: integer := 32);
port (a,b: in bit_vector(N-1 downto 0);

c: out bit_vector(N-1 downto 0);
s: in bit );

end mux;
architecture x of mux is
begin

c <= a when (s=‘0’) else b;
end;



Parameterized Bit Vectors

 Vector constrained when instantiated:
signal s1,s2: bit;

signal a5,b5,c5: bit_vector (0 to 4);
signal a32,b32,c32: bit_vector (0 to 31);
component mux 

generic (N: integer := 32);
port (a,b: in bit_vector(N-1 downto 0);

c: out bit_vector(N-1 downto 0);
s: in bit );

end component;
begin

M5:   mux generic map (5) port map (a5,b5,c5,s1);       -- 5-bit mux
M32: mux generic map (32) port map (a32,b32,c32,s2); -- 32-bit mux



Tristate bus buffer example
library ieee;
use ieee.std_logic_1164.all;
entity tristate is
port ( a: in std_logic_vector(0 to 7);

y: out std_logic_vector(0 to 7);
en: in bit);

end tristate;
architecture a1 of tristate is
begin

y <= a                      after 1 ns when (en=‘1’) else
“ZZZZZZZZ”  after 1 ns;

end;     -- signal types of y and a match

ya

en



Tristate buffer example
(incorrect)
library ieee;
use ieee.std_logic_1164.all;
entity tristate is
port ( a: in bit;

y: out std_logic;
en: in bit);

end tristate;
architecture a1 of tristate is
begin

y <= a after 1 ns when (en=‘1’) else
‘Z’ after 1 ns;

end;

Type mismatch between y and a

ya

en



Tristate buffer example
(correct)
library ieee;
use ieee.std_logic_1164.all;
entity tristate is
port ( a: in bit;

y: out std_logic;
en: in bit);

end tristate;
architecture a1 of tristate is
begin

y <=  ‘0’ after 1 ns when (en=‘1’) and (a=‘0’) else
‘1’ after 1 ns when (en=‘1’) and (a=‘1’) else
‘Z’ after 1 ns;

end;

ya

en



VHDL “Process” Construct
 Allows conventional programming language methods 

to describe circuit behavior
 Supported language constructs (“sequential 

statements”) – only allowed within a process:
 variable assignment
 if-then-else   (elsif)
 case statement
 while (condition) loop
 for (range) loop



Process Format
[label:]  process (sensitivity list)

declarations
begin

sequential statements
end process;

 Process statements executed once at start of 
simulation

 Process halts at “end” until an event occurs on a 
signal in the “sensitivity list”



Using a “process” to model sequential 
behavior

entity DFF is 
port (D,CLK: in bit;

Q: out bit);
end DFF;
architecture behave of DFF is
begin

process(clk)   -- “process sensitivity list”
begin

if (clk’event and clk=‘1’) then
Q <= D after 1 ns;

end if;
end process;

end;

 Process statements executed sequentially (sequential statements)
 clk’event is an attribute of signal clk which is TRUE if an event has occurred 

on clk at the current simulation time

D         Q

CLK



Alternative to sensitivity list
entity DFF is 
port (D,CLK: in bit;

Q: out bit);
end DFF;
architecture behave of DFF is
begin

process   -- no “sensitivity list”
begin

wait on clk; -- suspend process until event on clk
if (clk=‘1’) then

Q <= D after 1 ns;
end if;

end process;
end;
 Other “wait” formats:  wait until (clk’event and clk=‘1’);    wait for 20 ns;
 Process executes endlessly if no sensitivity list or wait statement!

D         Q

CLK



D latch vs. D flip-flop
entity Dlatch is 
port (D,CLK: in bit;

Q: out bit);
end Dlatch;
architecture behave of Dlatch is
begin

process(D, clk)
begin

if (clk=‘1’) then
Q <= D after 1 ns;

end if;
end process;

end;
-- For latch, Q changes whenever the latch is enabled by CLK=‘1’ rather than being 

edge-triggered)

D         Q

CLK



Defining a “register” for an RTL model 
(not gate-level)
entity Reg8 is 
port (D: in bit_vector(0 to 7);

Q: out bit_vector(0 to 7)
LD: in bit);

end Reg8;
architecture behave of Reg8 is
begin

process(LD) 
begin

if (LD’event and LD=‘1’) then
Q <= D after 1 ns;

end if;
end process;

end;
D and Q can be any abstract data type

D(0 to 7)

Q(0 to 7)

LD



Synchronous vs. Asynchronous 
Flip-Flop Inputs
entity DFF is 
port (D,CLK: in bit;

PRE,CLR: in bit;
Q: out bit);

end DFF;
architecture behave of DFF is
begin

process(clk,PRE,CLR)
begin

if (CLR=‘0’) then -- CLR has precedence
Q <= ‘0’ after 1 ns;

elsif (PRE=‘0’) then -- Then PRE has precedence
Q <= ‘1’ after 1 ns;

elsif (clk’event and clk=‘1’) then
Q <= D after 1 ns; -- Only if CLR=PRE=‘1’

end if;
end process;

end;

CLR
D         Q

CLK
PRE



Using a “variable” to describe sequential 
behavior within a process

cnt: process(clk)
variable count: integer; -- internal counter state

begin                                 -- valid only in a process
if clk=‘1’ and clk’event then

if ld=‘1’ then                -- “to_integer” must be supplied
count := to_integer(Din); 

elsif cnt=‘1’ then
count := count + 1;

end if;
end if;                    -- “to_bitvector” must be supplied
Dout <= to_bitvector(count);

end process;



Modeling Finite State Machines 
(Synchronous Sequential Circuits)

 FSM design & synthesis process:
1. Design state diagram (behavior)
2. Derive state table
3. Reduce state table
4. Choose a state assignment
5. Derive output equations
6. Derive flip-flop excitation equations

 Synthesis steps 2-6 can be automated, given the 
state diagram



Synchronous Sequential Circuit Model

Comb.
Logic

FFs

Inputs
x

Outputs
z

Next State
Y

Present State
y

Mealy Outputs z = f(x,y),   Moore Outputs z = f(y)

Next State Y = f(x,y)

Clock



Synchronous Sequential Circuit (FSM) 
Example

B/0 
C/1 
A/1

0/0

1/1 1/0

1/1

0/0

0/0
X/Z Present 

state
Input x

0 1

Next state/output

A/0 
A/0 
C/0

A 
B 
C

A

BC



FSM Example – entity definition
entity seqckt is

port (
x: in bit; -- FSM input
z: out bit; -- FSM output
clk: in bit ); -- clock

end seqckt;



FSM Example - behavioral model

architecture behave of seqckt is
type states is (A,B,C); -- symbolic state names
signal curr_state,next_state: states;

begin
-- Model the memory elements of the FSM
process (clk)
begin

if (clk’event and clk=‘1’) then
pres_state <= next_state;

end if;
end process;

(continue on next slide)



FSM Example - continued

-- Model the next-state and output functions of the FSM
process (x, pres_state) -- function inputs
begin

case pres_state is -- describe each state
when A => if (x = ‘0’) then

z <= ‘0’;
next_state <= A;

else  -- (x = ‘1’)
z <= ‘0’;
next_state <= B;

end if;
(continue next slide for pres_state = B and C)



FSM Example (continued)
when B => if (x=‘0’) then

z <= ‘0’;
next_state <= A;

else
z <= ‘1’;
next_state <= C;

end if;
when C => if (x=‘0’) then

z <= ‘0’;
next_state <= C;

else
z <= ‘1’;
next_state <= A;

end if;
end case;

end process;
end;



Alternative Format for Output and Next 
State Functions
z <= ‘1’ when ((curr_state = B) and (x = ‘1’)) 

or ((curr_state = C) and (x = ‘1’))
else ‘0’;

next_state <= A when ((curr_state = A) and (x = ‘0’))
or ((curr_state = B) and (x = ‘0’)) 
or ((curr_state = C) and (x = ‘1’)) else

B when ((curr_state = 1) and (x = ‘1’)) else
C;



System Example: 8x8 multiplier

adder (ADR)

multiplicand (M)

accumulator (A) multiplier (Q)

controller (C)

Start  Clock

Done

Input Bus

Output Bus



Multiply Algorithm
A <- 0
M <- INBUS
CNT <- 0

Q <- INBUS

A <- A + MQ(7)

A:Q <- right shift
CNT <- CNT + 1

CNT A(0) <- sign OUTBUS <= A

OUTBUS <= Q

1

0

<8 8

IN1

IN2

ADD

SHIFT

SIGN OUT1

OUT2

START

DONE <- 1

HALT

0
1



Multiplier – Top Level
entity multiplier is
port  (INBUS:     in  bit_vector(0 to 7);

OUTBUS: out bit_vector(0 to 7);
CLOCK:    in  bit;
START:     in  bit;
DONE:      out bit);

end multiplier;

architecture struc of multiplier is

[component declarations go here]

-- internal signals to interconnect components
signal AR, MR, QR, AD, Ain: bit_vector(0 to 7);
signal AMload, AMadd, Qload, AQshift, AQoutEn, AQoutSel: bit;
signal SignLd: bit;



Multiplier – Top Level (continued)
begin

OUTBUS <= AR when AQoutEn = '1' and AQoutSel = '0' else
QR when AQoutEn = '1' and AQoutSel = '1' else
"00000000";

Ain(0) <= AD(0) when AMadd = '1' else MR(0) xor QR(7);
Ain(1 to 7) <= AD(1 to 7);

M: mreg port map (INBUS, MR, AMload);
Q: Qreg port map (INBUS, QR, AR(7), Qload, SignLd, AQshift);
A: areg port map (Ain, AR, AMadd, SignLd, AQshift, AMload);
ADR: adder port map (AR, MR, AD);
C:      mctrl port map (START, CLOCK, QR(7), AMload, AMadd, Qload, AQshift, 

SignLd, AQoutEn, AQoutSel, DONE);
end;



Multiplicand Register (mreg)
-- simple parallel-load register
entity mreg is
port  (Min:  in  bit_vector(0 to 7);

Mout: out bit_vector(0 to 7);
Load: in  bit);

end mreg;

architecture comp of mreg is
begin

process (Load) -- wait for change in Load
begin

if Load = '1' then
Mout <= Min; -- parallel load

end if;
end process;

end;



Accumulator Register (areg)

-- shift register with clear and parallel load
entity Areg is
port  (Ain:     in  bit_vector(0 to 7);

Aout:   out bit_vector(0 to 7);
Load:   in  bit; -- load entire register
Load0: in  bit; -- load a0 only
Shift:    in  bit; -- shift right
Clear:   in  bit); -- clear register

end Areg;

architecture comp of areg is
signal A: bit_vector(0 to 7); -- internal state



Accumulator Register (areg)
begin

Aout <= A; -- internal value to outputs

process (Clear, Load, Load0, Shift)  -- wait for event
begin

if Clear = '1' then
A <= "00000000"; -- clear register
elsif Load = '1' then
A <= Ain; -- parallel load
elsif Shift = '1' then
A <= '0' & A(0 to 6); -- right shift
elsif Load0 = '1' then
A(0) <= Ain(0); -- load A(0) only
end if;

end process;
end;



Multiplier/Product Register (Qreg)
-- shift register with parallel load

entity Qreg is
port  (Qin:    in  bit_vector(0 to 7);

Qout:   out bit_vector(0 to 7);
SerIn:  in  bit; -- serial input for shift
Load:   in  bit; -- parallel load
Clear7: in  bit; -- clear bit 7
Shift:  in  bit); -- right shift

end Qreg;

architecture comp of qreg is
signal Q: bit_vector(0 to 7); -- internal storage



Multiplier/Product Register (Qreg)
begin

Qout <= Q; -- drive output from internal storage

process (Load, Shift, Clear7)   -- wait for event
begin

if Load = '1' then
Q <= Qin; -- load Q

elsif Shift = '1' then
Q <= SerIn & Q(0 to 6);   -- shift Q right

elsif Clear7 = '1' then
Q(7) <= '0'; -- clear bit Q(7)

end if;
end process;

end;



8-bit adder (behavioral)
use work.qsim_logic.all; -- contains bit_vector addition
entity adder is

port( X,Y: in  bit_vector(0 to 7);
Z:  out bit_vector(0 to 7));

end adder;

architecture comp of adder is
signal  temp: bit_vector(0 to 8);

begin
temp <= ("00" & X(1 to 7)) + ("00" & Y(1 to 7));
Z <= temp (1 to 8);

end;



Multiplier Controller
entity mctrl is

port (Start:    in  bit; -- start pulse
Clock:    in  bit; -- clock input
Q7:      in  bit; -- LSB of multiplier
AMload:   out bit; -- load M & A registers
AMadd:    out bit; -- load adder result into A
Qload:    out bit; -- Load Q register
AQshift:  out bit; -- shift A & Q registers
SignLd:   out bit; -- load sign into A(0)
AQoutEn:  out bit; -- enable output
AQoutSel: out bit; -- select A or Q for output
DONE:     out bit); -- external DONE signal

end mctrl;



Multiplier Controller - Architecture
architecture comp of mctrl is

type states is (Halt,In1,In2,Add,Shift,Sign,Out1,Out2);
signal State:    States := Halt; -- state of the controller

begin
-- decode state variable for outputs
AMload <= '1' when State = In1 else '0';
Qload <= '1' when State = In2 else '0';
AMadd <= '1' when State = Add and Q7 = '1' else '0';
AQshift <= '1' when State = Shift else '0';
AQoutSel <= '1' when State = Out2 else '0';
SignLd <= '1' when State = Sign else '0';
AQoutEn <= '1' when State = Out1 or State = Out2 else '0';
DONE      <= '1' when State = Halt else '0';



Controller – State transition process
process (Clock) -- implement state machine state transitions

variable Count: integer;
begin

if Clock = '1' then
case State is

when Halt =>  if Start = '1' then      -- wait for start pulse
State <= In1;
Count := 0;

end if;
when In1   =>  State <= In2; -- Read 1st operand
when In2   =>  State <= Add; -- Read 2nd operand

(Continued)



Controller – State transition process
(continued)

when Add  =>  State <= Shift;  -- Add multiplicand to accumulator
Count := Count + 1;

when Shift =>  if Count = 7 then-- Shift accumulator/multiplier
State <= Sign;

else
State <= Add;

end if;
when Sign   => State <= Out1; -- Set sign of result
when Out1  => State <= Out2; -- Output lower half of product
when Out2  => State <= Halt; -- Output upper half of product

end case;
end if;

end process;



64K x 8 Memory Example
library ieee;
use ieee.std_logic_1164.all;
use work.qsim_logic.all; -- package with to_integer() func

entity memory8 is
port (dbus: inout std_logic_vector(0 to 7);

abus: in      std_logic_vector(0 to 15);
ce:    in bit; -- active low chip enable
oe:    in bit; -- active low output enable
we:   in bit); -- active low write enable

end memory8;



64K x 8 Memory Example
architecture reglevel of memory8 is
begin
process (ce,oe,we,abus,dbus)

type mem is array(natural range <>) of std_logic_vector(0 to 7);
variable M: mem(0 to 65535);

begin
if (ce='0') and (oe='0') then   -- read enabled

dbus <= M(to_integer(abus)); -- drive the bus
elsif (ce='0') and (we='0') then   -- write enabled

dbus <= "ZZZZZZZZ"; -- disable drivers
M(to_integer(abus)) := dbus; -- write to M

else
dbus <= "ZZZZZZZZ"; --disable drivers

end if;
end process;

end;
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