
Arm = Advanced RISC Machines, Ltd.

References:

Computers as Components, 4th Ed., by Marilyn Wolf

ARM Cortex-M4 User Guide (link on course web page)

ARM Architecture Reference Manual (link on course web page)

Arm Processor

Arm instruction set - outline

ELEC 5260/6260/6266 Embedded Systems

 Arm versions.
 Arm assembly language.
 Arm programming model.
 Arm memory organization.
 Arm data operations.
 Arm flow of control.

Arm processor families

 Cortex-A series (Application)
 High performance processors capable of full Operating

System (OS) support
 Applications include smartphones, digital TV, smart books

 Cortex-R series (Real-time)
 High performance and reliability for real-time applications;
 Applications include automotive braking system,

powertrains
 Cortex-M series (Microcontroller)

 Cost-sensitive solutions for deterministic microcontroller
applications

 Applications include microcontrollers, smart sensors
 SecurCore series
 High security applications

 Earlier classic processors including Arm7, Arm9,
Arm11 families

Cortex-A

Cortex-A73
Cortex-A72
Cortex-A57
Cortex-A53
Cortex-A35
Cortex-A32

Cortex-R

Cortex-M

SecurCore

Classic

Cortex-A17
Cortex-A15
Cortex-A9
Cortex-A8
Cortex-A7
Cortex-A5

Cortex-R8
Cortex-R7
Cortex-R5
Cortex-R4

Cortex-M23, M33
Cortex-M7
Cortex-M4
Cortex-M3
Cortex-M0, M0+

SC000
SC300

Arm11
Arm9
Arm7

ELEC 5260/6260/6266 Embedded Systems

Presenter
Presentation Notes
Arm’s processor families range from the A-series, which are optimized for rich operating systems, the R-series, which are optimized for hard real-time applications and high performance, the M-series, which is optimized for discrete processing and microcontroller, and the SecurCore, which is optimized for security applications. Arm Cortex-A processors are at the heart of the most powerful and compelling technology products. They are deployed in mobile devices, networking infrastructure, home and consumer devices, automotive in-vehicle infotainment and driver automation systems, and embedded designs.Arm Cortex-R real-time processors offer high-performance computing solutions for embedded systems where reliability, high availability, fault tolerance and/or deterministic real-time responses are needed. Cortex-R processors are used in products that must always meet exacting performance requirements and timing deadlines.The Arm Cortex-M processor family is a range of scalable, energy efficient, and easy to use processors that meet the needs of tomorrow’s smart and connected embedded applications. The processors are supported by the world’s number one embedded ecosystem, and have already been shipped in many billions of devices.The Arm SecurCore processor family provides powerful 32-bit secure solutions based upon industry leading Arm architecture. By enhancing highly successful Arm processors with security features, SecurCore gives smart card and secure IC developers easy access to the benefits of Arm 32-bit technology such as small die size, energy efficiency, low cost, excellent code density and outstanding performance.Arm Classic processors include the Arm11, Arm9 and Arm7 processor families. These processors are still widely licensed around the globe, providing cost-effective solutions for many of today's applications.

Equipment Adopting Arm Cores

Energy Efficient Appliances

IR Fire Detector

Intelligent
Vending

Tele-parking

Utility
Meters

Exercise
MachinesIntelligent toys

M

R

A

Source: Arm University Program Overview
ELEC 5260/6260/6266 Embedded Systems

Presenter
Presentation Notes
These processor cores end up in various electronics devices. For example, Cortex M ends up in various embedded systmes ranking from utlity meters to your digital thermeters. Cortex R is mostly used in automotive devies and also in wireless controller. Cortex A is used in high end devices raning from smart phones to digital TVs

Arm processors vs. Arm architectures

 Arm architecture
 Describes the details of instruction set, programmer’s model, exception model, and

memory map
 Documented in the Architecture Reference Manual

 Arm processor
 Developed using one of the Arm architectures
 More implementation details, such as timing information
 Documented in processor’s Technical Reference Manual

Armv4/v4T
Architecture

Armv5/ v4E
Architecture

Armv6
Architecture

Armv7
Architecture

Arm v6-M
e.g. Cortex-M0, M1

e.g. Arm7TDMI e.g. Arm9926EJ-S e.g. Arm1136

Armv8
ArchitectureArmv7-A

e.g. Cortex-A9

Armv7-R
e.g. Cortex-R4

Armv7-M
e.g. Cortex-M4

Armv8-A
e.g. Cortex-

A53
Cortex-A57
Armv8-R

Armv8-M, e.g.
Cortex-M23,

M33

ELEC 5260/6260/6266 Embedded Systems

Presenter
Presentation Notes
While programming Arm systems, a distinction needs to be made between the Arm architecture and an Arm processor. Arm architecture describes the details related to programming including data types, instructions, registers, memory architecture etc. Companies that are licensing Arm architecture are using their own CPU design.Arm architecture forms the basis for every Arm processor. Over time, the Arm architecture has evolved to include architectural features that meet the growing demand for new functionality, integrated security features, high performance and the needs of new and emerging markets. There are currently three Armv8 profiles: (1) the Armv8-A architecture profile for high performance markets such as mobile and enterprise, (2) the Armv8-R architecture profile for embedded applications in automotive and industrial control, and (3) the Armv8-M architecture profile for embedded and IoT applications.The Arm architecture supports implementations across a wide range of performance points, establishing it as the leading architecture in many market segments. The Arm architecture supports a very broad range of performance points, leading to very small implementations of Arm processors, and very efficient implementations of advanced designs using state of the art micro-architecture techniques. Implementation size, performance, and low power consumption are key attributes of the Arm architecture.

Arm Architecture versions
(From Arm.com)

ELEC 5260/6260/6266 Embedded Systems

Arm Cortex-M series
 Cortex-M series: Cortex-M0, M0+, M3, M4, M7, M22, M23

 Low cost, low power, bit and byte operations, fast interrupt response
 Energy-efficiency

 Lower energy cost, longer battery life
 Smaller code (Thumb mode instructions)

 Lower silicon costs
 Ease of use

 Faster software development and reuse
 Embedded applications

 Smart metering, human interface devices, automotive and industrial control
systems, white goods, consumer products and medical instrumentation

ELEC 5260/6260/6266 Embedded Systems

Presenter
Presentation Notes
This course is about M-series-processors, optimized for low energy consumption and small codes, requiring less physical space and silicon for lower cost. These cores are optimized for mobile applications with independent power supply.Arm offers Cortex-M0 and Cortex M0+ for applications requiring minimal cost, power, and area while Cortex-M3 and Cortex-M4 and Cortex-M7 are designed for applications requiring higher performance. Arm Cortex-M4 and Cortex-M7 integrate Digital Signal Processing (DSP) and accelerated floating point processing capability for fast and power-efficient algorithm processing of digital signal control applications.

Arm Cortex-M processor profile
 M0: Optimized for size and power (13 µW/MHz dynamic power)
 M0+: Lower power (11 µW/MHz dynamic power), shorter pipeline
 M3: Full Thumb and Thumb-2 instruction sets, single-cycle multiply

instruction, hardware divide, saturated math, (32 µW/MHz)
 M4: Adds DSP instructions, optional floating point unit
 M7: designed for embedded applications requiring high performance
 M23, M33: include Arm TrustZone® technology for solutions that

require optimized, efficient security

ELEC 5260/6260/6266 Embedded Systems

Presenter
Presentation Notes
Summary of Cortex-M processor characteristics.

Arm Cortex-M series family
Processor Arm

Architecture
Core

Architecture
Thumb® Thumb®-2

Hardware
Multiply

Hardware
Divide

Saturated
Math

DSP
Extensions

Floating
Point

Cortex-M0 Armv6-M
Von

Neumann
Most Subset

1 or 32
cycle

No No No No

Cortex-M0+ Armv6-M
Von

Neumann
Most Subset

1 or 32
cycle

No No No No

Cortex-M3 Armv7-M Harvard Entire Entire 1 cycle Yes Yes No No

Cortex-M4 Armv7E-M Harvard Entire Entire 1 cycle Yes Yes Yes Optional

Cortex-M7 Armv7E-M
Harvard Entire Entire 1 cycle Yes Yes Yes Optional

Cortex-M23, 33 Armv8-M Harvard Entire Entire 1 cycle Yes Yes Yes Optional

ELEC 5260/6260/6266 Embedded Systems

Presenter
Presentation Notes
This table provides a good overview of the features of each single core in the M series family.Note that the Cortex M0 andM0+ are optimized for simple sensing and controlling, whereas the M3,M4 and M7 are optimized for data intense operations with Harvard architecture, dedicated (fast) hardware multipliers, math-packages and extensions for digital signal processors(M4 and M7 only).Thumb stands for variable length execution sets with a length of 16 or 32 bit.

RISC CPU Characteristics

ELEC 5260/6260/6266 Embedded Systems

 32-bit load/store architecture
 Fixed instruction length
 Fewer/simpler instructions than CISC CPU
 Limited addressing modes, operand types
 Simple design easier to speed up, pipeline & scale

Arm assembly language

ELEC 5260/6260/6266 Embedded Systems

 Fairly standard RISC assembly language:

LDR r0,[r8] ; a comment

label ADD r4,r0,r1 ;r4=r0+r1

destination source/left source/right

Arm Cortex register set

ELEC 5260/6260/6266 Embedded Systems

Changes from standard Arm architecture:
• Stack-based exception model
• Only two processor modes
• Thread Mode for User tasks*
• Handler Mode for OS tasks and exceptions*
• Vector table contains addresses

*Only SP changes between modes

Arm Register Set

ELEC 5260/6260/6266 Embedded Systems

(change during exceptions)

(16 32-bit general-purpose registers)

Arm data types

ELEC 5260/6260/6266 Embedded Systems

 Word is 32 bits long.
 Word can be divided into four 8-bit bytes.
 Arm addresses can be 32 bits long.
 Address refers to byte.
Address 4 starts at byte 4.

 Configure at power-up in either little- or bit-endian mode.

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 0 bit 31

little-endian (default) big-endian

CPSR
Current Processor Status Register

ELEC 5260/6260/6266 Embedded Systems

N Z C V I F T M4M3M2M1M0

31 30 29 28 7 6 5 4 3 2 1 0

ALU Flags IRQ disable
FIQ disable

Thumb/Arm
mode

Processor Mode**
10000 – User
10001 – FIQ
10010 – IRQ
10011 – Supervisor (SWI)
10111 – Abort D/I mem’y
11001 – Undefined instr.
11111 - System

Must be in a “privileged” mode
to change the CPSR

MRS rn,CPSR
MSR CPSR,rn

**2 modes in Cortex:
Thread & Handler

Arm status bits

ELEC 5260/6260/6266 Embedded Systems

 Every arithmetic, logical, or shifting operation can set
CPSR bits:
N (negative), Z (zero), C (carry), V (overflow)

 Examples:
-1 + 1 = 0: NZCV = 0110.
231-1+1 = -231: NZCV = 1001.

 Setting status bits must be explicitly enabled on each
instruction
 ex. “adds” sets status bits, whereas “add” does not

Arm data instructions

ELEC 5260/6260/6266 Embedded Systems

 Basic format:
ADD r0,r1,r2
 Computes r1+r2, stores in r0.

 Immediate operand: (8-bit constant – can be scaled by 2k)
ADD r0,r1,#2
 Computes r1+2, stores in r0.

 Set condition flags based on operation:
ADDS r0,r1,r2

 Assembler translation:
ADD r1,r2 => ADD r1,r1,r2 (but not MUL)

set status flags

Flexible 2nd operand

ELEC 5260/6260/6266 Embedded Systems

 2nd operand = constant or register
 Constant with optional shift: (#8bit_value)
 Assembler/Compiler turns constant into one of:
 8-bit value, shifted left any #bits (up to 32)
 0x00ab00ab, 0xab00ab00, 0xabababab (a,b hex digits)

 Assembler error if constant cannot be represented as above

 Register with optional shift: Rm,shift_type,#nbits
 shift_type = ASR, LSL, LSR, ROR, with nbits < 32
 shift_type RRX (rotate through X) by 1 bit

Barrel shifter for 2nd operand

ELEC 5260/6260/6266 Embedded Systems

Arm arithmetic instructions

ELEC 5260/6260/6266 Embedded Systems

 ADD, ADC : add (w. carry)
[Rd] <= Op1 + Op2 + C

 SUB, SBC : subtract (w. carry)
[Rd] <= Op1 – Op2 + (C – 1)

 RSB, RSC : reverse subtract (w. carry)
[Rd] <= OP2 – Op1 + (C – 1)

 MUL: multiply (32-bit product – no immediate for Op2)
[Rd] <= Op1 x Op2

 MLA : multiply and accumulate (32-bit result)
MLA Rd,Rm,Rs,Rn : [Rd] <= (Rm x Rs) + Rn

Arm logical instructions

ELEC 5260/6260/6266 Embedded Systems

 AND, ORR, EOR: bit-wise logical op’s
 BIC : bit clear [Rd] <= Op1 ^ Op2
 LSL, LSR : logical shift left/right (combine with data op’s)

ADD r1,r2,r3, LSL #4 : [r1] <= r2 + (r3x16)
Vacated bits filled with 0’s

 ASL, ASR : arithmetic shift left/right (maintain sign)
 ROR : rotate right
 RRX : rotate right extended with C from CPSR

33-bit shift: C

Arm comparison instructions

ELEC 5260/6260/6266 Embedded Systems

These instructions only set the NZCV bits of CPSR – no
other result is saved. (“Set Status” is implied)

 CMP : compare : Op1 – Op2
 CMN : negated compare : Op1 + Op2
 TST : bit-wise AND : Op1 ^ Op2
 TEQ : bit-wise XOR : Op1 xor Op2

New Thumb2 bit operations

ELEC 5260/6260/6266 Embedded Systems

 Bit field insert/clear (to pack/unpack data within a register)
BFC r0,#5,#4 ;Clear 4 bits of r0, starting with bit #5

BFI r0,r1,#5,#4 ;Insert 4 bits of r1 into r0, start at bit #5

 Bit reversal (REV) – reverse order of bits within a register
 Bit [n] moved to bit [31-n], for n = 0..31
 Example:

REV r0,r1 ;reverse order of bits in r1 and put in r0

Arm move instructions

ELEC 5260/6260/6266 Embedded Systems

 MOV, MVN : move (negated), constant = 8 or 16 bits
MOV r0, r1 ; sets r0 to r1
MOVN r0, r1 ; sets r0 to r1
MOV r0, #55 ; sets r0 to 55
MOV r0,#0x5678 ;Thumb2 r0[15:0]
MOVT r0,#0x1234 ;Thumb2 r0[31:16]

 Use shift modifier to scale a value:
MOV r0,r1,LSL #6 ; [r0] <= r1 x 64

• Special pseudo-op:
LSL rd,rn,shift = MOV rd,rn,LSL shift

Arm 32-bit load pseudo-op*

ELEC 5260/6260/6266 Embedded Systems

 Operand cannot be memory address or large constant
 LDR r3,=0x55555555
 Place 0x55555555 in r3
 Produces MOV if immediate constant can be found
Otherwise put constant in a “literal pool” and use:

LDR r3,[PC,#immediate-12]
…..

DCD 0x55555555 ;in literal pool following code
* Not an actual Arm instruction – translated to Arm ops by the assembler

32-bit constant or
symbol. Ex: =VariableName

Arm memory access instructions

ELEC 5260/6260/6266 Embedded Systems

 Load operand from memory into target register
 LDR – load 32 bits
 LDRH – load halfword (16 bit unsigned #) & zero-extend to 32 bits
 LDRSH – load signed halfword & sign-extend to 32 bits
 LDRB – load byte (8 bit unsigned #) & zero-extend to 32 bits
 LDRSB – load signed byte & sign-extend to 32 bits

 Store operand from register to memory
 STR – store 32-bit word
 STRH – store 16-bit halfword (right-most16 bits of register)
 STRB : store 8-bit byte (right-most 8 bits of register)

Arm load/store addressing

ELEC 5260/6260/6266 Embedded Systems

 Addressing modes: base address + offset
 register indirect : LDR r0,[r1]
with second register : LDR r0,[r1,-r2]
with constant : LDR r0,[r1,#4]
 pre-indexed: LDR r0,[r1,#4]!
 post-indexed: LDR r0,[r1],#8

Immediate #offset = 12 bits (2’s complement)

Arm load/store examples

ELEC 5260/6260/6266 Embedded Systems

 ldr r1,[r2] ; address = (r2)
 ldr r1,[r2,#5] ; address = (r2)+5
 ldr r1,[r2,#-5] ; address = (r2)-5
 ldr r1,[r2,r3] ; address = (r2)+(r3)
 ldr r1,[r2,-r3] ; address = (r2)-(r3)
 ldr r1,[r2,r3,LSL #2] ; address=(r2)+(r3 x 4)

Base register r2 is not altered in these instructions
Scaled index

Arm load/store examples
(base register updated by auto-indexing)

ELEC 5260/6260/6266 Embedded Systems

 ldr r1,[r2,#4]! ; use address = (r2)+4
; r2<=(r2)+4 (pre-index)

 ldr r1,[r2,r3]! ; use address = (r2)+(r3)
; r2<=(r2)+(r3) (pre-index)

 ldr r1,[r2],#4 ; use address = (r2)
; r2<=(r2)+4 (post-index)

 ldr r1,[r2],[r3] ; use address = (r2)
; r2<=(r2)+(r3) (post-index)

Additional addressing modes

ELEC 5260/6260/6266 Embedded Systems

 Base-plus-offset addressing:
LDR r0,[r1,#16]
 Loads from location [r1+16]

 Auto-indexing increments base register:
LDR r0,[r1,#16]!
 Loads from location [r1+16], then sets r1 = r1 + 16

 Post-indexing fetches, then does offset:
LDR r0,[r1],#16
 Loads r0 from [r1], then sets r1 = r1 + 16

• Recent assembler addition:
SWP{cond} rd,rm,[rn] :swap mem & reg

M[rn] -> rd, rd -> M[rn]

Arm ADR pseudo-op

ELEC 5260/6260/6266 Embedded Systems

 Assembler will try to translate:
LDR Rd,label to LDR Rd,[pc,#offset]

 If address in Code Area, generate address value by
performing arithmetic on PC.

 ADR pseudo-op generates instruction required to
calculate address (in Code Area ONLY)
ADR r1,LABEL
(uses MOV,MOVN,ADD,SUB op’s)

Example: C assignments

ELEC 5260/6260/6266 Embedded Systems

 C: x = (a + b) - c;
 Assembler:
ADR r4,a ; get address for a (in code area)
LDR r0,[r4] ; get value of a
LDR r4,=b ; get address for b, reusing r4
LDR r1,[r4] ; get value of b
ADD r3,r0,r1 ; compute a+b
LDR r4,=c ; get address for c
LDR r2,[r4] ; get value of c
SUB r3,r3,r2 ; complete computation of x
LDR r4,=x ; get address for x
STR r3,[r4] ; store value of x

Example: C assignment

ELEC 5260/6260/6266 Embedded Systems

 C: y = a*(b+c);
 Assembler:

LDR r4,=b ; get address for b
LDR r0,[r4] ; get value of b
LDR r4,=c ; get address for c
LDR r1,[r4] ; get value of c
ADD r2,r0,r1 ; compute partial result
LDR r4,=a ; get address for a
LDR r0,[r4] ; get value of a
MUL r2,r2,r0 ; compute final value for y
LDR r4,=y ; get address for y
STR r2,[r4] ; store y

Example: C assignment

ELEC 5260/6260/6266 Embedded Systems

 C: z = (a << 2) | (b & 15);
 Assembler:
LDR r4,=a ; get address for a
LDR r0,[r4] ; get value of a
MOV r0,r0,LSL 2 ; perform shift
LDR r4,=b ; get address for b
LDR r1,[r4] ; get value of b
AND r1,r1,#15 ; perform AND
ORR r1,r0,r1 ; perform OR
LDR r4,=z ; get address for z
STR r1,[r4] ; store value for z

Arm flow control operations

ELEC 5260/6260/6266 Embedded Systems

 All operations can be performed conditionally, testing CPSR (only
branches in Thumb/Thumb2):
 EQ, NE, CS, CC, MI, PL, VS, VC, HI,
LS, GE, LT, GT, LE

 Branch operation:
B label

Target < ±32M(Arm),±2K(Thumb),±16M(Thumb2)
 Conditional branch:

BNE label
Target < ±32M(Arm),-252..+258(T),±1M(T2)

 Thumb2 additions (compare & branch if zero/nonzero):
CBZ r0,label ;branch if r0 == 0
CBNZ r0,label ;branch if r0 != 0

Example: if statement

ELEC 5260/6260/6266 Embedded Systems

 C:
if (a > b) { x = 5; y = c + d; } else x = c - d;

 Assembler:
; compute and test condition
LDR r4,=a ; get address for a
LDR r0,[r4] ; get value of a
LDR r4,=b ; get address for b
LDR r1,[r4] ; get value for b
CMP r0,r1 ; compare a < b
BLE fblock ; if a <= b, branch to false block

If statement, cont’d.

ELEC 5260/6260/6266 Embedded Systems

; true block
MOV r0,#5 ; generate value for x
LDR r4,=x ; get address for x
STR r0,[r4] ; store x
LDR r4,=c ; get address for c
LDR r0,[r4] ; get value of c
LDR r4,=d ; get address for d
LDR r1,[r4] ; get value of d
ADD r0,r0,r1 ; compute y
LDR r4,=y ; get address for y
STR r0,[r4] ; store y
B after ; branch around false block

If statement, cont’d.

ELEC 5260/6260/6266 Embedded Systems

; false block

fblock LDR r4,=c ; get address for c

LDR r0,[r4] ; get value of c

lDR r4,=d ; get address for d

LDR r1,[r4] ; get value for d

SUB r0,r0,r1 ; compute a-b

LDR r4,=x ; get address for x

STR r0,[r4] ; store value of x

after ...

Example: Conditional instruction
implementation

ELEC 5260/6260/6266 Embedded Systems

CMP r0,r1
; true block
MOVLT r0,#5 ; generate value for x
ADRLT r4,x ; get address for x
STRLT r0,[r4] ; store x
ADRLT r4,c ; get address for c
LDRLT r0,[r4] ; get value of c
ADRLT r4,d ; get address for d
LDRLT r1,[r4] ; get value of d
ADDLT r0,r0,r1 ; compute y
ADRLT r4,y ; get address for y
STRLT r0,[r4] ; store y

(Arm mode only – not available in Thumb/Thumb 2 mode)

Conditional instruction
implementation, cont’d.

ELEC 5260/6260/6266 Embedded Systems

; false block

ADRGE r4,c ; get address for c

LDRGE r0,[r4] ; get value of c

ADRGE r4,d ; get address for d

LDRGE r1,[r4] ; get value for d

SUBGE r0,r0,r1 ; compute a-b

ADRGE r4,x ; get address for x

STRGE r0,[r4] ; store value of x

Thumb2 conditional execution

ELEC 5260/6260/6266 Embedded Systems

 (IF-THEN) instruction, IT, supports conditional execution in
Thumb2 of up to 4 instructions in a “block”
 Designate instructions to be executed for THEN and ELSE
 Format: ITxyz condition, where x,y,z are T/E/blank
if (r0 > r1) { cmp r0,r1 ;set flags

add r2,r3,r4 ITTEE GT ;condition 4 instr
sub r3,r4,r5 addgt r2,r3,r4 ;do if r0>r1

} else { subgt r3,r4,r5 ;do if r0>r1
and r2,r3,r4 andle r2,r3,r4 ;do if r0<=r1
orr r3,r4,r5 orrle r3,r4,f5 ;do if r0<=r1

} Thumb2 code
Pseudo-C

Example: C switch statement

ELEC 5260/6260/6266 Embedded Systems

 C:
switch (test) { case 0: … break; case 1: … }

 Assembler:
LDR r2,=test ; get address for test

LDR r0,[r2] ; load value for test

ADR r1,switchtab ; load switch table address

LDR pc,[r1,r0,LSL #2] ; index switch table

switchtab DCD case0

DCD case1

...

Example: switch statement
with new “Table Branch” instruction

ELEC 5260/6260/6266 Embedded Systems

 C:
switch (test) { case 0: … break; case 1: … }

 Assembler:
LDR r2,=test ; get address for test

LDR r0,[r2] ; load value for test

TBB [pc,r0] ; add offset byte to PC

switchtab DCB (case0 – switchtab) >> 1 ;byte offset

DCB (case1 – switchtab) >> 1 ;byte offset

case0 instructions

case1 instructions

(TBH similar, but with 16-bit offsets/DCI)

Branch address = PC + 2*offset from table of offsets
Offset = byte (TBB) or half-word (TBH)

Finite impulse response (FIR) filter

ELEC 5260/6260/6266 Embedded Systems

∑
≤≤

=
ni

ii xcf
1

x1 x2 x3 x4

c1
c2 c3

c4

Δ Δ Δ Δ

Σ

…

Xi’s are data samples
Ci’s are constants

Example: FIR filter

ELEC 5260/6260/6266 Embedded Systems

 C:
for (i=0, f=0; i<N; i++)
f = f + c[i]*x[i];

 Assembler
; loop initiation code

MOV r0,#0 ; use r0 for I

LDR r2,=N ; get address for N

LDR r1,[r2] ; get value of N

MOV r2,#0 ; use r2 for f
LDR r3,=c ; load r3 with base of c
LDR r5,=x ; load r5 with base of x

FIR filter, cont’.d

ELEC 5260/6260/6266 Embedded Systems

; loop body
loop
LDR r4,[r3,r0,LSL #2] ; get c[i]
LDR r6,[r5,r0,LSL #2] ; get x[i]
MUL r4,r4,r6 ; compute c[i]*x[i]
ADD r2,r2,r4 ; add into running sum f
ADD r0,r0,#1 ; add 1 to i
CMP r0,r1 ; exit?
BLT loop ; if i < N, continue

; Finalize result
LDR r3,=f ; point to f
STR r2,[r3] ; f = result

FIR filter with MLA & auto-index

ELEC 5260/6260/6266 Embedded Systems

AREA TestProg, CODE, READONLY
ENTRY

mov r0,#0 ;accumulator
mov r1,#3 ;number of iterations
ldr r2,=carray ;pointer to constants
ldr r3,=xarray ;pointer to variables

loop ldr r4,[r2],#4 ;get c[i] and move pointer
ldr r5,[r3],#4 ;get x[i] and move pointer
mla r0,r4,r5,r0 ;sum = sum + c[i]*x[i]
subs r1,r1,#1 ;decrement iteration count
bne loop ;repeat until count=0
ldr r2,=f ;point to f
str r0,[r2] ;f = result

here b here

AREA MyData, DATA
carray dcd 1,2,3
xarray dcd 10,20,30
f space 4

END Also, need “time delay” to prepare x array for next sample

Arm subroutine linkage

ELEC 5260/6260/6266 Embedded Systems

 Branch and link instruction:
BL foo ;copies current PC to r14.

 To return from subroutine:
BX r14 ; branch to address in r14

or:
MOV r15,r14 --Not recommended for Cortex

 May need subroutine to be “reentrant”
 interrupt it, with interrupting routine calling the

subroutine (2 instances of the subroutine)
 support by creating a “stack” (not supported directly)

Branch instructions (B, BL)

 The CPU shifts the offset field left by 2 positions, sign-
extends it and adds it to the PC
 ± 32 Mbyte range(Arm)
 Thumb: ± 16 Mbyte (unconditional),± 1 Mbyte (conditional)
 How to perform longer branches?
 Bcond is only conditional instruction allowed outside of IT block

2831 24 0

Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
1 = Branch with link

232527

ELEC 5260/6260/6266 Embedded Systems

Presenter
Presentation Notes
PC-relative to allow position independent code, and allows restricted branch range to jump to nearby addresses.How to access full 32-bit address space? Can set up LR manually if needed, then load into PC	MOV lr, pc	LDR pc, =destADS linker will automatically generate long branch veneers for branches beyond 32Mb range.

Nested subroutine calls

ELEC 5260/6260/6266 Embedded Systems

 Nested function calls in C:

void f1(int a){
f2(a);}

void f2 (int r){
int g;
g = r+5; }

main () {
f1(xyz);

}

Nested subroutine calls (1)

ELEC 5260/6260/6266 Embedded Systems

 Nesting/recursion requires a “coding convention” to
save/pass parameters:

AREA Code1,CODE

Main LDR r13,=StackEnd ;r13 points to last element on stack

MOV r1,#5 ;pass value 5 to func1

STR r1,[r13,#-4]! ; push argument onto stack

BL func1 ; call func1()

here B here

(Omit if using Cortex-M startup code)

Nested subroutine calls (2)

ELEC 5260/6260/6266 Embedded Systems

; void f1(int a){
; f2(a);}

Func1 LDR r0,[r13] ; load arg a into r0 from stack

; call func2()

STR r14,[r13,#-4]! ; store func1 return address

STR r0,[r13,#-4]! ; store arg to f2 on stack

BL func2 ; branch and link to f2

; return from func1()

ADD r13,#4 ; "pop" func2’s arg off stack

LDR r15, [r13],#4 ; restore stack and return

Nested subroutine calls (3)

ELEC 5260/6260/6266 Embedded Systems

; void f2 (int r){
; int g;
; g = r+5; }

Func2 ldr r4,[r13] ;get argument r from stack

add r5,r4,#5 ;r5 = argument g

BX r14 ;preferred return instruction

; Stack area

AREA Data1,DATA

Stack SPACE 20 ;allocate stack space

StackEnd

END

Register usage conventions

Reg Usage* Reg Usage*
r0 a1 r8 v5
r1 a2 r9 v6
r2 a3 r10 v7
r3 a4 r11 v8
r4 v1 r12 Ip (intra-procedure scratch reg.)
r5 v2 r13 sp (stack pointer)
r6 v3 r14 lr (link register)
r7 v4 r15 pc (program counter)

ELEC 5260/6260/6266 Embedded Systems

* Alternate register designation
a1-a4 : argument/result/scratch
v1-v8: variables

Saving/restoring multiple registers

ELEC 5260/6260/6266 Embedded Systems

 LDM/STM – load/store multiple registers
 LDMIA – increment address after xfer
 LDMIB – increment address before xfer
 LDMDA – decrement address after xfer
 LDMDB – decrement address before xfer
 LDM/STM default to LDMIA/STMIA
Examples:

ldmia r13!,{r8-r12,r14} ;r13 updated at end
stmda r13,{r8-r12,r14} ;r13 not updated at end

Lowest numbered register at lowest memory address

Arm assembler additions

ELEC 5260/6260/6266 Embedded Systems

 PUSH {reglist} = STMDB sp!,{reglist}
 POP {reglist} = LDMIA sp!,{reglist}

uP startup: startup_stm32l476.s

ELEC 5260/6260/6266 Embedded Systems

 Stack definition:
Stack_Size EQU 0x400;

AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp

 Vector table:
AREA RESET, DATA, READONLY

__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler

 Reset handler:
Reset_Handler PROC

EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0

Mutual exclusion support

ELEC 5260/6260/6266 Embedded Systems

 Test and set a “lock/semaphore” for shared data access
 Lock=0 indicates shared resource is unlocked (free to use)
 Lock=1 indicates the shared resource is “locked” (in use)

 LDREX Rt,[Rn{,#offset}]
 read lock value into Rt from memory to request exclusive access to a

resource
 Cortex notes that LDREX has been performed, and waits for STRTX

 STREX Rd,Rt,[Rn{,#offset}]
 Write Rt value to memory and return status to Rd
 Rd=0 if successful write, Rd=1 if unsuccessful write
 Cortex notes that LDREX has been performed, and waits for STRTX
 “fail” if LDREX by another thread before STREX performed by first thread

 CLREX
 Force next STREX to return status of 1to Rd (cancels LDREX)

Mutual exclusion example

ELEC 5260/6260/6266 Embedded Systems

 Location “Lock” is 0 if a resource is free, 1 if not free

ldr r0,=Lock ;point to lock
mov r1,#1 ;prepare to lock the resource

try ldrex r2,[r0] ;read Lock value
cmp r2,#0 ;is resource unlocked/free?
itt eq ;next 2 ops if resource free
strexeq r2,r1,[r0] ;store 1 in Lock
cmpeq r2,#0 ;was store successful?
bne try ;repeat loop if lock unsuccessful

LDREXB/LDREXH - STREXB/STREXH for byte/halfword Lock

Common assembler directives

ELEC 5260/6260/6266 Embedded Systems

 Allocate storage and store initial values (CODE area)
Label DCD value1,value2… allocate word
Label DCW value1,value2… allocate half-word
Label DCB value1,value2… allocate byte

 Allocate storage without initial values (DATA area)
Label SPACE n reserve n bytes (uninitialized)

Summary

ELEC 5260/6260/6266 Embedded Systems

 Load/store architecture
 Most instructions are RISCy, operate in single cycle.
 Some multi-register operations take longer.

 All instructions can be executed conditionally.

Arm Instruction Code Format

ELEC 5260/6260/6266 Embedded Systems

cond 00 X opcode S Rn Rd Format determined by X bit

31 28 25 24 21 20 19 16 15 12 11 0

condition
for
execution

force
update
of
CPSR

source
reg dest

reg

shifts shift 0 Rm
11 7 6 5 4 3 0

X = 0:

alignment 8-bit literal
11 8 7 0

X = 1:

3rd operand
is Rm

3rd operand
is immediate

scale factor

Arm Load/Store Code Format

ELEC 5260/6260/6266 Embedded Systems

cond 01 I P U B W L Rn Rd Format determined by I bit

31 28 25 24 23 22 21 20 19 16 15 12 11 0

condition
for
execution

source reg
dest reg

shifts shift 0 Rm
11 7 6 5 4 3 0

I = 0:

12-bit offset
11 0

i = 1:

Offset is Rm

Offset is
immediate

load/store

post/pre-
indexed

add/sub
offset

u-byte/
word

update
base
reg

	Arm Processor
	Arm instruction set - outline
	Arm processor families
	Equipment Adopting Arm Cores
	Arm processors vs. Arm architectures
	Arm Architecture versions
	Arm Cortex-M series
	Arm Cortex-M processor profile
	Arm Cortex-M series family
	RISC CPU Characteristics
	Arm assembly language
	Arm Cortex register set
	Arm Register Set
	Arm data types
	CPSR �Current Processor Status Register
	Arm status bits
	Arm data instructions
	Flexible 2nd operand
	Barrel shifter for 2nd operand
	Arm arithmetic instructions
	Arm logical instructions
	Arm comparison instructions
	New Thumb2 bit operations
	Arm move instructions
	Arm 32-bit load pseudo-op*
	Arm memory access instructions
	Arm load/store addressing
	Arm load/store examples
	Arm load/store examples�(base register updated by auto-indexing)
	Additional addressing modes
	Arm ADR pseudo-op
	Example: C assignments
	Example: C assignment
	Example: C assignment
	Arm flow control operations
	Example: if statement
	If statement, cont’d.
	If statement, cont’d.
	Example: Conditional instruction implementation
	Conditional instruction implementation, cont’d.
	Thumb2 conditional execution
	Example: C switch statement
	Example: switch statement�with new “Table Branch” instruction
	Finite impulse response (FIR) filter
	Example: FIR filter
	FIR filter, cont’.d
	FIR filter with MLA & auto-index
	Arm subroutine linkage
	Branch instructions (B, BL)
	Nested subroutine calls
	Nested subroutine calls (1)
	Nested subroutine calls (2)
	Nested subroutine calls (3)
	Register usage conventions
	Saving/restoring multiple registers
	Arm assembler additions
	uP startup: startup_stm32l476.s
	Mutual exclusion support
	Mutual exclusion example
	Common assembler directives
	Summary
	Arm Instruction Code Format
	Arm Load/Store Code Format

