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Abstract 

This article examines the Central Limit Theorem from the standpoint 
of skewness and kurtosis, and then investigates the relative and 
absolute efficiencies of all standard deviation estimators based on one 
simple random sample of size n from a normal population. We 
obtained the most precise estimator of the normal population standard 
deviation σ using Cramer-Rao’s lower bound for the variance of an 
unbiased estimator; however, this last estimator suffers from large 
negative bias. As a result, we used Lindgren-Cramer-Rau’s inequality 
to develop another estimator of σ that is more accurate than all others 
for sample sizes .2≥n  The case of 1>M  subgroups will be 
discussed in a subsequent paper, and for ,1>M  slight modifications 

will be recommended for some Quality Control Charts. 

1. Historical Background 

Throughout this entire article, unless otherwise stated, we are assuming 
that the underlying distribution (or population) is Laplace-Gaussian with the 
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pdf (probability density function) given by the probability law: 
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The above density was first discovered by Abraham de Moivre (a French 
mathematician) in 1738 as the limiting distribution of the binomial pmf 
(probability mass function) and as such he did not study all its properties. 
During 1809, Marquis P. S. de Laplace published the Central Limit Theorem 
that stated the limiting sampling distribution (SMD) of sample arithmetic 

mean x  is of the form ( ),,; nxf σμ  n being the sample size. In 1810 Carl 

F. Gauss published his Theoria Motus in which he discussed the statistical 
properties of the above ( ).,; σμxf  For more complete historical details, the 

reader should refer to Johnson et al. [10], Vol. 1, pp. 85-88, where we have 
extracted nearly all of the above historical background. As stated by Kendall 
and Stuart [12], second edition, Vol. 1, p. 135 footnote, the description of 
( )σμ,;xf  as the “normal,” was due to Karl Pearson, and we surmise around 

1894. 

Historical Summary and the CLT 

In Statistical literature the designation ( )2,~ σμNX  implies that a 

variate (or random variable, rv) X is normally distributed with population 

mean μ and population variance ,22
Xσ=σ  where μ is the location-

parameter and σ is the scale of ( ).,; σμxf  

(1) Because the normal (or bell-shaped) density is the most important of 
all Statistical distributions, and unique in developing Statistical theory 
starting in the mid 1700’s, below we summarize some of its practical 
properties, almost all of which are fairly well known. Generally, (nearly) the 
dimension of every part that is manufactured can be approximately modeled 
by a normal underlying distribution (provided μ is to the right of zero by at 
least 6 × STDEV). 
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(2) The standardized-value is given by ( ) ,σμ−= xZ  so that ( )σμ,;xf  

( ) ( ) ( );222Exp 22 2
πσ=πσ−= −ZeZ  further, the standardized 

normal density is universally denoted by ( ) ( ) ,22Exp 2 π−=φ zz  and the 

corresponding cumulative (cdf) is denoted by ( ) ( )∫ ∞−
φ=Φ

z
duuz ;  further, 

because all normal pdfs have identical bell-shape, no shape parameter exits. 

(3) Due to symmetry, the skewness of a normal density is identically 

equal to zero, i.e., ( )[ ] ( ) ,03
3

33
3 ≡σμ=≡σμ−=α ZEXE  where =μ3  

[( ) ]3μ−XE  is the 3rd central moment, and E is the linear expected-value 

operator. The forth standardized central moment of X is given by =α4  

( ) ,344
4 =≡σμ ZE  where [( ) ],4

4 μ−=μ XE  and hence the kurtosis of 

all normal distributions is identically equal to .0344 ≡−α=β  Because the 

normal kurtosis ,0344 ≡−α=β  then the kurtosis of all other statistical 

distributions is compared against 0 in order to assess their tail thickness. 
Kendall and Stuart ([12], pp. 85-86) denote kurtosis by 2γ  and name curves 

with zero 2γ  as Mesokurtic; curves with 02 <γ  as Platykurtic, and those 

with 042 >β=γ  as Leptokurtic. However, they do emphasize that 

Leptokurtic curves are not necessarily more sharply peaked in the middle 
than the normal curve, and vice a versa for Platykurtic curves. In fact, 

,2
34 α≥α  or 32

34 −α≥β  for all continuous underlying random variables 

(see also Han and Shapiro [5]). Before discussing the CLT for the general 

linear combination ∑
=

=
n

i
iin XaY

1
,  where s’ia  are any constants, we must 

refer to the article by Chen et al. [3] that showed in general the 3rd central 

moment of ∑
=

=
n

i
iin XaY

1
 is given by 
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and its 4th central moment is given by 
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Where [( ) ( ) ( ) ( )].LLkkjjiiijkL XXXXE μ−μ−μ−μ−=σ  We had to 

provide the above general expressions for the 3rd and 4th central moments of 
a linear combination in order to illustrate that without the independence 
assumption amongst the variates ,...,,, 21 nXXX  none of the expectations 

such as [( ) ( )] iijkiiijijkjjii XXE σσσμ−×μ− ,,,2  and ijkLσ  will vanish, 

while the independence assumption forces each of the last 5 expectations 
identically to zero. Further, assuming pairwise independence amongst the n 

variates, then the [( ) ( ) ] [( ) ] ×μ−=σ=μ−×μ− 222
iiiijjjjii XEXXE  

[( ) ] ( ) ( ) .,222 jiXVXVXE jijijjiijj ≠σ×σ=×=σ×σ=μ−  Moreover, in 

the field of Statistics expectations such as [( )( )( )],kkjjii XXXE μ−μ−μ−  

kji ≠≠  have no statistical/and or practical meaning whatsoever, as (zero-

order) correlation is always defined pairwise between only two variates. 
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Fortunately, by the definition of a simple random sample, the sample    

vector [ ]TnXXX ...21  is random iff: (1) s’iX  follow precisely the same 

identical statistical distribution as their parent X, (2) iX  and ,jX  for all 

,ji ≠   are stochastically pairwise independent so that covariances such as 

( ) 0,COV ≡ji XX  for all .ji ≠  Although CLT for correlated variates exist 

in the field of Statistics (but well outside the scope of this article), the above 
developments clearly show that if s’iX  were correlated, then ( ) =α nS3  

( ) 3
3 σμ nS  will differ from zero and ( ) ( ) 4

44 σμ=α nn SS  will not equal to 

3, and hence ∑
=

=
n

i
iin XaY

1
 will not approach normality with increasing n 

from the standpoints of its skewness and kurtosis. 

Consequently, henceforth the assumption of pairwise independence is 

inherent amongst the s’iX  in the linear combination ∑
=

n

i
ii Xa

1
,  i.e., s’iX  are 

iid (independently and identically distributed). 

For example, if all s’ia  are equal to ,1 n  then ∑
=

==
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i
iin xXaY

1
,  and 

for an ( )2, σμN  equation (1a) shows that ( ) ( ) ∑
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( ) ( ) 2163 4434 −×σ+σ= nnnn  

( ) ( ) ,3133 243434 nnnn σ=σ−+σ=  

which yields ( ) ( ) ( ) ( ) ( ) 33 22242
44 =σσ=μ=α nnxVxx  leading to the 

kurtosis ( ) ( ) ,0344 ≡−α=β xx  as expected. As has been known in the 

field of Statistics since the mid 1800’s, we have again established that the 
sample arithmetic mean x  has identical first origin moment and identical 3rd 

and 4th standardized central moments like its parent ( );,~ 2σμNX  only 

the scale of x  differs as given by .1, >σ=σ nnXx  Further, it is well 

known that the ordinate (or height) of the mode (MO) for the 

( )nMOxf σμ= ,; ( )πσ= 2n  while that of ( ) =σμ= ,;MOxf  

( )πσ 21  so that for 1>n  the SMD of x  is more peaked in the middle 

than its parent X, yet both have identical kurtosis of ( ) ( ) 044 ≡β=β Xx  

showing that both curves are Mesokurtic. Put differently, the fact that the two 
tail-thicknesses  

( ) ( ) 6330026997960.033 =σ>μ−≡σ>μ− Xx XPrxPr  

is congruent with ( ) ( ) .044 ≡β=β Xx  

Because sample niXi ...,,2,1,s’ =  in a simple random sample are iid 

rvs with means μ and variances ,2σ  then one form of the CLT states that the 

limiting, in terms of n, SMD of a general linear combination, ∑
=

=
n

i
iin XaY

1
,  

where s’ia  are constants, approaches normality with mean ( ) ∑
=

μ=
n

i
in aYE

1
,  
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and variance ( ) ∑
=

σ=
n

i
in aYV

1

22 ,  V  being the nonlinear variance-operator. 

The rate of approach to normality depends strictly on the skewness and 
kurtosis of the individual s’iX  [see Hool and Maghsoodloo [9]], each of 

which is identically distributed like the parent X. Equation (1) clearly shows 

that in the case of iid variates ( ) ( ) ( ) ==μ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=μ ∑

=
XnVSVXnXS n
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Xnσ  leading to the skewness of ∑

=
=

n

i
in XS

1
 as ( ) ( ) ( )[ ] 23

33 nnn SVSS μ=α  

( ) [ ] ( ) ,3
232

3 nXnXn α=σμ=  and similarly the kurtosis of nS  is given 

by ( ) ( )[ ] ( ) .3 444 nXnXS in β=−α=β  For example, if s’iX  are uniformly 

and independently distributed over the same interval, then ( ) 03 ≡α nS      

and its kurtosis ( ) [ ( ) ] [( ) ( ) ] =−=−σμ=β nnXS in 31218013 24
44  

( ) ( ) ;20.1380.1380144 nnn −=−=−  because the ( ) ,20.14 −=β X  

then the Uniform distribution is Platykurtic, while no MO exits. Thus, for 
any symmetrical distribution, such as the Uniform, we have a perfect fit of 
the first 3 moments of nS  with those of the corresponding normal, and for 

the Uniform underlying distribution an 10=n  forces the kurtosis of 

∑
=

=
10

1
10

i
iXS  to the value of –0.120, which is sufficiently close to zero for an 

adequate normal approximation of ∑
=

10

1i
iX  SMD. The exact Uniform 

[ ]21,21−  convolutions for 8,6,5,4,3,2=n  were obtained by 

Maghsoodloo and Hool ([17], pp. 1-13); unfortunately there are typos in the 
8th convolution. The author will report the corrected version on his website. 
That article concluded that the 4-fold convolution of the Uniform density is 
fairly well approximated by the corresponding normal only from the 
standpoint of skewness and kurtosis, as has been well known, but the 
quintiles are poorly approximated unless .8>n  The exact 7 expressions for 
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7-fold convolution, ( )( ),7 xf  of the [ ]baU ,  was derived by Maghsoodloo 

and Helvaci ([16], p. 6), where abc −=  was the base. 

As another symmetrical example, the Laplace (1774) pdf, or double-
exponential, is given by ( ) ( ) λ∞<<∞−θ−λ−λ=λθ ,,2exp,; xxxg  

being positive-definite, has an ( ) ( ) ,2, 2λ=θ=μ= XVXE  the scale 

,21−λ=σL  and all odd central moments are zero because the 1st law of 

Laplace ( )λμ,;xg  is symmetrical about ,μ=θ  and no shape parameter 

exists. However, ( ) 64 =α X  so that the kurtosis ( ) ,34 ≡β X  implying that 

Laplace density is Leptokurtic; the tail probability ( ) =λ>μ− − 23 1XPr  

,0143696.023 =−e  as compared to 0.0026998 of the ( ),, 2σμN  confirms 

its tail-thickness. Although calculus cannot be used to obtain the modal point 
(the Laplace density has a corner at ,)μ=x  it can be argued that 

μ=MO .50.0x=  The height of MO is ( ) ( )212,; LMOg σ=λ=λμ  

( ),21 πσ> X  relative to their scales, again verifying that the Laplace 

density is Leptokurtic. As stated by Johnson et al. ([11], p. 164), the Laplace 
first law, ( ),,; λμxg  is used to represent the statistical distributions of 

measurement errors. If the individual s’iX  in ∑
=

=
n

i
in XS

1
 are iid like 

Laplace, then equation (1a) shows that ( ) ,03 ≡α nS  and equation (1b) shows 

that ( ) [ ( ) ] ( ) ( ) .3363243 444
44 nnnnXS Lin =−=−σλ=−σμ=β −  

Thus, an 10=n  forces the kurtosis of the Laplace linear sum ∑
=

10

1i
iX  to 0.30, 

much farther from zero than the corresponding uniform of – 0.12. An 25=n  

is needed to attain the same normal approximation of Laplace ∑
=

=
n

i
in XS

1
 

from the standpoint of kurtosis. The 8-fold convolution of the Laplace 1st 
law was derived by Maghsoodloo and Hool [[17], pp. 1-13, equation (15)]. 
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On the other hand, if s’iX  are independently and Exponentially 

distributed (all at the same identical rate-parameter λ), then it is well known 

that the n-fold convolution of ∑
=

n

i
iX

1
 (which is the Erlang density, n being its 

shape-parameter) has a skewness of n2  and a kurtosis of ,64 n=β  

where ( ) 23 =α iX  and ( ) 64 =β iX  for each identical exponential variate in 

the ∑
=

n

i
iX

1
.  Thus, in this latter case an 50=n  is needed to force the kurtosis 

of nS  to 0.12. Unfortunately, this last 50=n  is not sufficient for 

approximate normality of the exponential nS  because the skewness of 

∑
=

50

1i
iX  equals to ,282843.0502 =  far from the normal-skewness of zero. 

It is well known that ( )nS3α  plays a far more important role than ( )nS4β  in 

the case of asymmetrical (or skewed) distributions in the limiting approach to 
normality. Further, our experience indicates that both skewness and kurtosis 
of nY  should be within 0.10 of zero for adequate normal approximation. 

The symmetrical distributions Uniform and Laplace can also be used as 
underlying distributions in a Manufacturing setting, while the exponential 
density, that describes useful life, plays an enormous role in describing all 
Stochastic Processes in at least the following 2 cases. Consider a Poisson 
process at the rate of 1=λ  event/unit of time; then the interoccurrence time 

has the standard exponential with density xe−  and hence ∫
∞ − ≡
0

;1xe  now 

make the transformation 
β
⎟
⎠
⎞⎜

⎝
⎛

δ−θ
δ−= tx  in this last integral. This will lead to 

the well-known Weibull density with guaranteed-life δ, characteristic-life θ 
( )δ−θ=scale  and shape (or slope) β. Second, the sum of identical 

exponentials ∑
=

n

i
iX

1
,  as stated above, has the Erlang SMD (special case of 
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Gamma) which is used to describe the distribution of time to nth Poisson 
event (measured from the last). 

2. Introduction 

Consider one simple random sample of size n from a ( ),, 2σμN  where 

both process mean μ and process standard deviation Xσ=σ  are unknown. 

There are numerous estimators of μ such as the sample arithmetic mean, 
sample median, the sample mode, mid-range, Geometric and Harmonic 
means, trimmed mean, etc. Because all Laplace-Gaussian distributions 
possess uncountably infinite quantiles, then there exists uncountable 
estimators of population mean μ for large sample sizes based on quantiles 
nearly all having been discussed in statistical literature since the mid 1700’s 
[see Maghsoodloo and Huang [24] as to why 6021 ≤≤ n  constitutes a 
moderate sample size]. For example, similar to the point-estimator “Trimean 
= (the first sample quartile ×+ 2  the sample median + the 3rd sample 
quartile)/4” given by Hogg and Tanis [8], the statistic ( ++ 20.010.0 ˆˆ xx  

) ( ),60,16ˆˆˆˆˆ8ˆˆ 90.080.070.060.050.040.030.0 >++++++ nxxxxxxx  is also 

a point estimator of μ, where px̂  is the pth sample-quantile from a ( )2, σμN  

whose population pth quantile is dented by ;px  however, estimating μ using 

either of these last two estimators must be avoided. 

Before discussing all estimators of process standard deviation σ, we 
remind the reader about the concepts of efficiency and relative efficiency 
(REL-EFF) from statistical theory, e.g., see Bernard W. Lindgren ([15], 4th 
Ed., pp. 240-265). 

The REL-EFF of an estimator 1θ̂  relative to another estimator ,ˆ
2θ  of the 

same parameter θ, is defined as ( ) ( ) ( ),ˆMSEˆMSEˆ,ˆEFF-REL 1221 θθ=θθ  

where ( ) [( ) ] ( ) [ ( )] ,ˆˆˆMSE 2
ˆ

2 θ+θ=θ−θ=θ θBVE  and the parameter-function 
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( ) ( ) ,ˆˆ θ−θ=θθ EB  only a function of θ, is the amount of bias in θ̂  as a 

point-estimator of the parameter θ; when ( ) θ=θθ
ˆ,0ˆB  is said to be an 

unbiased estimator. According to Bernard W. Lindgren (2nd Ed., [14], pp. 
274-5), an estimator of σ is absolutely (or 100%) efficient only if its variance 
attains the lower bound given by: 

[ ( )]
( ) ( ),ˆ1 2

σ≤
σ
σ′+ VI

B  (2) 

where ( ) ( ) σ∂σ∂=σ′ σ̂BB  and ( )σI  is the amount of information in a 

simple random sample of size n about the parameter σ, given by ( ) =σI  

( ) .2 2σn  A more lucid and easily-understood proof of Lindgren’s inequality 

(2) is given in Appendix A for Applied Statisticians. Note that only for 

convenience we will use the notation ( )θ̂B  for ( ).ˆ θθB  [Chou [4, p.38] states 

that the concept of efficiency should be confined to sufficient statistics that 
are unbiased, a concept that is well outside the scope of this article, which is 
primarily written for Applied Statistics and QC Literatures. Fortunately, if a 
random sample of size n does not violate the normality assumption (say, a 

GOF-test p-vale > 0.15), then the 12 ×  sample vector [ ]TSx  is sufficient 

for parameter-estimation if the underlying distribution is normal; intuitively 
this means that practitioners can now throw away the original random sample 
of size n and no statistical information whatsoever will be lost about the 

corresponding ( );, 2σμN  also see Casella and Berger [2] (pp. 272-289). 

Further, we recommend to Quality Engineers to compute the sample range, 
R, before discarding the entire normal-data. 

If σ̂  is an unbiased estimator, then ( ) ( ) ,0ˆ ≡σ∂σ∂=σ′ σBB  and 

Lindgren’s inequality in equation (2) reduces to the well-known Cramer-Rao 

Inequality that every unbiased estimator θ̂  is bounded below by the 

reciprocal of its information, i.e., ( ) ( ).ˆ1 θ≤θ VI  It is well documented in 
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Statistical Literature [e.g., see Lindgren ([15], pp. 240-245)] that the Fisher 
Information Matrix (1912-1922) for a normal distribution is given by 

( )
( )

.
20

0, 2

2
⎥
⎦

⎤
⎢
⎣

⎡

σ
σ=σμ

n
nIM  This last Fisher’s IM reveals the following 

when random-sampling a ( )., 2σμN  (1) the amount of information in a 

simple random sample improves as n increases and σ decreases (see the 
diagonal elements in the IM that also shows the information-amount about σ 
increases at twice the rate than about μ for .)1>n  (2) the sample mean, ,x  

is 100% efficient because its variance ( ) ( ),12 μ=σ= InxV  where ( )μI  

.1,2 ≥σ= nn  (3) any estimator of σ, denoted ,σ̂  and the corresponding 

sample mean x  are stochastically independent because the normal ( )σμ,IM  

is diagonal, i.e., the covariance between x  and σ̂  is identically zero. 
Consequently, two separate control charts S and x  are used in the field of 
QC to monitor process variation and then process mean; it should be 
emphasized that getting the process mean on target in any process, while 
variation is out of statistical control, is a waste of resources [see 
Maghsoodloo et al. [18], pp. 73-126 and also Tatum ([22], p. 127)]. (4) the 
expression for the ( )SV  has been documented both in Statistical and QC 

Literatures, but its variance does not attain the lower bound 

[ ( )] ( ),1 2 σσ′+ IB  where ( ) ( ) ,2 2σ=σ nI  ,2≥n  and hence S, unlike ,x  is 

not an (absolutely or 100%) efficient estimator of σ. Chou ([4], p. 38) used 
the Lingren-Cramer-Rao Inequality and the MSE of a biased estimator to 
obtain a lower bound for the MSE of all σ-estimators for >M  subgroups. 
We used Chou’s inequality on his p. 38, 

[ ( )]
( )

[ ( )] ( ) ∑
=

σ =σ≤σ+
σ

σ′+
M

i
inNMSEB

N
B

1

2
ˆ2

2
,,ˆ

2
1  

for 1>M  subgroups, to obtain the following (accuracy) efficiency for one 
simple random sample of size n ( ),1.,i.e =M  in Chou’s exact notation. 
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( ) {[ ( )] ( )] [ ( )] } ( ) .1ˆ21ˆ 2
ˆ

22 ≤σσ+σσ′+=σ σ MSEBnBEff  (3a) 

The accuracy-efficiency defined in (3a) is somewhat misleading due the 
fact that if an estimator is heavily biased, its ( )σ̂Eff  will be inflated because 

the MSE in the denominator will not compensate for the size of bias-squared 
in the numerator. We may use Lindgren’s inequality (2) to define the 
precision-efficiency of σ̂  as follows: 

( ) [ ( )] ( ) ( ).ˆ1ˆ 12 σσ×σ′+=σ − VIBeff  (3b) 

The ( )σ̂eff  in (3b) somewhat ignores the amount of bias in .σ̂  Perhaps, we 

should define the absolute efficiency of an estimator as: 

( ) [ ( ) ( )] .2ˆˆˆ σ+σ=σ effEffEFF  (3c) 

It is not clear to the author that the constant 0.50, depending on n, in the 
above convex combination in equation (3c) is optimal; perhaps 0.40 and 0.60 
would be more optimal. All three efficiencies in equation (3) should be used 
with caution for a biased estimator. Nonetheless, if σ̂  is unbiased, then 

( ) ( ) ,0ˆ ≡σ′=σσ BB  and equation (3c) reduces to that of Lindgren’s equation 

(5), (1993, p. 262), for absolute (or 100%) efficiency defined as ( ) =σ̂e  

( ) ( ) [ ( )].ˆ2ˆ 21 σσ=σσ− VnVI  

It is widely known that the statistic ( ) ( )∑
=

−−=
n

i
i nxxS

1

22 1  is an 

unbiased estimator of 2σ  iff (if and only if) the corresponding underlying 

population is infinite. However, ( ) ( )∑
=

−−=
n

i
i nxxS

1

2 1  is always a biased 

estimator of σ from any infinite population. In fact, both the Statistical and 
QC Literatures show that for ( ) ( ) ,4 σ×= ncSE  where the unbiasing-factor 

( ) ( )
( )[ ]

( )
( )[ ]21

2
2

1
21

2
1

2
44 +Γ

Γ×−=
−Γ

Γ×
−

== n
nn

n
n

ncnc  is a function 

of n, 179788456.0 4 << c  for all 3442 <≤ n  [Matlab 2018 runs out of 
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memory at ,]343>n  and the symbol ( )⋅Γ  stands for the Gamma function. 

We have verified that a good approximation for ( )8775.384~ 2
4 +−= nnc  

( ),374 2 +− nn  to 4 decimals for ,13≥n  the approximation improving with 

increasing n. It is well known (e.g., see Boyles [1], p. 391) that the amount of 
bias in S as an estimator of σ is given by ( ) ( ) =σ−= SESB ( ) 014 <σ−c  

for all ( ) ( ) 22
41,2 σ×−=≥ cSVn  so that the Mean Square Error of S is 

( ) [( ) ] ( ) ( )[ ] ( ) ,12 2
4

22 σ−=σ+=σ−= cBSVSESMSE S  where MSE 

measures the accuracy of an estimator, while variance V measures the 
precision of an estimator. The relationship ( ) σ= 4cSE  clearly shows that an 

unbiased estimator of σ is given by 4ˆ cSub =σ  so that the MSE of ubσ̂  is 

given by ( ) ( ) ( ) ( )SMSEcVMSE ubub >σ−=σ=σ − 22
4 1ˆˆ  for all ,2≥n  

showing that ubσ̂  is a less accurate estimator of σ than S. The REL-EFF 

( ) ( ),12,ˆ 4
2
4 ccSub +=σ  which is equal to 70.819%, 91.091%, 98.141%, 

and 99.377% at ,21,5,2=n  and 61, respectively. 

The exact SMD of S was first derived by Kendall and Stuart [12], Vol. 1, 
pp. 255-6 where their “s” is the scale-estimator from the ( ),1,0N  and is also 

given by Ostle and Malone [19], pp. 80-81 for the general ( ),, 2σμN  and 

referenced by Chou ([4], p. 10). Further, Chou [4] computed the specific 
quantiles of S from a ( )1,μN -population for ,50000.0,00135.0=Q  and 

0.99865 and are given in his Table 2.2 on p. 19; Chou ([4], p.24) used these 
last three quantiles to obtain the exact 3-sigma control limits for an S-chart. 

However, because the exact SMD of ( ),1~ 2
1

22 −χσ − nS n  nearly all 

Statistical properties of the variate S can be studied using the (Central) Chi-

squared .2
1−χn  

From Statistical Literature, the maximum likelihood estimator (mle) of σ 

is given by the square-root of the sample variance ( )∑
=

−=
n

i
i nxxm

1

2
2 ,  this 
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last being the sample 2nd central moment, i.e., ( ) nxx
n

i
imle ∑

=
−=σ

1

2ˆ  

,2m=  the so called root mean square. Some Statistical authors refer to 2S  

as the sample variance for convenience because it is an unbiased estimator of 
2σ  only for infinite populations, but Kendall and Stuart’s ([13], Vol. 2, 

designation on their pages 4-5 clearly states that the sample variance should 

be defined as the 2nd central moment of the sample ( )∑
=

−=
n

i
i nxxm

1

2
2 ,  

because the population second central moment is [( ) ];2
2

2 μ−=μ=σ XE  

also see Lindgren ([15], p. 204). The amount of bias in mleσ̂  is ( )mleB σ̂  

( ) ( ) ,1,01 444 nncCC −=<σ−=  for ,2≥n  its variance is given by 

( ) ( ) ,1ˆ 22
4

2
4 σ−=σ −cCV mle  resulting in ( ) ( ) 2

4
2

4
2
4 12ˆ σ+−=σ − CcCMSE mle  

( ).SMSE<  This last inequality shows that mleσ̂  is a more accurate point 

estimator of σ than S, and that the REL-EFF ( ) ( )412,ˆ cSmle −=σ  

( ) 112 4
22

4 >+−− CcC  for all finite .2≥n  The REL-EFF ( ) =σ Smle ,ˆ  

108.775%, 101.288%, 100.071%, and 100.0084% at ,21,5,2=n  and 61, 

respectively. 

Another estimator of σ from the field of QC is ,ˆ 2dR=σ  where 

( ) ( )1xxR n −=  is the sample range and ( ),2 σ== RWEd  and σ= RW  

is the sample relative-range. The values of 2d  are reproduced in Table 1 for 

convenience and are also tabulated in every text on QC. Clearly, 2ˆ dR=σ  

is an unbiased estimator of σ and hence its MSE is equal to its variance. The 
SMD of the sample range R is extremely complicated and is provided by 
Kendall and Stuart ([12], Vol. 1), pp. 337-341. Numerical integration must 
be used to compute both ( ),2 WEd =  and the population standard deviation 

of relative-range ,3 wd σ=  at different values of .2≥n  Nevertheless, 

( ) ( ) ( ) ( ) ,ˆ 2
2

2
3

22
2

22
22 dddRVdRVdRVV ×σ=σσ===σ  and =2

3d  
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( ).σRV  The values of 2d  and 3d  were obtained by Tippett [23], Pearson 

[20], Pearson [21] and Harter [7]. Their results are also reproduced below in 
Tables 1 and 2. We used their values in Tables 1 and 2 in order to obtain the 
REL-EFF ( ) ( ) ( )22, dRVSMSESdR =  at ( ) ( )3552012=n  and are given 

in Table 3 in percent. Not surprisingly, Table 3 clearly shows that the 
estimator 2ˆ dR=σ  attains its maximum REL-EFF at the Nominal Sample 

Size 5=n  in the field of QC for R- & x -charts. Because 2dR  is not an 

efficient estimator, Harter ([6], pp. 1980-1999) discusses the use of Quasi-
ranges in lieu of R, which is the zero-quasi range; the 1st quasi-range is 

( ) ( ) .17,211 >−= − nxxR n  Further, as Kendall and Stuart [12], p. 339, 

mention the SMD of sample range R diverges from normality as n increases, 
and that the SMD of R is unstable for moderate to large .20>n  Hence, the 
QC Literature uses 2dR  as an estimator of Xσ  only when subgroup sizes 

are identical and only for small sample sizes .152 ≤≤ n  The REL-EFF 
( )SdR ,2  monotonically decreases as it uses less and less sample 

information after ,5n =  and is a mere 44.2255% at .61=n  Only at ,2=n  

( ) ( ),ˆ2 ubVdRV σ=  and ( ) ( )ubVdRV σ> ˆ2  only by 0.00821% at .3=n  

Table 1. The Expected-Value of Relative Range ( )σ= RW  of a ( )2, σμN  

from Tippett [23] 

n 2 3 4 5 6 7 8 9 10 11 

2d  1.128379 1.692569 2.058751 2.325929 2.534413 2.704357 2.847201 2.970026 3.077505 3.172873 

n 12 13 14 15 16 17 18 19 20 21 

2d  3.258455 3.335980 3.406763 3.471827 3.531983 3.587884 3.640064 3.688963 3.734950 3.778336 

n 22 23 24 25 26 27 28 29 30 35 

2d  3.819385 3.858323 3.895348 3.930629 3.964316 3.996539 4.027414 4.057044 4.085522 4.213219 
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Table 2. The Standard Deviation of σ= RW  of a Normal Universe from 

Table 2 of Harter [7]. Harter’s values were truncated from 10 to 6 decimal 
accuracies 

N 2 3 4 5 6 7 8 9 10 11 

3d  0.852502 0.888368 0.879808 0.864082 0.848040 0.833205 0.819831 0.807834 0.797051 0.787315 

N 12 13 14 15 16 17 18 19 20 21 

3d  0.778478 0.770416 0.763023 0.756211 0.749908 0.744052 0.738591 0.733481 0.728686 0.724173 

N 22 23 24 25 26 27 28 29 30 35 

3d  0.719915 0.715887 0.712068 0.708441 0.704988 0.701697 0.698553 0.695546 0.692665 0.679871 

Table 3. The REL-EFF ( )SdR ,2  in percent to two decimals 
n 2 3 4 5* 6 7 8 9 10 11 12 

REL-EFF 70.82 82.60 86.17 86.97* 86.58 85.61 84.35 82.96 81.52 80.07 78.63 

n 13 14 15 16 17 18 19 20 25 30 35 

REL-EFF 77.23 75.87 74.55 73.28 72.05 70.88 69.74 68.65 63.78 59.71 56.26 

3. Estimates of σ Based on Quantiles 

There are uncountable infinite estimators of σ [See also Kendall and 

Stewart ([12], p. 239)] because of the fact that the pth quantile of a ( )2, σμN  

is given by ,1 σ×+μ= − pp Zx  where pZ −1  is the ( ) 1001 ×− p  

percentage point, or the pth quantile of the ( )1,0N  density. For example, the 

0.90 quantile of X is given by ,10.090.0 σ×+μ= Zx  where =10.0Z  

1.28155157 is the 0.90-quantile of ( ).1,0~ NZ  All Statistical Packages, 

such as Minitab, also Matlab and Microsoft Excel, provide the inverse (or 
quantile) functions of nearly all Statistical distributions that are not directly 
invertible to 15 decimal accuracy, albeit, Minitab18 [in their Calc Menu → 
Probability Distributions] has a slight discrepancy starting in the 11th 

decimal place in the ( ) .10,11 <α<=α−Φ α
− Z  At first glance, μ=px  

σ×+ − pZ1  leads to the biased estimator ( ) ;ˆˆ 1 ppQ Zxx −−=σ  however, 

computing the [( ) ]pp ZxxV −− 1ˆ  requires the knowledge of ( ),,ˆ xxCOV p  
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which is beyond our grasp; also, the variance of the estimator 
( ) pp Zxx −− 150.0ˆˆ  shows that it has very poor REL-EFFs. 

Consequently, we use the fact that σ×+μ=− pp Zx1  resulting in 

( ) ,11 σ×−=− −− pppp ZZxx  ,150.0 << p  ,1 pp ZZ −>  which covers 

( )12 −p  proportion of the population. Statistical Literature refers to 

pp xx −− 1  as the population IPR (Inter-Percentile Range). Thus, the 

percentile estimator ( ) ( ) ( ),ˆˆˆ 111 pppppppp ZZiprZZxx −=−−=σ −−−  

where 0ˆˆ 1 >−= − ppp xxipr  is the corresponding sample inter-percentile 

range ,150.0 << p  and px̂  is the pth sample quantile. Sample quantiles can 

also be obtained from sample order-statistics ( ),iX  whose sampling 

distributions depend on the parental density ( ).xf  It is well known that a 

maximum of 2 order-statistics are used in computing px̂  such that, as also 

stated by Kendall and Stuart ([12], near the bottom p. 236), px̂  is biased and 

the amount of bias ( ) ( ) ppp xxExB −= ˆˆ  diminishes as n increases to order of 

.1 n  Kendall and Stuart ([12], Vol. 1) further obtained the approximate 

variance of a sample quantile for any continuous underlying distribution, for 

,20>n  as ( ) [ ( )],~ˆ 2
pp xnfpqxV =  where pq −= 1  and their ( )pxf  is 

the ordinate (or height) of the parent density at .px  This last approximation, 

given in their equation (10.29) on p. 237, leads to the well-known formula 

for ( ) VxV =50.0ˆ (the sample median) ( ) ( ) .50.0,22~ 2 =π=πσ= pxVn  

Kendall and Stuart ([12], pp. 236-9) proceed to obtain the variance of 
difference of two distinct sample quantiles, 1x  and ,2x  and their equation in 

their notation is repeated below: “ ,21var
21
12

2
2

22
2

1

11
″

⎭
⎬
⎫

⎩
⎨
⎧

−+=δ ff
qp

f
qp

f
qp

n  

where 121 , fxx −=δ  is the ordinate of density at the quantile =21, qx  
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.1 2p−  We used their above result to obtain ( ) ( ) =−= −
~ˆˆ 1 ppp xxViprV  

( ) [ ( ) ] ( ) ,12342 2122 2
σ×−−π=− −neppnxfqpq pZ

p  ,1 pqp −=>  

where ( ) ( ) ( ) ( ),222
11 πσ−=== − ppp ZExpxfxff  and ;1 pp ZZ −−=  

e.g., .67448975.075.0 −=Z  As a result, ( ) [( ) ( )]pppp ZxxVV −−−=σ 11 2ˆˆˆ  

[ ( ) ] ( ) .123 2122 2
σ×−−π= −

p
Z nZepp p  For examples, based on sample IQR 

the estimator ( ) ( ) ,75.0,2ˆˆˆ 25.025.075.075.0 =−=σ pZxx  has the well-

known ( ) [( ) ( )] ,360460.1~2ˆˆˆ 21
25.025.075.075.0 σ×=−≡σ −nZxxVV  the 

population σ×=−= 20.020.080.080.0 2ZxxIPR  leads to the estimator 80.0σ̂  

( ) ( )20.020.080.0 2ˆˆ Zxx −=  having an approximate variance of ( )n080737.1  

,2σ×  the interdecile estimator ( ) ( )10.010.090.090.0 2ˆˆˆ Zxx −=σ  has an 

approximate variance of ( ) ,790755.0 2σn  while ( )05.095.095.0 ˆˆˆ xx −=σ  

( )10.02Z  has an approximate variance of ( ) .781827.0 2σn  As the sample-

coverage increases from 50%, 60% 80%, to 90%, the corresponding ( )pV σ̂  

decreases, and then starts increasing for all coverages ( ];1,90.0  at 99% 

coverage the ( ) ( ) .784103.1ˆ 2
99.0 σ=σ nV  Although both estimators px̂  and 

px −1ˆ  of px  and ,1 px −  respectively, are biased, the sign of bias in them 

should be the same, and thus the sample >>−= − 50.0,ˆˆ 1 pxxipr ppp  

,1 p−  should suffer from less bias than individual sample quantiles. If 

sample order-statistics are used to compute ,ˆ px  then more sample-

information (due to ordering) is used than just 2 order-statistics to compute 
,ˆ px  then ( ) ( )pp VMSE σ≈σ ˆˆ  for moderate to large samples ( ).20>n              

The REL-EFF ( ) ( ) ( ) =σ=σ 95.095.0 ˆ,ˆ VSVS 92.957%, 74.458%, 66.291%, 

64.746% at ,61,21,5,2=n  respectively. 

Minitab 18 provides another estimator of 2σ  from Boyles ([1], p. 383) in 
their “Display Descriptive Statistics” menu called the Mean of Successive 
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Squared Differences, which they denote by MSSD, and is defined as: 

Boyles’s ( ) ( )∑
−

=
+ −

−
=

1

1

2
1 ,12

1MSSD
n

i
ii xxn  where ix  is the ith random 

observation (not the ith order-statistic ( ))ix  in the sample of size .2≥n  It 

can be shown that Boyles’s MSSD is an unbiased estimator of ,2σ  and that 
the point-estimator of σ given by 

( ) ( ),12ˆ
1

1

2
1∑

−

=
+ −−=σ

n

i
iiSSD nxx  

where SSD stands for Successive-Squared-Differences, is negatively biased. 
Clearly, the successive differences ( ),1 iii xxSD −= +  have ( ) 0≡iSDE  

and ( ) ,2 2σ≡iSDV  but 

( ) ( ) ( ) ( ) ( ) ( ),2...,,2,2 22
1

22
23

22
12 σ−σ−σ− −nn xxxxxx  

except in the trivial case ,2=n  are obviously heavily and hopelessly auto- 

correlated, and hence the ( ) ( )∑
−

=
+ σ−

1

1

22
1 2

n

i
ii xx  does not have a 2χ  

distribution, so that the exact variance of SSDσ̂  is unknown to the author; we 

doubt the SMD of SSDσ̂  can be obtained using Noncentral .2χ  

We used the concept inherent in the above Boyles’s MSSD in order to 
obtain another σ-estimator whose Statistical properties can easily be studied. 

Let n be an even integer and define ( )∑
=

−−=σ
2

1

2
122

2 ,1ˆ
n

i
iieven xx

n
 so that the 

successive differences 13412 ...,,, −−−− nn xxxxxx  are now mutually 

independent, although this last estimator is not an average. Therefore, 

( ) ( )22
122 2σ− −ii xx  follows a 2

1χ  and ( ) ( )∑
=

− σ−
2

1

22
122 2

n

i
ii xx  follows 
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the Central .2
2nχ  We must state that for odd n this last estimator cannot be 

defined unless either the 1st or the nth-order statistic (the one that is closest 
to x  and/or the median) is truncated from the sample. It can easily be shown 

that ( ) 22ˆ σ=σevenE  so that 2ˆ evenσ  is an unbiased estimator of .2σ  However, 

( )∑
=

−−=σ
2

1

2
122

1ˆ
n

i
iieven xxn  is a biased estimator whose amount is given 

by ( ) ( ) ,01ˆ 4 <σ×ς−=σevenB  ( )[ ]
( )

,
4

422
4 nn

n
Γ×
+Γ×=ς  for ,6,4,2=n  

....,10,8  

Consequently, the ( ) ( ) [ ( )] ( ) 22
4

22 1ˆˆˆ σ×ς−=σ−σ=σ eveneveneven EEV  

resulting in ( ) ( ) 2
412ˆ σ×ς−=σevenMSE  (see Appendix B). At ,2=n  the 

value of evenσ̂  is identical to S, and for ,2>n  the estimator evenσ̂  

monotonically uses less sample-information than S, and hence its REL-EFFs 
decrease with increasing n; the REL-EFFs ( ) %,100,ˆ =σ Seven  61.599%, 

52.716%, and 50.927% at ,22,6,2=n  and 62, respectively. Further, for all 

,343>n  REL-EFF ( ) %,50,ˆ ≈σ Seven  but never less than 50%. 

Another point estimator of σ, proposed by Kendall and Stuart ([12], p. 

239) is ,2ˆ π×=σ MDmd  where the sample mean-deviation (or average-

deviation) is given by ( )∑ ∑
= =

−=−==
n

i

n

i
ii nxxnxxMDAD

1 1
.abs   In 

Appendix C, we have provided a proof for their recommendation showing 

that ( ) ( ) ,150.0~ˆ 21 σ×−π=σ −nV md  to the order of .1 n  The three well-

known authors Johnson et al. ([10], Vol. 1, also clearly state atop their p. 91 

that ( ) ,2 πσ=MDE  also leading to the above estimator .ˆ mdσ  [Further,  

these last 3 authors provide the values of ( )MDE  for nearly all underlying 

distributions; e.g., for all Uniform (or Rectangular) distributions they give 

( ) 23σ=MDE  on p. 279 of their Volume 2 (1995), while for the Laplace 
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distribution they give ].2σ  The Appendix C shows that a rough 

approximation for the amount of bias in mdσ̂  is given by ( ) ≈σmdB ˆ  

,12,40.0 −π=ωσω −n  ( ) ( ) 2120.02150.0ˆMSE σ×ω+−π≈σ −nnmd  and 

its ( ) ( ) ( )mdmd SS σ=σ ˆMSEMSE~,ˆEFF-REL  is maximum at 2=n  

equaling 130.878%, diminishes to 95.692% at ,5=n  and monotonically 
decreases with n; its limiting value is roughly 71.40%. As long as data 
contains no mild outliers, i.e., ,4 SR ×<  then mdσ̂  generally exceeds the 

corresponding S by at most 5%. 

Finally, because the ordinate of normal mode, ( ),MOf  is equal to 

( ),21 πσ  and if a sample histogram ( )60>n  unimodal frequency per unit 

of ( ),ˆ, MOfX  can be obtained, then a rough point estimate of Xσ  for 

grouped data is given by [ ( ) ] ;2ˆˆ 1−π×≈σ MOf  this last estimator must be 

avoided, as other superior estimators can easily be computed. 

4. Obtaining the Most Accurate Estimator of σ 

Because the Cramer-Rao lower bound for an unbiased estimator of σ is 

( ) [( ) ] ( ) ,2,2211 22 ≥σ=σ=σ nnnI  we used this last information to set 

( )n22σ  equal to ( ) ( ) ,1 22
44 σ−=× −ckcSVk  which led to the multiplier 

[ ( )]2
4

2
4 12 cnck −=  for ( ).4cSV  Therefore, 21k  will force the following 

estimator to become most precise (i.e., smallest variance) 

( )
( )

( )
,

1212
ˆ

2
4

42
4

4 Sk
cn

ScS
cn

c
nsv ×=

−
=×

−
=σ  (4a) 

where [ ( )] 11282944.0 212
4 <−=< −cnkn  for all ;2≥n  one can apply the 

variance-operator to (4a) and verify that ( ) ( ) ( ).12ˆ 2 σ=σ=σ InV sv  

Clearly, svσ̂  is a biased estimator and its negative bias-amount is given by 
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( ) ( ) ,014ˆ <σ×−=σσ nkcB sv  for all .2≥n  (4b) 

Unfortunately, equation (4b) shows that svσ̂  underestimates σ in 

repeated sampling each of size n, and its use as an estimator of σ must be 
avoided because it is not a conservative estimator of σ, that is, ( ) ,ˆ σ<<σsvE  

nevertheless, it is statistically efficient. Further, at ,5=n  the contribution of 
bias to the ( )svσ̂MSE  is 14.24%, and hence unacceptable. Note that the 

alternative of setting ( )[ ]
( )σ
σ′+

I
B 21  equal to ( ),ˆ SbV n ×=σ  where nb  is a 

function of ,1>n  will lead to a contradiction and no solution for .nb  It 

seems no σ-estimator will ever exit whose Variance attains the Lindgren 

lower bound ( )[ ]
( )σ
σ′+

I
B 21  and also has minimum MSE. So, we had to 

modify equations (4a and b) in order to obtain the most possible accurate 
estimator of σ as shown below. We used the expressions in equations (4a and 
b) as follows. Because the bias-parameter ( )σσsvB ˆ  in equation (4b) is large, 

we first reduced its size such that our estimator will have the amount of bias 
given by ( ) ,44 σ×− ckc n  i.e., the ( ) ( ) ,14ˆ σ×−=σσ nkcB X  but no longer 

with minimum variance. Note that the alternative of letting ( ) =σXB ˆ  

( ) ,4 σ×− ckc n  where the constant ,10 << c  will lead to the same near-

optimum obtained below. By definition, ( ) ( ) ( )1ˆˆ 4 −=σ−σ=σ nXX kcEB  

,σ×  leading to ( ) ( ) ( )[ ] ( ) ,111ˆ 544 σ×=σ×+−=σ+σ×−=σ nCkckcE nnX  

where the QC constant ( ) 1145 +−= nkcC  is only a function of n, and 

18639.0 5 << C  for .2 ∞<≤ n  Comparing ( ) σ×=σ 5ˆ CE X  with ( )SE  

σ×= 4c  leads to our estimator 

( ) ( ).ˆˆ 545 ubX CcSC σ×=×=σ  (5a) 

The estimator in equation (5a) has a larger REL-EFF than others for all 

.5>n  The amount of bias is ( ) ( ) ( ) ( ) 22
4

2
55 1ˆ,1ˆ σ−=σσ×−=σ −cCVCB XX  

leading to the ( ) ( ) .21ˆMSE 22
4

2
55 σ×+−=σ −cCCX  It is widely known that 
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the 5=n  is the Nominal Sample Size in the field of QC; this required that 
we optimize 5C  such that ( )Xσ̂MSE  will be less than all other estimators 

for .2≥n  Clearly, as 5C  increases toward 1, the size of ( )XB σ̂  decreases 

but the ( )XV σ̂  increases. Thereby, we redefined ( ) 1145 +−= nkcC  as 

( ) ( ) ( ).1 545 nckcnC n +−=  (5b) 

Differentiating ( ) ( ) 22
4

2
5521ˆMSE σ+−=σ −cCCX  with respect to 5C  

and setting it to zero yields a fairly accurate minimum point ,2
4

0
5 cC =  the 

2nd derivative being positive-definite; it must be stated that this last optimum 

is not exact because minimizing 2MSE BV +=  will not necessarily 
simultaneously minimize both V and bias-squared. Further, it must be stated 

that this last optimum 2
4

0
5 cC =  is consistent with that of Vardeman’s [25] 

who used a completely different approach to arrive at the optimum value of 

.5C  Substituting this last near-optimal 0
5C  into (5b) results in 

( ) ;1 0
54

2
4 ckcc n +−=  hence, =0

5c ( ).144 +− nkcc  The corresponding 

( ) ( ) ,1ˆ 4
2 σ×−=σ cB X  ( ) ( ) ,1ˆ 22

4
2
4 σ−=σ ccV X  ( ) ( ) 22

41ˆMSE σ×−=σ cX  

( ).SV=  The near optimum ( ) ( )
( ) ,268.102ˆMSE
ˆMSEˆ,ˆEFF-REL =
σ
σ

=σσ
X

mle
mleX  

101.783, 100.553, and 100.200% at ,21,5,2=n  and 61, respectively, and 

the corresponding ( )SX ,ˆEFF-REL σ  are 111.242, 103.094, 100.625, and 

100.208%. 

6. Efficiencies of σ-Estimators 

As stated before, the Chou’s ( )mleEff σ̂  is inflated by bias-squared 

because ( ) ( ) ( ) σ>σσ>σσ SBBB Xmle ˆˆ  for all ;2≥n  for example, 

at ,2=n  5, 21, and 61, the respective 3 relative-biases are ( ,43581.0−  

,36608.0−    ),20212.0−  ( ),06001.0,11643.0,15925.0 −−−  ( ,03622.0−  

),01242.0,02468.0 −−  and at 61=n  they are ( ,00830.0,01235.0 −−  
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).00416.0−  Consequently, for comparative purposes we provide both 

absolute EFFs from equations (3a and b). Inserting ( ) ,14 −=σ′ cBS  

( ) ( ) 2
412MSE σ−= cS  into equation (3a) yields the (absolute)                  

efficiency ( ) [ ( ) ] ( )[ ].1212 4
2

4
2
4 ccncSEff −−+=  Similarly, ( ) =σubEff ˆ  

[ ( )],12 2
4

2
4 cnc −  ( ) ( ) ( ) ,

12
12ˆ

4
2

4
2
4

2
4

2
4

+−
−+

=σ − CcC
CnCEff mle  ( ) ,2

2
3

2
2

2 d
nddREff =  

( ) ( )
( )

,
22
2ˆ 280.0

2240.0

ω+−π
ω+ω+

≈σ
nn
nnEff md  and ( ) =σXEff ˆ  ( ) .

21
12

2
4

2
55

2
5

2
5

−+−

−+

cCC
CnC  

From equation (3b) the Lindgren precision-efficiencies are ( ) =Seff  

( ) ( ) ( ) [ ( )] ( ) 2
3

2
2

2
2
4

2
4

2,12ˆˆˆ
d

nddReffcnceffeffeff Xmleub =−=σ=σ=σ  as 

expected, and ( ) ( ) .2
1ˆ

240.0

−π
ω+=σ

−neff md  

7. Ranking the Six Estimators of σ 

We rank only the estimators of σ that are highly pertinent to Applied 
Statistics and the field of QC. We will rank them from the standpoint of their 
precision, accuracy, and then the absolute efficiency ( )σ̂Eff  from equation 

(3a). 

(i) From the standpoint of Precision (Smaller variance): 

(1) ( ) ,ˆ
1

2 nxx
n

i
imle ∑

=
−=σ  (2) ( ),ˆ 45 cSCX ×=σ  

(3) ( ) ( ),1
1

2∑
=

−−=
n

i
i nxxS  (4) ,ˆ 4cSub =σ  

 (5) ∑
=

−×π=σ
n

i
imd nxx

1
,2ˆ  

(6) ;ˆ 2dRx =σ  note that for ,102 <≤ n  the above rankings of ubS σ̂,  

and mdσ̂  change somewhat. 



Saeed Maghsoodloo 224 

(ii) From the standpoint of accuracy (Smaller MSE): 

(1) ( ) ,ˆ 45 ScCX ×=σ  (2) ,ˆ mleσ  

(3) S, (4) ,ˆ ubσ  

(5) ,ˆ mdσ  

(6) .ˆ 2dRx =σ  For mdn σ= ˆ,4,3,2  has a smaller MSE than S. 

(iii) (1) ,ˆ mleσ  (2) ( ) ,ˆ 45 ScCX ×=σ  

(3) S, (4) ,ˆ ubσ  

(5) ,ˆ mdσ  

(6) .ˆ 2dRx =σ  All three above rankings show that ubσ̂  ranks only 4th 

relative to the others. 

An Excel file has also been developed that computes all REL-EFFs and 
absolute efficiencies discussed in this article and will be available on request. 

7. Summary and Conclusions 

We discussed the CLT from the standpoint of skewness and kurtosis, and 
determined that both must be within 0.10 of zero for the adequate quantile 

approximation of ∑
=

=
n

i
in SMDXS

1
.  Further, in great detail, we examined 

the statistical properties of all possible estimators of the normal standard 
deviation σ and determined that only 6, with bias ,0≤  have practical 

applications. We also obtained the estimator ( ) ( )ScCX ×=σ 45ˆ  that is the 

most accurate of all others. As has been known in Statistical Literature the 
mle is the most precise estimator (smallest variance), but our Section 6 shows 
that its Lindgren’s precision-efficiency is the same as ,,ˆ SXσ  and .ˆ ubσ  The 

size of bias in the estimator 001.0<S  for 250>n  and its Lindgren’s 

absolute efficiency ( ) ( ) ( ) %7815.991 =σ= − SVISe  at .343=n  
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Appendix A 

The likelihood function ( ) ( )∏
=

θ=
n

i
ii dxXfL

1
,;; θX  where the 1×n  

observation-vector [ ] s’,21 i
T

n XXXX=X  are prior random components 

of the sample vector X, and the 1×m  parameter-vector [ ] ,21
T

mθθθ=θ  

e.g., the Uniform has at most 2, the normal has 2, the Weibull has at most 3, 
and the Laplace distribution has at most 2=m  parameters. The Pr element 
( ) ii dxXf ×θ;  gives the prior Pr that the random observation iX  will lie 

within the random interval of length idx  around .iX  In order to obtain the 

mle of the vector parameter θ, the ( )∏
=

∂
∂ n

i
ii dxXf

1
; θθ  must be set to zero 

and the resulting m equations in m unknowns must be solved simultaneously 

in order to obtain the 1×m  mle estimator [ ] .ˆˆˆˆ 21
T

mθθθ=θ  This last 

procedure is extremely awkward and cumbersome to carry out. As a result, 
Statistical Theory has used the fact that if ( )xy  is any function of x, then 

( )[ ] ( ) ( ) ( )[ ] 01log =∂∂×=
∂
∂ xxyxyxyx  iff ( ) ( ) ( ) ;,0 ∞≠=∂∂ xyxxy  the 

most common base values for the log-function are e and 10. Statistical 
Theory always uses the natural-log, denoted by ,logeLn =  i.e., the function 

( )∏
=

n

i
ii dxXfLn

1
; θ  is always maximized, which can also be expressed as 

( ) ( )[ ] ( )∏ ∑ ∑
= = =

+=
n

i

n

i

n

i
iiii dxLnXfLndxXfLn

1 1 1
.;; θθ  

Only because ( )∑
=

n

i
idxLn

1
 is completely free and independent of θ and                       

will always dropout after differentiation with respect to θ, Statistical                                                     
Theory makes further simplification by referring to log-likelihood as 
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( )[ ] ( )[ ]∑
=

θ=
n

i
i LLnXfLn

1
,;; Xθ  where ( ) ( )∏

=
=

n

i
iXfL

1
;; θθX  is the joint 

density of the sample vector [ ] .21
T

nXXX=X  Further, because the 

sample vector X plays no role in partial-differentiation process, then 
( )[ ]θX;L  is denoted by ( ),θL  and hence the log-likelihood function 

simplifies to ( )[ ].θLLn  In summary, the mle estimator [ ]Tmθθθ= ˆˆˆˆ 21θ  is 

obtained by setting ( )[ ]θ
θ

LLn
d
d  to zero and solving the resulting m 

equations in m unknowns parameters for the estimator [ ] .ˆˆˆˆ 21
T

mθθθ=θ  

From a practical standpoint, ( )[ ]θLLn
d
d

iθ
 indicates how fast the likelihood 

function changes with respect to .iθ  Lindgren ([15], atop p. 241) refers to 

( )[ ]θLLn
iθ∂

∂  as the score function, i.e., 

( ) ( )[ ]
( )

( )
( )

,
θθ

θX L
L

L
LLLnSF ii

i
i

θ′
=

θ∂∂
=

θ∂
∂

=θ  (A1) 

where prime denotes partial-differentiation with respect to any one parameter 
.iθ  For notational convenience let θ denote any one of the .s’iθ  As was 

done in his Theorem 17 on Lindgren’s p. 241, we also first show that 
( )[ ]θXSFE  is always zero for any vector parameter θ, dropping X. 

Proof. 

( )( )[ ] ( )
( ) ( )∫∫ ∫ ∏

=

′
=θ n

n

i
i dxdxXfL

LSFE 1
1

; θθ
θ  

( )
( ) ( ) ( )∫∫ ∫ ∫∫ ∫ ′=
′

= XθXθθ
θ dLdLL

L  

( )∫∫ ∫θ∂
∂= ;Xθ dL  
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however ( )θL  is the joint density of vector X, and its n-tuple integral over 

the entire n-dimensional space must identically equal to 1. That is, 

( )( )[ ] ( ) ,01 ≡
θ∂
∂=θSFE  as expected, i.e., the average rate of change in the 

likelihood function is zero. 

Lindgren [15] on his p. 241 further states that the (Sir R. A. Fisher 1912-
1922) amount of information in a random sample of size n about a single 

parameter θ as the variance of its SF, i.e., ( ) ( )[ ] ( )2; SFESFVnI =θ=θX  

( )[ ] ( ) ( ) ( )
( )

.0
2

222

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

θ
θ′

==−=−
L
LESFESFESFE  As Lindgren states 

after his equation (3) on p. 241, the notation for Fisher’s ( )nI ;θX  could be 

misleading because the expected-value and variance operators have already 
averaged-out all the ,s’iX  i.e., ( )nI ;θX  is not a function of X; the subscript 

X in ( )nI ;θX  simply says the amount of information about the parameter θ 

in the observable vector [ ] .21
T

nXXX=X  As Lindgren states on his pp. 

241-2, the Fisher sample information is additive, i.e., ( ) ×=θ nnI ;X  

( ).1; =θ nIX  As an example, the log-likelihood for a normal distribution, 

well documented in Statistical Literature in the past century, is given by 

( )[ ] [ ( ) ]∏
=

πσ
σμ−−

=σμ
n

i

ixExpLnLLn
1

22

2
50.0,  

[ ( ) ]∑
=

σμ−−+⎟
⎠
⎞⎜

⎝
⎛

πσ
=

n

i
i

n
xLn

1

2250.0
2

1  

( ) ( ) ∑
=

⎟
⎠
⎞⎜

⎝
⎛

σ
μ−

−π−σ−=
n

i

ixnLnnLn
1

2
;2

12  

thus the ( ) ( )[ ] ( )∑
=

μ−
σ

+σ−=σμ
σ∂
∂=σ

n

i
ixnLLnSF

1

2
3

1,  which is a 
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function of the vectors X and [ ] ;Tσμ=θ  further, because the 

( )∑
=

μ−
n

i
ixE

1

2 ,2σ= n  then it follows that this last ( )[ ] ,0≡σSFE  as shown 

above for any estimator. In order to obtain the amount of information about σ 
in a simple random sample of size ,1>n  we compute the variance of its 
score function: 

( )[ ] ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
μ−σ=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
μ−

σ
+σ−=σ ∑∑

=

−

=

n

i
i

n

i
i xVxnVSFV

1

26

1

2
3

1  

[ ( ) ] { ( ) [ ( ) ] }∑ ∑
= =

−− μ−−μ−σ=μ−σ=
n

i

n

i
iii xExExV

1 1

224626  

{ [ ] }∑ ∑
= =

−−− σσ=σσ=σ−σσ=
n

i

n

i
n

1 1

46462246 223  

( ),2 2 σ=σ= XIn  

as was given in our Section 2. In order to arrive at the information inequality 
(see p. 262 of Lindgren) for the variance of any estimator, as given in 
equation (2), we use the fact that the correlation coefficient (of order zero) 
between any two variates is given by 

( ) ( )
( ) ( )

1
ˆ

ˆ,ˆ,1 ≤
θ×

θ
=θρ≤−

VSFV

SFCOVSF  

and hence 

( ) ( )
( ) ( )

( )
( ) ( )

.1ˆ
ˆ,

ˆ

ˆ,ˆ,0
22

2 ≤
θ×
θ

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

θ×

θ
=θρ≤

VSFV
SFCOV

VSFV

SFCOVSF  (A2) 

Thus equation (A2) provides the variance lower bound for any estimator 
in the Universe, called the 

Information Inequality: 

( )
( )[ ]

( ) .ˆˆ,2
∞<θ≤

θ
θ V

SFV
SFCOV  (A3) 
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For the ( ),σSF  we already have ( )[ ] ( )[ ] ,2,0 2σ=σ=σ nSFVSFE  and 

letting θ=σ ˆˆ  be any point-estimator of σ, equation (A3) requires that we 
compute the [ ( ) ].ˆ, σσSFCOV  

[ ( ) ] [ ( )] ( )[ ] ( )σ×σ−σ×σ=σσ ˆˆˆ, ESFESFESFCOV  

[ ( ) ] ( )σ×−σ×σ= ˆ0ˆ ESFE  

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

σ×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
μ−

σ
+σ−= ∑

=

ˆ1

1

2
3

n

i
ixnE  

( ) ( )
( ) σ×⎥⎦

⎤
⎢⎣
⎡

σμ
σμ′=

⎭⎬
⎫

⎩⎨
⎧ σ×⎥⎦

⎤
⎢⎣
⎡ σμ
σ∂
∂= ˆ

,
,ˆ, L

LELnLE  

( )
( ) ( )∫∫ ∫ σμ×σ×
σ
σ′= XX dLL

L ,;ˆ  

( ) ( )∫∫ ∫ ∫∫ ∫ σ×σ
σ

=σ×σ′= XX dLd
ddL ˆˆ  

( ) [ ( )] ( ) ( ).11ˆ ˆˆ σ′+=σ′+=σ+σ
σ

=σ
σ

= σσ BBBd
dEd

d  (A4) 

Note that the expectation in the 4th step leading to (A4) cannot be carried 

out directly because it does not allow the use of ( ) ( )∫ ∫= xhdx
dxhdx

d  iff 

( )∫ xh  exists. Equation (A4) is identical to that of Lindgren ([14], p. 273). 

Substituting equation (A4) into the Information Inequality (A3) and using the 

fact that ( )[ ] 22 σ=σ nSFV  we obtain the well-known Information 

Inequality: 

( )[ ]
( )

( )[ ] ( ) .ˆ
2

11
2

22
∞<σ≤

σ
σ′+=

σ
σ′+ V

n
B

I
B  

Lindgren ([15], p. 242) proceeded to derive a simpler formula for the 
( )θXI  as follows: 
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( ) ( ) ( )
( ) .

22
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ ′

=⎥⎦
⎤

⎢⎣
⎡

θ
θ′==θ L

LEL
LESFVIX  (A5) 

Now consider the rate of change of the score function: 

( ) ( ) ( )
( ) .

2

2 ⎟
⎠
⎞⎜

⎝
⎛ ′

−
′′

=
′′−′′=⎥⎦

⎤
⎢⎣
⎡

θ
θ′

θ∂
∂=⎥⎦

⎤
⎢⎣
⎡ θ
θ∂
∂

θ∂
∂=

θ∂
∂

L
L

L
L

L
LLLL

L
LLnLSF  (A6) 

Applying the liner-operator E to equation (A6) and using A(5) results in 

( ) ( ) .
2

⎥⎦
⎤

⎢⎣
⎡

θ∂
∂−⎟

⎠
⎞⎜

⎝
⎛ ′′

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ ′

=θ SFEL
LEL

LEIX  However, 

( )
( ) ( ) ( ) ( )∫∫ ∫ ∫∫ ∫ ≡

θ
≡′′=θ

θ
θ′′=⎟

⎠
⎞⎜

⎝
⎛ ′′ .012

2

d
ddLdLL

L
L
LE XθX  

Inserting zero for ,0=⎟
⎠
⎞⎜

⎝
⎛ ′′

L
LE  the previous equation reduces to ( ) =θXI  

( ) .0
2

⎥⎦
⎤

⎢⎣
⎡

θ∂
∂−=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ ′ SFEL

LE  Hence, ( ) ( ) ( ) ;⎥⎦
⎤

⎢⎣
⎡

θ∂
∂−==θ SFESFVIX  this 

last is Lindgren’s [15] equation (6) on his p. 242. For the ( ),, 2σμN  the 

( ) ( ) ( ) ( )∑ ∑
= =

− μ−σ−σ=
σ∂

∂μ−
σ

+σ−=σ
n

i

n

i
ii xnSFxnSF

1 1

2422
3 ;3;1  

( ) 2242

1

242 233 σ−=σσ−σ=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
μ−σ−σ −

=

− ∑ nnnxnE
n

i
i  

so that ( ) ( ) ,2 2σ=⎥⎦
⎤

⎢⎣
⎡

θ∂
∂−=θ nSFEIX  as before. As has been well known, 

the efficiency of an estimator is directly proportional to the amount of sample 
information used by the estimator. 

In general, if ( )mii ...,,2,1ˆ =θ  are the MLEs of m parameters with the 

log-likelihood function ( ),...,,,; 21 mLnL θθθX  then the ( ) th, ji  element of 



On Sigma-estimators from a Normal Universe 231 

Fisher’s information matrix is given by 

[ ( ) ]....,,,; 21
2

jimij xLnLEIM θ∂θ∂θθθ∂−=  

Statistical theory, as repeated above, clearly shows that the asymptotic 

covariance matrix of the vector-estimator [ ]Tmθθθ= ˆˆˆˆ 21θ  is given by 

the inverse of the information matrix IM, i.e., 

( ) [ ] ;~ˆˆˆˆ 1
21

−=θθθ= IMCOVCOV T
mθ  

we do not know exactly how large an n is needed for adequacy of this last 
approximation for estimators that are not 100% efficient from different 
underlying distributions. 

Appendix B 

For even n, consider the estimator ( )∑
=

−−=σ
2

1

2
122ˆ

n

i
iieven nxx  whose 

bias-amount is given by ( ) ,ˆ σ−σevenE  where 

( ) ( ) [( ) ]∑∑
=

−
=

− σ−σ=−=σ
2

1

2
122

22

1

2
122 221ˆ

n

i
ii

n

i
iieven xxnExxnEE  

.
22

2
2

2

1

2
n

n

i
i E

n
ZE

n
χσ=σ= ∑

=

 

It is widely known that ( )[ ]
( ) ,2

2122
νΓ
+νΓ=χνE  where ν is the degrees of 

freedom of the .2
νχ  Thus, 

( ) ( )[ ]
( )4

2122
22

ˆ 2
2 n

n
n

E
n

E neven Γ
+Γ×σ=χσ=σ  

( )[ ]
( )

( ) ,
4

422
4 σ×ς=σ×

Γ
+Γ

= n
nn

n  
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( ) ( )[ ] ( ).44224 nnnn Γ+Γ=ς  

Hence, the amount of bias is ( ) ( ) σ×−ς=σ 1ˆ 4evenB  for ,8,6,4,2=n  

....,10  Clearly, the SMD of evenσ̂  follows that of a ,
2

2
2nn

χσ  or 

22ˆ σσ neven  follows a .2
2nχ  

Appendix C 

Applying the expected-value operator, we obtain ( ) ( )ADEMDE =  

∑ ∑
= =

−=−
n

i

n

i
i xxE

n
xxE

n 1 1

11 xxnE
n

−=
1  

( )∫
∞

∞−
σμ−=−= .,; dxxfxxxxE  

However, carrying out the exact integration of this last integral is beyond our 
grasp, and as has been done by numerous other authors, we will first make 
the following identity in the integrand: 

( ) ( ) ( ) ( )∫
∞

∞−
σμμ−−μ−≡ .,; dxxfxxADE  

The exact expected value of ( ) ( )μ−−μ− xx  is out of our reach, and 

therefore, we argue as others that in simple random samples of moderate to 
large sizes ,20>n  the value of ( )μ−x  is often much larger than ,μ−x  

and hence ( ) ( ) μ−=μ−−μ− xxx ~  to the order of .21−n  In fact the 

values of μ−x  is expected to exceed those of .xx −  Applying this 

approximation, we obtain 

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
σφμ−≤σμ−= ,,; dxzxdxxfxxMDE  

so that ( ) ( )∫
∞

σφμ−≈
0

,dxzxMDE  where ≈  denotes rough approxima-
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tion. Using the definition of absolute values and making the transformation 
of ( ) σμ−= xZ  results in 

( ) ( ) ( ) ( ) ( )∫ ∫∞−

∞
φμ−+φμ−−≤

0

0
dZzxdZzxADE  

[ ]∫
∞ ∞−

−

π
σ

=−
π
σ

=
π

σ=
0 0

2/22/2

.
22

2
2

2 Z
Z

edZeZ  

This last result is also provided by other authors; for example, see Johnson et 
al. [10], Vol. 1, 2nd edition, p. 91. Setting this last approximate-expectation 

to the corresponding sample statistic ∑
=

−
n

i
i xxn

1

1  results in 2ˆ π=σmd  

∑
=

−×π=×
n

i
i nxxMD

1
.2  Kendall and Stuart [12], p. 240, give an 

approximation for the variance of MD as ( ) ( ) nMDV π−σ= 21~ 2  which is 

illustrated below. 

( ) ∑∑
==

−=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

n

i
i

n

i
i xxV

n
nxxVMDV

1
2

1

1  

.1
2

1

2

1
2 ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑∑

==

n

i
i

n

i
i xxExxE

n
 (C1) 

We first compute the 1st expectation on the RHS inside brackets in 
equation (C1): 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+−=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ∑ ∑∑∑

= ≠=

n

i

n

ji
jii

n

i
i xxxxxxExxE

1

2
2

1
 

[( ) ] [ ]∑∑
≠

−×−+−=
n

ji
ji xxExxESnE 21  



Saeed Maghsoodloo 234 

( ) [ ]∑∑
≠

πσ×πσ+σ−≈
n

ji
n 221 2  

( ) ( ) .211 22 πσ−+σ−= nnn  

The 2nd expectation on the RHS of equation (C1) is equal to 

∑
=

π
σ≈−=−

n

i
ii

nxxnExxE
1

;
2

 

thus, insertion into (C1) yields 

( ) ( ) ( )
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Clearly the variance expression in (C2) is negative at 2=n  and roughly 

0.03 at 3=n  because ( )
2π

σ≤MDE  which led to ( )MDV  to be smaller 

than its actual value; as a result, ( ) nn 1−  on the RHS of (C2) was increased 

to 1 so that ( ) ,0>MDV  for all ,2≥n  leading to ( ) ( ) ,21 21σπ−≈ −nMDV  

.20≥n  Thus, 

( ) ( ) ( ) ( ) ( ) .150.0212~2ˆ 212 σ×−π=π−σ×π=×π=σ −nnMDVV md  

Clearly, the estimator mdσ̂  must be biased, and as shown above, the 

amount of bias is approximately given by ( ) ,
2

ˆ σ×ω=σ−
π
σ=σmdB  

where ( ) 012 <−π=ω  to order of .21−n  This last expression for the 

( )mdB σ̂  is disturbing because it is impossible for the bias-amount in a σ-

estimator not to diminish with increasing sample size. Clearly ( ) ω=σmdB ˆ  

,anσ×  and the exponent a should lie within [0.25, 0.75]. A simulation-
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study may better determine a good approximation for the constant a. Perhaps, 

( ) ,~ˆ nB md σ×ω=σ  but we choose the conservative value, compared to 

,50.0−σ×ω n  of ( ) .ˆ 40.0 σ×ω≈σ −nB md  
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