STAT 3611 Lab 9 Spring 2015 Maghsoodloo

1. Enter the data of the Example on p. 156 of my notes on a Minitab worksheet, staring in C1. Use Minitab's General Regression to obtain the regression function of y on x (i.e., the functional relationship of y on x), and also using Minitab's "Results" to obtain CI on coefficients. Further, use Minitab's Storage to obtain the fitted vector $\hat{\mathbf{Y}}$, the residual **e**, the Studentized residuals **r** and the matrix $\mathbf{C} = \mathbf{A}^{-1} = (\mathbf{X}^T \mathbf{X})^{-1} = (\mathbf{X}' \mathbf{X})^{-1}$. Then, use Minitab's Data, scroll down to Display data to output the matric **C**.

2. Use the data of my Example 45 on pp. 166-170 of my notes onto the same Minitab worksheet (X = Engr Statistics on C7, & Y = OR averages in percent on C8). Go to Stat \rightarrow Basic Statistics \rightarrow Scroll down to \rightarrow correlation. The dialogue box should be self-explanatory (click only on display *P*-value); then ok. Write your SI on the MPR. In order to obtain the correlation matrix, repeat the above procedure but click on Store matrix \rightarrow ok \rightarrow Data \rightarrow Scroll down to Display Data and double click on Corr1.

3. Minitab does not provide CIs for Pearson's Product-moment correlation coefficient ρ at the present time. Thus, save the data Excel file as Lab9Soln in order to obtain the 2-sided CI for the population correlation coefficient ρ , using the following formulas: compute raw statistics $\sum_{i=1}^{19} x_i$, $\sum_{i=1}^{19} y_i$, $\sum_{i=1}^{n} x_i^2$, $\sum_{i=1}^{n} y_i^2$, $\sum_{i=1}^{n} x_i y_i$, and CFs; then use these to compute S_{xx} , S_{yy} , S_{xy} , S_x , S_y , $r = S_{xy}/(S_{xx}S_{yy})^{0.5}$. Next compute $Z = \frac{1}{2} \ln(\frac{1+r}{1-r}) = \tanh^{-1}(r)$ and use MS Excel function $\tanh(r)$ to verify the value of $Z = \frac{1}{2} \ln(\frac{1+r}{1-r})$. Then compute $L = Z - 1.96/\sqrt{n-3}$ and $U = Z + 1.96/\sqrt{n-3}$. Now compute $\rho_L = \tanh(L)$ and $\rho_U = \tanh(U)$. Using this CI, can you reject H₀: $\rho = 0.60$ at the 5% level?