STAT 3611 Lab 5 S2015 Maghsoodloo

<u>**1(a, 3 points).**</u> Use Minitab to work Exercise 58 of J. L. Devore (8e) on his page 338, describing the exact relationship between his value of 1.616 & 0.29504 on my Excel Data-file Before proceeding, change Devore's first sentence to: A random sample of "**size n = 30**" soil specimen was obtained **"LOS = Level Of Significance"**

Do the above part by first, i.e., testing $H_0:\mu = 3.00$ recognizing that σ is truly unknown and using William Sealy Gosset's t-statistic and then the normal (or the Z as an approximate test) using the sample $S_x = 1.61564$ as a rough approximate value of process-parameter σ .

<u>**1(b, 3 points).**</u> Use Minitab to estimate the power of the nominal statistical 5%-level test (i.e., the LOS $\alpha = 0.05$) if the true process mean organic matter μ were equal to 3. 40%. This represents an upward shift of 0.40 in the process mean μ . Go to Stat \rightarrow Power and Sample Size; first select 1-Sample t followed by 1-sample Z, and compare your power results.

J.L. Devore (8e) seems to imply at the end of his Exercise-58 on p. 338-statement that the assumption of underlying normality is almost tenable. Do you agree? Why, or why not. Provide precise statistical answer using Minitab's Stat \rightarrow Basic Statistics \rightarrow Graphical Summary, and the resulting AD-Statistic *P*-value to draw conclusion about the normality assumption of the data-underlying distribution (the smaller a *P*-value is, the stronger a null-hypothesis of Normality must be rejected). Secondly, on your data-sheet, approximately (& roughly) compute the Pr(X \leq 0), where X = % Organic Matter, using the normality assumption. Use this last left-tail Pr (below zero) to ascertain if you agree with J. L. Devore's (8e) assertion of acceptable normality pattern.

Definition. In the field of Statistics [where QC (Quality Control) is strictly an application area], an OC (Operating Characteristic) curve is always the graph of "type II error, or error of" (= "accepting a false null hypothesis H₀") Pr, denoted β , as a function of the parameter under the null hypothesis H₀. For example, in the above Problem 1, the null hypothesis is H₀: $\mu = 3.00\%$, i.e., $\mu_0 \equiv 3.00\%$, then the OC curve will graph β = Type II error Pr = P_a(at a given μ) as a function of μ (where μ is the abscissa), and β (at a specified μ) = P_a(μ)

will be the ordinate (or the so-called y-axis of the OC curve). See Table A.17 on p. Appendix A-28 of Devore (8e), but please change his title from β Curves to OC Curves. Please also note that Statistical-Literature (specially QC-literature) always Studentdizes the OC-Curve-abscissa to construct OC curves on mean(s), i.e., uses the Non- central t-distribution. However, if for example null hypothesis were H₀: σ = 0.25 cm versus H₁: σ < 0.25 (a left-tail test), then the corresponding OC-Curve will graph β = Error Pr of 2nd-kind = P_a(at a given σ) versus the unitless abscissa Lambda = σ/σ_0 .

<u>2(4 points).</u> Use MS Excel to draw the (0.05-Level, i.e. the LOS of the test is set nominally at $\alpha = 0.05$) OC curve of the above problem 1 by assuming the true process σ were equal to 1.4790 (\rightarrow the Z-test), and computing the acceptance probability $\beta = P_a(H_0: \mu = 3.00\%)$ VS the 2-sided alternative hypothesis H₁: $\mu \neq 3.00\%$. Thus, I am making the assumption that the parent-variable X = % Organic Matter ~ N(unknown μ , $\sigma^2 = 2.187441$), which you will find out is not quite tenable. In order to draw this OC (Operating Characteristic) curve, compute β at $\mu = 3.00 \pm 1.2\sigma x$, $\delta = \pm 1\sigma x$, $\pm 0.80\sigma x$, $\pm 0.6\sigma x$, $\pm 0.4\sigma x$, $\mu_0 \pm 0.20\sigma x$, starting your μ -Column in Excel at $\mu = 3.00 - 1.20 \times 1.4790$. However, before the μ -Column provide another column headed by δ whose first value will be -1.20×1.4790 ; the adjacent columns are described in my Excel-SOLN file on the Lab-screen. The quantity δ represents the amount of shift-in- μ in terms of σ_x from the null-value of $\mu_0 \equiv 3.00\%$. A negative-value of δ always implies a downward-shift μ , and vice a versa.

Next use the above information to also draw the power curve $(1-\beta \text{ versus }\mu)$ for testing H₀: $\mu = 3.00$ at the 5% LOS, where power of a Statistical test graphs the Pr of rejecting a false hypothesis for a specified parameter-value. By Statistical power we mean the apriory Pr of rejecting a false H₀.

2