1(a, 3 points). Use Minitab to work Exercise 58 of J. L. Devore (8e) on his page 338, describing the exact relationship between his value of $1.616 \& 0.29504$ on my Excel Data-file Before proceeding, change Devore's first sentence to: A random sample of "size $\mathbf{n}=\mathbf{3 0}$ " soil specimen was obtained .....

## "LOS = Level Of Significance"

Do the above part by first, i.e., testing $\mathrm{H}_{0}: \mu=3.00$ recognizing that $\boldsymbol{\sigma}$ is truly unknown and using William Sealy Gosset's t-statistic and then the normal (or the Z as an approximate test) using the sample $S_{x}=1.61564$ as a rough approximate value of process-parameter $\sigma$.

1(b, 3 points). Use Minitab to estimate the power of the nominal statistical 5\%-level test (i.e., the LOS $\alpha=0.05$ ) if the true process mean organic matter $\mu$ were equal to $3.40 \%$. This represents an upward shift of 0.40 in the process mean $\mu$. Go to Stat $\rightarrow$ Power and Sample Size; first select 1-Sample t followed by 1-sample Z, and compare your power results.
J.L. Devore (8e) seems to imply at the end of his Exercise-58 on p. 338-statement that the assumption of underlying normality is almost tenable. Do you agree? Why, or why not. Provide precise statistical answer using Minitab’s Stat $\rightarrow$ Basic Statistics $\rightarrow$ Graphical Summary, and the resulting AD-Statistic $P$-value to draw conclusion about the normality assumption of the data-underlying distribution (the smaller a $P$-value is, the stronger a nullhypothesis of Normality must be rejected). Secondly, on your data-sheet, approximately (\& roughly) compute the $\operatorname{Pr}(\mathrm{X} \leq 0)$, where $\mathrm{X}=$ \% Organic Matter, using the normality assumption. Use this last left-tail $\operatorname{Pr}$ (below zero) to ascertain if you agree with J. L. Devore’s (8e) assertion of acceptable normality pattern.

Definition. In the field of Statistics [where QC (Quality Control) is strictly an application area], an OC (Operating Characteristic) curve is always the graph of "type II error, or error of " (= "accepting a false null hypothesis $\mathrm{H}_{0}$ ") $\operatorname{Pr}$, denoted $\beta$, as a function of the parameter under the null hypothesis $H_{0}$. For example, in the above Problem 1, the null hypothesis is $\mathrm{H}_{0}: \mu=3.00 \%$, i.e., $\mu_{0} \equiv 3.00 \%$, then the OC curve will graph $\beta=$ Type II error $\operatorname{Pr}$ $=\mathrm{P}_{\mathrm{a}}($ at a given $\mu)$ as a function of $\mu$ (where $\mu$ is the abscissa), and $\beta$ (at a specified $\left.\mu\right)=\mathrm{P}_{\mathrm{a}}(\mu)$

$$
\mathbf{1} \mid \mathbb{P} \text { a ge }
$$

will be the ordinate (or the so-called y-axis of the OC curve). See Table A. 17 on p. Appendix A-28 of Devore (8e), but please change his title from $\beta$ Curves to OC Curves. Please also note that Statistical-Literature (specially QC-literature) always Studentdizes the OC-Curve-abscissa to construct OC curves on mean(s), i.e., uses the Non- central t-distribution. However, if for example null hypothesis were $\mathrm{H}_{0}: \sigma=0.25 \mathrm{~cm}$ versus $\mathrm{H}_{1}: \sigma<0.25$ (a left-tail test), then the corresponding OC-Curve will graph $\beta=$ Error $\operatorname{Pr}$ of $2^{\text {nd }}$-kind $=\mathrm{P}_{\mathrm{a}}($ at a given $\sigma$ ) versus the unitless abscissa Lambda $=\sigma / \sigma$.

2(4 points). Use MS Excel to draw the (0.05-Level, i.e. the LOS of the test is set nominally at $\alpha=0.05$ ) OC curve of the above problem 1 by assuming the true process $\sigma$ were equal to $1.4790\left(\rightarrow\right.$ the Z-test), and computing the acceptance probability $\beta=\mathrm{P}_{\mathrm{a}}\left(\mathrm{H}_{0}: \mu=3.00 \%\right)$ VS the 2-sided alternative hypothesis $\mathrm{H}_{1}: \mu \neq 3.00 \%$. Thus, I am making the assumption that the parent-variable $\mathrm{X}=\%$ Organic Matter $\sim \mathrm{N}\left(\right.$ unknown $\left.\mu, \sigma^{2}=2.187441\right)$, which you will find out is not quite tenable. In order to draw this OC (Operating Characteristic) curve, compute $\beta$ at $\mu=3.00 \pm 1.2 \sigma x, \delta= \pm 1 \sigma x, \pm 0.80 \sigma x, \pm 0.6 \sigma x, \pm 0.4 \sigma x, \mu_{0} \pm 0.20 \sigma x$, starting your $\mu-$ Column in Excel at $\mu=3.00-1.20 \times 1.4790$. However, before the $\mu$-Column provide another column headed by $\delta$ whose first value will be $-1.20 \times 1.4790$; the adjacent columns are described in my Excel-SOLN file on the Lab-screen. The quantity $\delta$ represents the amount of shift-in- $\mu$ in terms of $\sigma_{x}$ from the null-value of $\mu_{0} \equiv 3.00 \%$. A negative-value of $\delta$ always implies a downward-shift $\mu$, and vice a versa.

Next use the above information to also draw the power curve ( $1-\beta$ versus $\mu$ ) for testing $\mathrm{H}_{0}$ : $\mu=3.00$ at the $5 \%$ LOS, where power of a Statistical test graphs the $\operatorname{Pr}$ of rejecting a false hypothesis for a specified parameter-value. By Statistical power we mean the apriory $\operatorname{Pr}$ of rejecting a false $\mathrm{H}_{0}$.

