STAT3611 Lab4-Procedure S2015 02/16/2015 Maghsoodloo

1(3 Points). Use Minitab16 to work Exercise 16 on p. 284 of Devore(8e) by downloading the data from Canvas, and copying\&pasting the data from the Excel-file onto Minitab’s C1 (Column 1), and naming this column KVOLTS. Now, use Minitab’s Graphical summary (under Stat \rightarrow Basic Statistics) to ascertain the approximate normality of Devore's Exercise 16 data by examining the P value of the AD (Anderson-Darling)-Statistic. You must for ever know that the smaller the P-value of any statistical test is, the more strongly one can reject the corresponding null hypothesis (in this case the null-hypothesis is that the Breakdown-Voltage is normally distributed). My assistants will show you how to Append your Minitab output onto Minitab’s (Project Report = MPR), which is basically an MS word.docx and can easily be edited and also copied and pasted onto another word.docx. Please write your conclusions on your MPR, as to the KVOLT-data's normality assumption; further, compare the skewness and kurtosis of the data with those of a Normal Universe. Next, sort the KVOLT-data by going to Data \rightarrow Sort \rightarrow put the sorted data of C1 onto C2 of Minitab16. The dialogue-box should be self-explanatory. The following 3 parts also pertain to Exercise 16 on page 284 of J. L. Devore(8e).

2(a, 2 Points). Go to Minitab's Graph \rightarrow Scroll-down to Boxplot; the dialogue-box for obtaining the Boxplot should again be self-explanatory. Does your Boxplot show that there are outliers amongst the $\mathrm{n}=48$ responses? If so, how many outliers and give its (or their) value(s) on your MPR.

2(b, 2 Points). From your MGS (Minitab Graphical Summary), again type the 95\% parametric CI on the parameters μ and σ on your MPR (parametric means that the underlying distribution of KVOLTS is assumed Laplace-Gaussian); interpret the meanings of these last two 95\% CIs. How much Prs are there that μ and σ lie within the corresponding outputted Minitab’s 95\% CIs?

2(c, 3 Points). Minitab does not have a direct-procedure to work part (c) of Exercise 16 on p. 284 of Devore, as far as I know. Assuming that $\mathrm{X}=\mathrm{KVOLTS} \sim \mathrm{N}(\mu, 42.9261)$, by handcalculations determine the minimum required sample size n, nmin, such that the 95% CIL (Confidence Interval Length) on μ is reduced to 2 Kilo-Volts. Write the value of your $n_{\text {min }}$ on your MPR.

