1. Download the Lab3-data from Canvas and save as Lab3-S015 in your Lab-folder. As in Lab2, I have simulated $\mathrm{N}=100$ simple random samples of size $\mathrm{n}=10$ on the same Excel file as in my Lab2-SOLN. Again, compute the population parameters $\mu, \sigma^{2}, \sigma, \mathrm{CV}_{\mathrm{x}}$, and $\mathrm{V}(\overline{\mathrm{x}})$ for a random sample of size $\mathrm{n}=10$, in the D4-D9. This lab intends to illustrate the concept of random sampling variation in CIs for the population STDEV σ and population proportion p , assuming normality for the underlying population. Recall from Lab1 that the TUS (Tensile Ultimate Strength) data suffered from heavy tails (kurtosis $=0.4823$ as compared to zero), although its skewness $=-0.035$ was very close to that of the normal of identically zero.
2. Again compute the 5 sample statistics $\overline{\mathbf{x}}_{\mathbf{i}}, \mathbf{C F}_{\mathbf{i}}, \mathbf{C S S}_{\mathbf{i}}, \mathbf{S}_{\mathbf{i}}^{2}$ and $\mathrm{S}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, 100)$ in columns O-S.
3. In columns T through X compute the 95% confidence limits σ_{L} and σ_{U}, and also upper one-sided confidence limit for p, bolding all 100 CIs (Confidence intervals) that do not contain the true population parameter. The upper one-sided 95\% CI for population proportion is given by pu $=\hat{\mathrm{p}}+\mathrm{Z}_{0.05} \times \sqrt{\hat{\mathrm{p}} \times \hat{\mathrm{q}} / \mathrm{n}}$, where $\hat{\mathrm{q}}=1-\hat{\mathrm{p}}$.
4. Again, compute the approximate $\mathrm{E}(\overline{\mathbf{X}}), \mathrm{E}\left(\mathbf{S}^{2}\right)$ and $\mathrm{E}(\mathrm{S})$ in the designated box, as in your Lab2, for my simulated 100 simple random samples each of size $n=10$. Then, re-compute the approximate biases in $\overline{\mathbf{x}}, \mathbf{S}^{2}$ and S. What do you anticipate should happen to the amount of these biases? Estimate the $\operatorname{SE}(\overline{\mathrm{X}})$ from the 100 sample mean values and also from the approximated $\mathrm{E}(\mathrm{S})$.
