STAT3610 Maximum Likelihood Estimation

Reference: Chapter 6 of Devore

S. Maghsoodloo

Statistical Inference

By statistical inference we mean Estimation and Test of Hypothesis. Estimation consists of point and interval estimation. The entire Chapters $6,7,8 \& 9$ of Devore (8e) are devoted to point estimators and (confidence) interval estimation. A point estimator of a population vector parameter θ (such as the population mean μ and standard deviation σ) is a sample statistic, $\hat{\theta}$, which is a rv with a frequency function (or SMD $=$ Sampling Distribution) that depends on the underlying distribution, $\mathrm{f}(\mathrm{x}$; θ), which is also called the parent population. If the vector $\theta=\left[\begin{array}{llll}\theta_{1} & \theta_{2} & \theta_{3} \ldots & \theta_{\mathrm{m}}\end{array}\right]^{\prime}$, appearing in the expression of $f(x ; \theta)$, then the underlying population has m unknown parameters to be estimated. In Statistical applications, the value of m rarely exceeds 3 . For the exponential density $\lambda \mathrm{e}^{-\lambda \mathrm{t}}, \theta=\lambda$, is a scalar, i.e., $\mathrm{m}=1$. For a normal parent population $\theta=\left[\begin{array}{ll}\mu & \sigma\end{array}\right]^{\prime}$ is a 2×1 vector so that $\mathrm{m}=2$, and for a Weibull TTF (Time-to-Failure) the vector-parameter $\left[\begin{array}{ccc}\delta & \theta & \beta\end{array}\right]$ is 3×1 for which $m=3$, where θ now is the characteristic-life and β is the slope (or shape). Our objective in point estimation is to use sample data to obtain an "accurate" vector point estimator of θ, denoted by $\hat{\theta}$. The Accuracy of a single point estimator can be measured through several properties such as bias, consistency, mean square error (MSE), and efficiency. All these properties are well defined and explained in my Chapter 6 notes. There are several methods of obtaining point estimators :(1) Method of Moments, (2) Maximum Likelihood estimation (MLE), and (3) Least-squares Estimation. In Reliability Engineering the MLEs are often used because all MLEs in the universe have the asymptotic property that their SMD approaches normality as the sample size $\mathrm{n} \rightarrow \infty$, and they are also asymptotically unbiased. Further, they have the very nice property that if $\hat{\theta}$ is a MLE of θ, then $h(\hat{\theta})$ is a MLE of $h(\theta)$ for any functional form h. Thus, we will show how to obtain ML estimates for population parameters in the next section.

Maximum Likelihood Estimators

Let $f(x ; \theta)$ represent the frequency function of the population from which a random sample
of size n is drawn. The occurrence of the sample $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ has a likelihood (or a Pr of $)\left[\mathrm{f}\left(\mathrm{x}_{1} ; \theta\right)\right.$ $\left.d x_{1}\right] \times\left[f\left(x_{2} ; \theta\right) d x_{2}\right] \times \ldots \times\left[f\left(x_{n} ; \theta\right) \mathrm{dx}_{n}\right]=\prod_{i=1}^{n}\left[f\left(x_{i} ; \theta\right) d x_{i}\right]$. The quantity $\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ in this last Pr statement is called the likelihood function (LF), and after the sample is drawn the sample values $\mathrm{x}_{1}, \mathrm{x}_{2}$, \ldots, x_{n} are known numbers (no longer rvs), then the likelihood $\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ is only a function of θ which I denote by $L(\theta)$. That is, $L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$, L for likelihood. The maximum likelihood estimator (MLE) of the vector θ is obtained by maximizing $L(\theta)$ with respect to (wrt) all the m parameters in $L(\theta)$. Further, for notational convenience, let $L(\theta)=\ln [L(\theta)]$, i.e., $L(\theta)$ is the natural logarithm of the likelihood function. Below I will show that maximizing $L(\theta)$ is equivalent to maximizing $L(\theta)$:
$\partial \mathrm{L}(\theta) / \partial \theta_{\mathrm{k}}=\frac{1}{\mathrm{~L}(\theta)} \partial \mathrm{L}(\theta) / \partial \theta_{\mathrm{k}}$; Since $0<\mathrm{L}(\theta)<\infty$, i.e., $\mathrm{L}(\theta)$ is finite, then $\partial \mathrm{L}(\theta) / \partial \theta_{\mathrm{k}}=0$ iff $\partial \mathbf{L}(\theta) / \partial \theta_{\mathrm{k}}=0$. Note that most authors will use the notation $\mathrm{L}(\theta)$ for the likelihood function itself, but I am departing a bit from tradition only because of notational convenience; further, nearly always it is the $L(\theta)=\ln [L(\theta)]=\log _{e}$-Likelihood that is maximized instead of $L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$.

MLE for the Two-Parameter Exponential Underlying Distribution

Suppose the Time-Headway in a traffic flow [see the Example 4.5 on p. 141 of Devore(8e)] has the underlying distribution given by $f(t)=\lambda e^{-\lambda(t-\delta)}, t \geq \delta \geq 0$, where λ is the flow-rate per second and $\delta \geq 0$ is the minimum Headway measured in seconds. For a complete observed sample of size n ,
the likelihood function is given by $L(\theta)=L(\lambda, \delta)=\prod_{i=1}^{n} f\left(t_{i} ; \lambda, \delta\right)=\prod_{i=1}^{n} \lambda e^{-\lambda\left(t_{i}-\delta\right)}=\lambda^{n} e^{-\lambda \sum_{i=1}^{n}\left(t_{i}-\delta\right)} \rightarrow$
$\mathrm{L}(\theta)=\mathrm{L}(\lambda, \delta)=\ln \left[\lambda^{\mathrm{n}} \mathrm{e}^{-\lambda \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\delta\right)}\right)=\mathrm{n} \times \ln \lambda-\lambda \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\delta\right) \rightarrow \partial \mathrm{L}(\lambda, \delta) / \partial \lambda=\mathrm{n} / \lambda-\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\delta\right) \underline{\text { Set to } 0}$
$\rightarrow \mathrm{n} / \hat{\lambda}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\hat{\delta}\right)$. This last relationship shows that the MLE of λ given by $\hat{\lambda}=\mathrm{n} / \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\hat{\delta}\right)$ because
$\partial^{2} \mathrm{~L}(\lambda, \delta) / \partial \lambda^{2}=-\mathrm{n} / \lambda^{2}<0$, implying that the LF (likelihood function) is strictly concave, and hence the optimum is a point of maximum. Cleary, the point estimate of the rate-parameter $\lambda, n / \sum_{i=1}^{n}\left(t_{i}-\hat{\delta}\right)$, depends on the MLE of Minimum-life δ. So, we now differentiate $L(\lambda, \delta)=n \times \ln \lambda-\lambda \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\delta\right)$ wrt δ in order to obtain the MLE of δ. Partial differentiation yields $\partial \mathrm{L}(\lambda, \delta) / \partial \delta=-\lambda \sum_{\mathrm{i}=1}^{\mathrm{n}}(0-1) \underline{\text { Set to } 0 \text {; }}$ but this last does not yield any estimator for δ. Next, we examine $L(\lambda, \delta)=n \times \ln \lambda-\lambda \sum_{i=1}^{n}\left(\mathrm{t}_{\mathrm{i}}-\delta\right)=$ $\mathrm{n} \times \ln \lambda-\lambda \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}}+\mathrm{n} \lambda \delta$; this last, unfortunately shows that the sample likelihood is maximum when δ is maximum, i.e., δ should be estimated by $\mathrm{x}(\mathrm{n})$. However, this is impossible and contradictory because all observed sample values $t_{1}, t_{2}, \ldots, t_{n}$ must be at least as large as δ (recall δ is minimum-life). Put differently, if we let $\hat{\delta}=\mathrm{x}_{(\mathrm{n})}$, then the LF becomes identically equal to zero. Thus, δ being the minimum-life (in this case, the Min-Headway), its MLE has to be the value of the $1^{\text {st }}$-order statistic $\mathrm{x}_{(1)}$. For practical applications, the above MLE, $\mathrm{x}_{(1)}$, should be modified to $\left[0.85 \times \mathrm{x}_{(1)}, 0.90 \times \mathrm{x}_{(1)}\right]$.

Exercise 29 on page 265 of Devore(8e). In this example, $n=10$ Headway-times are obtained with values $3.11,0.64,2.55,2.20,5.44,3.42,10.39,8.93,17.82$, and 1.30 seconds. Then, $\hat{\delta}=\mathrm{x}_{(1)}=0.64, \sum_{\mathrm{i}=1}^{10} \mathrm{t}_{\mathrm{i}}=55.80, \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\hat{\delta}\right)=55.80-6.4=49.40, \hat{\lambda}=\mathrm{n} / \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\hat{\delta}\right)=10 / 49.40=0.20243$ per second. That is, $\hat{\lambda}=0.20243 /$ second. The $\mathrm{cvx}=\mathrm{S}_{\mathrm{x}} / 5.580=5.35713024 / 5.580=95.01 \%$, which is close to that of the exponential of 100%, i.e., the cvx does not contradict the exponentiality of the data. A more practical point estimator is $\hat{\delta}=\left[0.544,0.90 \times \mathrm{x}_{(1)}=0.5760\right.$ seconds $]$.

For MLE of Normal and Poisson Parameters study page 260 of Devore (8e).
Bonus HW: Work Exercise 22 on p. 264 of Devore(8e). My Answers: (a) $\hat{\theta}_{\text {Moment }}=3.000$; $\hat{\theta}_{\text {MLE }}=$ 3.11607.

