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Statistical Inference
By statistical inference we mean Estimation and Test of Hypothesis. Estimation consists of
point and interval estimation. The entire Chapters 6, 7, 8 & 9 of Devore (8e) are devoted to point

estimators and (confidence) interval estimation. A point estimator of a population vector parameter 0

(such as the population mean p and standard deviation ) is a sample statistic, 0, which is a rv with a
frequency function (or SMD = Sampling Distribution) that depends on the underlying distribution, f(x;
0), which is also called the parent population. Ifthe vector 6 =[61 62 03... Om], appearing in the

expression of f(x;0), then the underlying population has m unknown parameters to be estimated. In

Statistical applications, the value of m rarely exceeds 3. For the exponential density re ™ B=2, isa
scalar, i.e., m = 1. For a normal parent population 6 =[p. o] is a 2x1 vector so that m = 2, and for
a Weibull TTF (Time-to-Failure) the vector-parameter [0 0 B]" is 3x1 for which m = 3, where

0 now is the characteristic-life and B is the slope (or shape). Our objective in point estimation is to use

sample data to obtain an “accurate” vector point estimator of 0, denoted by 6. The Accuracy of a
single point estimator can be measured through several properties such as bias, consistency, mean
square error (MSE), and efficiency. All these properties are well defined and explained in my Chapter
6 notes. There are several methods of obtaining point estimators :(1) Method of Moments, (2)
Maximum Likelihood estimation (MLE), and (3) Least-squares Estimation. In Reliability Engineering
the MLEs are often used because all MLEs in the universe have the asymptotic property that their
SMD approaches normality as the sample size n — oo, and they are also asymptotically unbiased.
Further, they have the very nice property that if 0 is a MLE of 0, then h( é) is a MLE of h(0) for any

functional form h. Thus, we will show how to obtain ML estimates for population parameters in the

next section.

Maximum Likelihood Estimators

Let f(x; 0) represent the frequency function of the population from which a random sample



of size n is drawn. The occurrence of the sample (x1, X2, ..., Xn) has a likelihood (or a Pr of) [f(x1; 0)

dxi]x[f(x2; B)dxa]x ... x [f(xn; 0)dxn] = [ J[f(x;;0)dx;]. The quantity []f(x;;0) in this last Pr

i=1 i=1

statement is called the likelihood function (LF), and after the sample is drawn the sample values xi, x2,

..., Xn are known numbers (no longer rvs), then the likelihood H f(x,;0) is only a function of 0 which
i=1

I denote by L(0). Thatis, L(0) =] ] f(x;:0) ,L for likelihood. The maximum likelihood estimator

=1
(MLE) of the vector 6 is obtained by maximizing L(8) with respect to (wrt) all the m parameters in
L(0). Further, for notational convenience, let L(0) = In[L(0)], i.e., L(0) is the natural logarithm of the

likelihood function. Below I will show that maximizing L(0) is equivalent to maximizing L(0):
OL(0)/00, = ﬁ oL(0)/00, ; Since 0 < L(0) <o, i.e., L(0) is finite, then 0 L(0)/ 00, = 0 iff

0L(0)/00, = 0. Note that most authors will use the notation L(0) for the likelihood function itself, but

I am departing a bit from tradition only because of notational convenience; further, nearly always it is

the L(0) =In[L(0)] = loge-Likelihood that is maximized instead of L(0) =H f(x,;0) .

i=1

MLE for the Two-Parameter Exponential Underlying Distribution
Suppose the Time-Headway in a traffic flow [see the Example 4.5 on p. 141 of Devore(8e)] has

the underlying distribution given by f(t) = A e (179 ,t>08 >0, where A is the flow-rate per second

and 0 > 0 is the minimum Headway measured in seconds. For a complete observed sample of size n,

n n - i(ti—ﬁ)
the likelihood function is given by L(0) = L (A, 8) = Hf(ti;K,S) ZHKe_Mti_S) =Ae = -

i=l i=1

_ki(ti_s) n n
L®)=L®, ) =In[A"e = )=nxInA—-AY(t,—8) —>0JL(A,8)/0h =n/A -3 (t,—0) Setto 0
i=1 = —_—

— /A= i (t; - 8) . This last relationship shows that the MLE of A given by?A» =n/ i (t; - 8) because
i=1 i=1
2



d*L(A,8) /dA* = —n/A? <0, implying that the LF (likelihood function) is strictly concave, and hence

n A
the optimum 1s a point of maximum. Cleary, the point estimate of the rate-parameter A, n/>(t, —9),

i=1

depends on the MLE of Minimum-life 3. So, we now differentiate L(A, §) = nxIn A — A i (t; —0) wrt
i=1
0 in order to obtain the MLE of 6. Partial differentiation yields OL(A,0)/00=— A i (0-1) Setto 0;
i=1 —

but this last does not yield any estimator for 5. Next, we examine L(A, §) =nxln A — A i (t,—0)=

i=1

nxln A — A i t. + nAJ; this last, unfortunately shows that the sample likelihood is maximum when 0 is
=1

maximum, i.e., 0 should be estimated by xm). However, this is impossible and contradictory because
all observed sample values ti, t2, ..., ta must be at least as large as d (recall 6 is minimum-life). Put
differently, if we let = X(ny» then the LF becomes identically equal to zero. Thus, & being the

minimum-life (in this case, the Min-Headway), its MLE has to be the value of the 1%'-order statistic

x(1). For practical applications, the above MLE, x(1), should be modified to [0.85xx(1), 0.90xx(1)].

Exercise 29 on page 265 of Devore(8e). In this example, n = 10 Headway-times are
obtained with values 3.11, 0.64, 2.55, 2.20, 5.44, 3.42, 10.39, 8.93, 17.82, and 1.30 seconds. Then,

~ 10 n A ~ n ~

0= x1)=0.64, > t, =55.80, > (t,—08) =55.80 -6.4=49.40, L =n/> (t,—3) =10/49.40 = 0.20243
i=1 i=1 i=1

per second. That is, A = 0.20243/second. The cvx = S+/5.580 = 5.35713024/5.580 = 95.01%, which is

close to that of the exponential of 100%, i.e., the cvx does not contradict the exponentiality of the data.

A more practical point estimator is 5= [0.544, 0.90xx(1) = 0.5760 seconds].
For MLE of Normal and Poisson Parameters study page 260 of Devore (8e).

Bonus HW: Work Exercise 22 on p. 264 of Devore(8e). My Answers: () 0 =3.000; 6, =

Moment

3.11607.



