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STAT3610   Maximum Likelihood Estimation       Reference:  Chapter 6 of Devore                

                S. Maghsoodloo  

Statistical  Inference 

 By statistical inference we mean Estimation and Test of Hypothesis.  Estimation consists of 

point and interval estimation.  The entire Chapters 6, 7, 8 & 9 of Devore (8e) are devoted to point 

estimators and (confidence) interval estimation.  A point estimator of a population vector parameter  

(such as the population mean µ and standard deviation ) is a sample statistic, ̂ , which is a rv with a 

frequency function (or SMD = Sampling Distribution) that depends on the underlying distribution, f(x; 

), which is also called the parent population.  If the vector  = [1     2      3 ...   m], appearing in the 

expression of f(x;), then the underlying population has m unknown parameters to be estimated.  In 

Statistical applications, the value of m rarely exceeds 3.  For the exponential density   te ,  = ,  is a 

scalar, i.e.,  m = 1.  For a normal parent population  =[        ] is a 21 vector so that m = 2, and for 

a Weibull TTF (Time-to-Failure) the vector-parameter  [               ] is 31 for which m = 3, where 

 now is the characteristic-life and  is the slope (or shape).  Our objective in point estimation is to use 

sample data to obtain an  “accurate” vector point estimator of , denoted by ̂ .  The Accuracy of a 

single point estimator can be measured through several properties such as bias, consistency, mean 

square error (MSE), and efficiency.  All these properties are well defined and explained in my  Chapter 

6 notes.  There are several methods of obtaining point estimators :(1) Method of Moments, (2) 

Maximum Likelihood estimation (MLE), and (3) Least-squares Estimation.  In Reliability Engineering 

the MLEs are often used because all MLEs in the universe have the asymptotic property that their 

SMD approaches normality as the sample size n  , and they are also asymptotically unbiased.  

Further, they have the very nice property that if ̂  is a MLE of  , then h( ̂ ) is a MLE of h() for any 

functional form h. Thus, we will show how to obtain ML estimates for population parameters in the 

next section. 

 

Maximum  Likelihood  Estimators  

 Let f(x; ) represent the frequency function of the population from which a random sample  
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of size n is drawn.  The occurrence of the sample (x1, x2, ..., xn) has a likelihood (or a Pr of) [f(x1; ) 

dx1][f(x2; )dx2] ...  [f(xn; )dxn] = 
n

i i
i 1

f (x ; ) dx[ ]


 .  The quantity  
n

i
i 1

f (x ; )


 in this last Pr 

statement is called the likelihood function (LF), and after the sample is drawn the sample values x1, x2, 

..., xn are known numbers (no longer rvs), then  the likelihood 
n

i
i 1

f (x ; )


 is only a function of   which 

I denote by (θ)L .  That is, (θ)L  =
n

i
i 1

f (x ; )


 ,L for likelihood.  The maximum likelihood estimator 

(MLE) of the vector  is obtained by maximizing (θ)L  with respect to (wrt) all the m parameters in 

(θ)L .  Further, for notational convenience, let L() = ln[ (θ)L ], i.e., L() is the natural logarithm of the 

likelihood function.  Below I will show that maximizing L()  is equivalent to maximizing (θ)L : 

L()/ k = 
1

L( )
( ) L / k ;  Since 0 < L () < , i.e., (θ)L  is finite, then  L()/ k = 0 iff  

( ) L / k  = 0.  Note that most authors will use the notation L() for the likelihood function itself, but 

I am departing a bit from tradition only because of notational convenience; further, nearly always it is 

the L()  = ln[ (θ)L ] = loge-Likelihood that is maximized instead of (θ)L =
n

i
i 1

f (x ; )


 . 

 

MLE for the Two-Parameter Exponential Underlying Distribution  

 Suppose the Time-Headway in a traffic flow [see the Example 4.5 on p. 141 of Devore(8e)] has 

the underlying distribution given by f(t) =  (t )e  , t    0 , where  is the flow-rate per second 

and   0 is the minimum Headway measured in seconds.  For a complete observed sample of size n, 

the likelihood function is given by L() = L (, ) = 
n

i
i 1

f (t ; , )


  = i

n
(t

i 1

)e



 = n

n

i
i 1

( t )

e 
 

  

L() = L(, ) = ln[n

n

i
i 1

( t )

e 
 

) = nln   
n

i
i 1

(t )


     L( , )   /  = n/ 
n

i
i 1

(t )


   Set to  0  

  n/ ̂  = 
n

i
i 1

ˆ(t )


  .  This last relationship shows that the MLE of  given by ̂  = n/
n

i
i 1

ˆ(t )


   because 
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2L( , )   / 2  =   n/2 < 0, implying that the LF (likelihood function) is strictly concave, and hence 

the optimum is a point of maximum.  Cleary, the point estimate of the rate-parameter  , n/
n

i
i 1

ˆ(t )


  , 

depends on the MLE of Minimum-life .  So, we now differentiate L(, ) = nln   
n

i
i 1

(t )


   wrt 

 in order to obtain the MLE of .  Partial differentiation yields L( , )   /=  
n

i 1
(0 1)


  Set to  0 ; 

but this last does not yield any estimator for .  Next, we examine L(, ) = nln   
n

i
i 1

(t )


  =  

nln   
n

i
i 1

t

 + n ; this last, unfortunately shows that the sample likelihood is maximum when  is 

maximum, i.e.,  should be estimated by x(n).  However, this is impossible and contradictory because 

all observed sample values t1, t2, …, tn must be at least as large as  (recall  is minimum-life).  Put 

differently, if we let (n)
ˆ x  , then the LF becomes identically equal to zero.  Thus,  being the 

minimum-life (in this case, the Min-Headway), its MLE has to be the value of the 1st-order statistic 

x(1).  For practical applications, the above MLE, x(1) , should be modified to [0.85x(1), 0.90x(1)]. 

 

 Exercise 29  on page 265 of Devore(8e).    In this example, n = 10 Headway-times are 

obtained with values 3.11, 0.64, 2.55, 2.20, 5.44, 3.42, 10.39, 8.93, 17.82, and 1.30 seconds.  Then, 

δ =ˆ  x(1) = 0.64, 
10

i
i 1

t

 = 55.80, 

n

i
i 1

ˆ(t )


   = 55.80  6.4 = 49.40, ̂  = n/
n

i
i 1

ˆ(t )


   = 10/49.40 = 0.20243 

per second. That is, ̂  =  0.20243/second.  The cvX = Sx/5.580 = 5.35713024/5.580 = 95.01%, which is 

close to that of the exponential of 100%, i.e., the cvX does not contradict the exponentiality of the data.  

A more practical point estimator is δ =ˆ  [0.544, 0.90x(1) = 0.5760 seconds].  

        For MLE of Normal and Poisson Parameters study page 260 of Devore (8e).   

Bonus HW: Work Exercise 22 on p. 264 of Devore(8e).  My Answers:  (a) Moment̂  = 3.000; MLE̂ = 

3.11607. 


