
 

79 
 

Reference: Chapter 6 of Devore(8e)     ESTIMATION         Maghsoodloo  

 There are two types of estimators:  point  and interval estimates.  A point estimate, 

or estimator1, is a random variable (or statistic) before the sample is drawn, but it becomes 

a numerical value after the sample is drawn estimating a population parameter [such as  

= E(X) and  = V(X) ].  For example, any one of the statistics, the sample mean, 

median, mode, and the mid-range [x(1)+x(n)]/2  can be used as point estimators of the 

population mean .  If the parameter under consideration is the population variance 2, 

then we may use any one of the statistics S2  = 
n

2
i

i 1

1
(x x)

n 1 


  = CSS/(n  1) , or the 2nd 

sample central moment 
n

2 2
i

i 1

1
ˆ (x x)

n 
   = m2 as point estimates of 2.  Further, if the 

universe is normal, then (R/d2)2  is an estimator of 2,  where R is the sample range, d2 = 

E(R/), and the rv R/ = w  is called the relative range in the field of QC (Quality Control).  

Another point estimator of 2 of a normal universe is 2̂  (IQR/1.3489795)2.  The question 

is then how one chooses among several available point estimators of a given process 

parameter?  The obvious answer is to select the estimator that is the most accurate, i.e., 

whose value comes closest to the true value of the parameter being estimated in the long 

run, i.e., over all possible samples of size n.   

 Since a point estimator, ̂ , is a random variable (i.e., it changes randomly from 

sample to sample), it has a frequency function, and for ̂  to be an "accurate" estimator, 

the pdf of ̂  should be closely concentrated about the parameter  that ̂  is estimating.  

The criterion used to decide which one of the competing estimators ( 1 2
ˆ ˆor  ) of the 

parameter  is better now follows. 

                                           
    1The term  estimator  is  applied  to  the random  variable,  and  the  word  estimate  is  reserved  for  the  numerical  value  taken on  by the  random variable  

after  the  sample  is  drawn  and  the  experimental  data  have  been  inserted into the expression for the estimator. 
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 The statistic 1̂  is said to be a more accurate estimator of 2
ˆthan    iff  

 E [ 2
1

ˆ( )   ] < E [ 2
2

ˆ( )   ].  Since  E [ 2ˆ( )   ] is defined to be the mean square error 

of ̂ , i.e., MSE( ̂ ) = E [ 2ˆ( ) ], then 1̂  is a more accurate estimator than 2̂  iff  

MSE( 1̂ ) < MSE( 2̂ ), as depicted in Figure 6. 

 

 

               

                      Figure 6.  Density Functions (pdfs) of Two Estimators of  

 

 Example 33.   A population parameter, , is believed to have the value of 2.  Two 

statistics that can be used to estimate  = 2 are 1̂  and 2̂ .  The frequency functions (or 

pmfs) of  1̂  and 2̂  are: 

1

1 1

1

ˆ1/ 8 , 0, 6

ˆ ˆp( ) 2 / 8 , 1

ˆ4 / 8, 2

  
   


 

        and            

2

2 2

2

ˆ2 / 5 , 1

ˆ ˆp( ) 2 / 5 , 2

ˆ1/ 5, 3.

  
   


 

 

Compute the mean square error (MSE) for 1̂  and 2̂ , and select the most accurate 

estimator. 

̂  
 

ˆf ( )  

2
ˆf ( )

1
ˆf ( )
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 Solution.   MSE( 1̂ ) = E [ 2
1

ˆ( )   ] = (0  2)2 (1/8) + (1  2)2(2/8) + (2  2)2(4/8) + 

                                                                       (6  2)2(1/8) = 11/4 = 2.75 

Similarly, E [ 2
2

ˆ( )   ] = 0.60         MSE ( 2̂ ) < MSE ( 1̂ )     Thus, 2̂  is a much more 

accurate estimator of  than 1̂  iff  = 2. 

 

PROPERTIES  OF  POINT  ESTIMATORS 

 An estimator  is said to be consistent iff  the ˆlim
n

  


.  If the population 

      

is finite of size N, then ̂  is consistent iff  lim ̂  =   as n  N.   For example, x  is a 

consistent estimator of   for both finite and infinite populations because lim x   =  as n  

  N.  However, S2  is not a consistent estimator of 2 for finite populations but S2 

becomes consistent as N    . 

 One of the most important property of a point estimator is the amount of bias in the 

estimator.  The amount of bias in a point estimator is defined as 

                                        B( ̂ ) = E( ̂ )   = E( ̂  ) 

And, therefore, ̂  is an unbiased estimator iff E( ̂ ) =  (i.e., B( ̂ ) = 0).  Students make the 

common mistake that an unbiased estimator is one whose observed value is equal to the 

parameter it is estimating.  This is completely false!  To illustrate, we compute the amount 

of bias for the PD's of the Example 33 where  = 2: 

E ( 1̂ ) = 
6 2 8

8 8 8
   2.0 =                  B ( 1̂ ) = E ( 1̂ )   = 2  2 = 0.   

Since E ( 2̂ ) = 1.80, then B( 2̂ ) =   0.20, i.e., 2̂  is a biased estimator of , while 1̂ is an 

unbiased estimator of .  The difference ˆ( )  is called the amount of error in estimation 

or the inaccuracy of the estimator ̂ , while ˆE( )  is the amount of bias in the estimator ̂ , 

 i.e.,  ˆE( )  = E ˆ( )    = B( ̂ ).   
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 We now develop a relationship between the accuracy of an estimator ̂ , 

measured by its MSE, and the amount of bias in ̂ .  Let E ( ̂) = m = the mean of ̂ ; then  

B( ̂) = m  , and the MSE( ̂ ) = E [( ̂  )2] = E [( ̂  m) + (m  )]2   = E [( ̂  m) + B]2 = E 

[( ̂  m)2 + 2B( ̂  m) + B2]    MSE ( ̂ ) = E ( ̂  m)2 + 0 + E (B2) =  

               V( ̂ ) + B2  = 2 2ˆ ˆ[E( ) E ( )]    + B2                                          (32)      

Eq. (32) clearly shows that MSE ( ̂ ) = V( ̂ )  iff ̂  is an unbiased estimator of .  For the 

PD's of Example 33, V( 1̂ ) = MSE( 1̂ ) = 2.75  because 1̂ was an unbiased estimator, but  

V( 2̂ ) = E ( 2
2̂ )  E2( 2̂ ) = 19/5  (9/5)2 = 0.560  so that MSE( 2̂ ) = 0.560 + ( 0.20)2 = 

0.60, as was also obtained at the top of  page 81.  This example should illustrate that a 

biased estimator is not necessarily the least accurate estimator.  In fact, 2̂  is a more 

accurate estimator than 1̂  iff  < 7.3750. 

    Exercise 46.   (a) For the finite population of size N = 4 with elements 

 {2, 4, 4, 6}, compute the population mean  and variance 2; note that 2 elements have 

the same value of 4. Note that 
1 2X ,XR = {22, 24, 24, 26, 42, 44, 44, 46, 42, 44, 44, 46, 62, 

64, 64, 66}, and the corresponding  xR = {2, 3, 3, 4, 3, 4, 4 , 5, 3, 4, 4, 5, 4, 5, 5, 6}.  

 (b) Obtain the PD's of x  and S2 for a random sample of size n = 2 (with replacement).  (c) 

Compute the amounts of bias in x (as an estimator of ), and in S2 as a point estimator of 

2.  (d) Compute the MSE( x ) and MSE(S2).  (e) Obtain the pmf of S and use it to compute 

its amount of bias and its MSE. 

 Exercise 46 con't.   Secondly, consider an infinite population (not necessarily a 

normal population) with parameters  and 2, and a random sample of size of n > 1 is 

drawn.  (f) Show that E( x ) = .  (g) Use the identity 

 
2n n

2
i i

i 1 i 1

(x x) (x ) (x )
 

      
n

2 2
i i

i 1

(x ) 2(x )(x ) (x )


        = 
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…  2 2
i(x ) n (x )   , to prove that E (S2) = 2  for all infinite populations.  

 The relative efficiency (REL-EFF) of 1̂  to 2̂  is defined as MSE( 2̂ )/MSE( 1̂ ).  As 

an example, consider a random sample of size n = 6 from a population with unknown mean 

 and unknown variance 2.  Recall that for any simple random sample, E(xi) =  and V(xi) 

= 2, i = 1, 2, …, n.  Let 1̂ = (x1 + x2 + x3 + x4 + x5 + x6 )/6  and  2̂ = (2x1 + x4  x6)/2.  

Then,  E ( 1̂ ) = E ( 2̂ ) =   but the MSE ( 1̂ ) = 2 / 6,  MSE( 2̂ ) = 1.52  so  that the REL-

EFF of 1̂  to 2̂  = (1.52) / (2/ 6) = 900 %.   For the example 33, the Rel-Eff  of  2̂  to 1̂  

is 2.75/0.6 = 458.333%. 

   Exercise 47.    Work Exercises 1, 4, 7, 8, 12, 13, and 15 on pages 252 -255 of 

Devore (8e).  

 

Methods  of  Obtaining  Point  Estimators  

 The definition of bias does not generally lend itself to a method of obtaining a point 

estimate of a parameter .   Devore covers two methods of obtaining a point estimate:  (1) 

The method of Moments, (2) The method of Maximum Likelihood (ML) Estimation.  We will 

cover only the 1st method and refer the interested reader to pp. 257-263 of Devore (8e) for 

the method of ML Estimation, even if MLE has widespread applications.  

 

THE  METHOD  OF  MOMENTS 

 
 Consider a population with  k unknown parameters 1, 2, ..., k  and a pmf or pdf  

f(x; 1, 2, ..., k).   Recall that the Exponential density has only one parameter (), the 

Uniform has two (a & b), the Normal has two ( and  ), while the Gamma density has two 

parameters (n and ).  If the exponential represents TTF (Time-to-Failure) distribution, it 

may have a 2nd parameter, namely, the minimum-life.  To obtain Moment estimators of k 

parameters, one must go through the following 3 steps:   

 (1)  Draw a random sample of size n, denoted by X1, X2, ..., Xn, from the  
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frequency function f(x; 1, 2, ..., k).  The sample values, after the sample has been drawn 

are no longer rvs, and will be denoted by small letters x1, x2, ..., xn . 

 (2)  Equate the 1st  k origin moments of the population, r , r = 1, 2, …, k, to those 

of the sample origin moments rm , respectively, and place a hat (  ) on the top of all 

population parameters, i.e., compute E(X) and set it equal to x ; secondly, because 2 = 

E(X2), then equate 2m  = 
n

2
i

i 1

1
x

n 


 

to 2 = E(X2); similarly set 3  = E(X3) equal to the 3rd 

sample origin moment 
n

3
3 i

i 1

1
m x

n 
   but put hats on all the parameters in the system ok k 

equations with k unknowns.  

         (3)  Then solve the above system of k equations in k unknowns obtained in step 2 

simultaneously for 1̂ , 2̂ , ... , k̂ .  As practice, work thru Examples 6.12- 6.14 on pp. 

256-257 of Devore (8e).  Note that Devore uses the notation 1/ =  for the Gamma 

density function.  Further, in the Step 2 above, the moment estimators can also be 

obtained by equating the  population central moments of X, k = E[(X)k], to those of the 

sample central moments mk =
n

k
i

i 1

1
(x x)

n 
  for k = 2, 3, 4, ….  

 Example 34.   Suppose the rv, X, is N(, 2), where both parameters  

   and 2 are unknown and thus have be estimated from a random sample of  

size n.  Since the number of unknown parameters is k = 2 and the 1st two origin moments 

of any population are 1  = E(X) =   and  2  = E(X2), then by definition the 1st  two origin 

moments of the sample are x  = 
n

i
i 1

1
x

n 
 = 1m  and  

n
2

2 i
i 1

1
x

n 

   .  These imply that ̂ = x   

and  2  = E(X2) must be set equal to 
n

2
2 i

i 1

1
m x

n 

   .   However,  2 = 2 = 2    ( 1 )2  
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implies that 2̂  = 2m   ( ̂ )2 = 
n

2
i

i 1

1
x

n 
   ( x )2 = 

n
2 2
i

i 1

1
x n (x )

n 

 
 

  
  = 

n n
2
i i

i 1 i 1

1
x x x

n  

 
 

 
  = 

n

i i
i 1

1
x (x x)

n 

 
 

 
  = 

n
2

i
i 1

1
(x x )

n 

 
 

  


 
= 2m .  Note that the moment estimator of   is 

unbiased because the E( x ) = , while the moment estimator of 2 is biased because 

E( 2̂ ) = E(
n

2
i

i 1

1
(x x )

n 

 
 

  
 ) = E

2(n 1)S

n

 
 
  

 = (n  1)2/ n, which shows that the amount of 

bias in  2̂ = 
n

2
i

i 1

1
(x x )

n 

 
 

  
  = m2 is equal to  2/n.  

 Exercise 48.   (a)  Work Exercises 22(a) on page 264 of Devore (8e).  (b) Suppose 

X is distributed as U(a, b), obtain the moment estimators of the parameters a and b if a 

random sample of n gave x = 50.00 and  2̂ = 2m   2
1(m ) = 5.00.  Hint: For part (b), first 

use the fact that 1m x   and 2m  
n

2
i

i 1

1
x

n 
  in order to obtain the value of the sample 2nd 

origin moment 2m  
n

2
i

i 1

1
x

n 
 = 2505.  Or more directly, set E(X) =(a+b)/2 equal to x  and 

2= (ba)2/12 equal m2 = 2m   2
1(m ) . 

 

 

SAMPLING  DISTRIBUTIONS  (SMDs) of  STATISTICS  From  NORMAL  

PARENT  POPULATIONS 

 Throughout this section we will be sampling a normal universe and will consider 

statistics from the sample that will have either a normal, a Chi-square, a Student’s t, or the 

Fisher’s F distribution.  Due to lack of time, we will defer the Fisher’s F distribution to STAT 

3610. 
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(i)  Statistics with the Normal  Distribution 

Suppose  X ~ N(,  2) and a random sample of size n has been drawn with sample values 

x1, x2, …, xn.  Since the statistic x  = 
n

i
i 1

( x ) / n

  is a LC of NID rvs, then V( x ) = 

n
2
x2

i 1

1

n 
  

=
2
x

2

n

n


 so that x  is also N(, 2

x / n ). 

 

(ii) Statistics  with  the  Chi-Square  Distribution (2) 

 A random variable, W, is said to follow a chi-square (2) distribution with  degrees 

of freedom (df) iff  its pdf at point w is given by 

                                    

( 1)
2 w/2f (w) C w e




  ,               0   w <  . 

Since  
0

f (w) dw


  must equal to 1(or 100% probability), it can be shown the sole value of 

the normalizing constant C that makes f(w) a pdf is  C = [2/2 (/2)]1 , where  represents 

the gamma function.  Note that the 2 distribution is a special case of the Gamma density 

function with n = /2 and Poisson occurrence rate-parameter of  =1/2. 

 Exercise 49.   (a)  Show that the modal point of a  2  distribution  occurs at    2 iff 

 > 2.  (b) Show that E ( 2


 ) =   and  V(2) = 2.  

 The graph of f(2 ) with  = 6 df is given in Figure 7.  The  corresponding pdf  is 

given by f(
6

2 = w) = (1/16)w2e  w/2 ,  0  w < .  Table A.7 on Appendix page A-11 

provides the percentage points of 2 for df from 1 to 40.  For example, from Table A.7, the 

P(
6

2  > 12.592) = 0.05.  Therefore, 12.592 is the 5 percentage point (or the 95th 

percentile) of 2 with 6 df, i.e., 12.592 = 
2
0.05,6  and similarly 

0.90,6

2  = 2.204, i.e., the 10th 
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percentile of 
6

2   is equal to 2.204, which is also called the 90th percentage point of
6

2 , 

i.e., the Pr(
6

2  2.204) = 0.90. 

 
 
 

w = 
6

2  

                                          Figure 7.    The pdf of 
2
6  

 

 Exercise 50.   Obtain the 5 and 2.5 percentage points of 2  with 1, 2 and 3 df from 

Table A.7 on page A-11.  (b) Graph the pdfs of 2  with  = 1, 2, and 3 df.  Recall that 

(1 / 2)     and   (n + 1) = n(n).  (c) Verify the 5 percentage point of 
2

2   by 

integrating the corresponding pdf. 

 

THE  ADDITIVE  PROPERTY  OF 2  

 Suppose Z ~ N(0,1).  Then it can be proven that Z2  follows  a 2 distribution 

with 1 df.  For example, the Pr (Z > 1.959964) = 0.05, or Pr (
2

Z > 1.9599642) =  

2
6f ( )  

4 

Note  that  the  modal  point is  
given  by  MO =    2 = 4, while 
the ordinate of this density at 
MO= 4 is equal to e  2 = 0.13534. 
 

12.592 

.05
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P(Z 2 > 3.84146) = 0.05.  Table A.7 verifies that indeed 3.84146 = 
2
0.05,1  because Z2 

follows a 2 distribution with 1 df, although Devore has an error in the 3rd decimal.   

 Now, let Z1, Z2 ..., Zn  be NID (0, 1).  Then 
n

2
i

i 1

Z

  follows a 2 distribution with n df.  

Since by definition, df  is the number of independent rvs and 
n

2
i

i 1

Z

  contains n 

independent rvs, then 
n

2
i

i 1

Z

  has exactly n df (not n – 1 as sometimes misunderstood). 

 Example 35.   A random sample of size n = 2 is drawn from a population with pdf 

f(x) = 
2x /21

e
2




  .   (a) Compute the Pr ( 2 2

1 2X X  < 1).              

  Solution.  Since X1 and X2 are NID (0, 1), then the sampling distribution of 

2 2
1 2X X  follows a 2 with 2 df.   As a result  the Pr ( 2 2

1 2X X < 1) =  P(
2

2  < 1)  = 

1
w/2

0

(1/ 2)e dw  =   
1

0

w/2e  = 0.39347.  (b)  We now verify the 10th percentage 

point of 
2

2  , whose value (to 3 decimals) is listed in Table A.7 on p. A-11, to be 4.605.  

We must require that 

2
0.10,2

w/2

0

(1 / 2) e dw



  = 0.90.  By completing this integration, we 

obtain 
0.10,2

2  = 4.6052.    

 Exercise 51.   (a) Verify the 5 percentage point of 
4

2 .   (b) A random sample of 

size n = 11 is drawn from a N(100, 36).   Compute the Pr [
11

2
i

i 1

(x )


 > 164.70].  (c) 
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Compute the Pr [
11

2
i

i 1

(x 100)


  > 708.30].  (d) Determine  such that the P (12.549  
10

2  

 
,10

2


 ) = 0.20.   ANS: (b) 0.95, (c) 0.05.   

 

THE  SMD OF  S2   FROM  A  NORMAL  UNIVERSE 

 Recall that the sampling distribution (SMD) of x  from a N(, 2) universe  is normal 

with E( x ) =   and V( x ) = 2/n.  First, the sampling distribution of S2  is not normal but by 

some algebraic manipulation, shown below, its sampling distribution when multiplied by the 

scaling factor of (n 1)/2 follows a 2 with  (n 1) df (not n df).  Clearly,  

(n  1)S2 = 
n

2
i

i 1

(x x)


 = CSS =  
n

2
i

i 1

(x ) (x )


    = [ 2
i(x ) ]  2n(x ) .  

Thus, (n  1)S2/2  =  
n

2i

i 1

x
( )




     

2

2

(x )

/ n




 ~ 
2 2
n 1   ~  

n 1

2

 


df
.    

The above developments clearly show that the sampling distribution of the statistic  

(n 1)S2 /2   = CSS/2   follows a 2  with  = (n 1) df. 

 

 Exercise 51 (con't).   (e) Compute the Pr (S2  57.5532), where n = 11 and  2 = 

36.  (f) Compute the Pr [
11

2
i

i 1

(x x)


  < 737.388 ].  (g) Compute the Pr (
11

2
i

i 1

x

  < 

107600.612) given that the value of x  was computed to be 98.6. 

 Finally, it can be shown (thru integration) that the 1st four moments of 
2


  are  

2 2
1 2 3 4, 2 , 8 8 , and 48 12 .                     Hence the 

skewness 3 8 /   , 4  3 + (12/),  and the kurtosis is equal to 4 = 12/.  These 

1st four moments show that as   , the distribution of 
2


  approaches a normal curve 
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with mean  and variance 2.  For  > 100, a better approximation is that the distribution of 

22


  approaches a N( 2 1 , 1).  However, my experience shows that this last 

approximation is fairly accurate for  > 100 only if we use a mean of 2 (1 / 2)  for 

E( 22


 ) at the tails, where 0 <   0.05, instead of the recommended mean of 2 1  in 

statistical literature.  From Matlab we obtain the exact value of 
0.05,100

2 = 124.3421134, 

and this author  has verified that at  = 100 df, the estimation error using a mean of 

200 1
 
is equal to 0.285826, while if we use my recommended mean of 200 1 / 2  

the estimation error is equal to  0.00669398. 

 Exercise 52.    (a) Use the properties of 2  to show that if  X  is N (, 2), then 

E(S2) = 2  and V (S2) = 24/(n 1).  (b) Further, show that for a normal universe  E(S) = 

c4,  where c4 = 
2 n 1

(n / 2) / ( )
n 1 2


 


 lies within the open interval (0, 1).  As a 

result, for a Laplace-Gaussian process V(S) = E(S2)  [E(S)]2 = 2  (c4)2 = (1  
4

2c )2,  

0 < c4 < 1 and for a positive integer (n) = (n  1)!. 

 

(iii)  THE  (W. S. Gosset’s) STUDENT’S  t-DISTRIBUTION  

 A continuous rv, T, has the (W. S. Gosset’s) Student’s t-distribution with  df  iff  its  

pdf is given by 

        f(t) = C(1 + t2/)( +1)/2 ,              < t < .   

Again the normalizing constant C has to be evaluated in such manner that f(t)dt



  = 1.  

This requirement leads to  C = 
1

( ) ( / 2)
2

/[ ]
    .  It can be shown that E (T ) = 0 

for all  > 1, V(T ) =  /( 2) for all  > 2, 3 = 0 so that the skewness is zero for all  > 3, 
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and 4  = E[(T)4] = 2 (5 / 2) ( 2) /[ (1/ 2) ( / 2)]
2


        for all  > 4.  Note that the origin 

moments r  of the t distribution exist only for  > r.  The skewness 3 = 0 for all  > 3 and 

the kurtosis 4 = 4   3 = 3(  2)/ (  4)  3 = 
6

4 
 for all   > 4.  These moments show 

that the sampling distribution of a  T  rv approaches normality with mean 0 and variance 1 

as    because the skewness and kurtosis of a unit (or standard) normal rv are both 

zero.  The t-distribution is always symmetrical about the median value of 0 for all   1.  

The graph of f(t) is given in Figure 8 for a given df   1.  The median = the mean for all  > 

1.  Further, the inflection points of T occur at ( 2)   / . 

  

T 

           Figure 8.  The Graph of the (W. S. Gosset) Student’s t-pdf 

 

It should be clear that by symmetry of all t distributions, 1 ,t    = ,t  .  Table A.5 on p. 

A-9 of Devore’s 8th edition gives the percentage points of the t distribution for  = 1 to   = 

120 df.  This table shows that the 5 percentage point of the Student’s t distribution with 10 

df is equal to 1.812, i.e., t0.05,10 = 1.812, which implies that the Pr( 10T  1.812) = 0.10 

due to symmetry.  Further, from the Table A.5 we observe that t0.025,30 = 2.042, i.e., the 

Pr(T30   2.042) = 0.975, and that  t0.975,30 =  2.042, and so on.   

  0 

.05 

0.05,t 
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 It can be shown that a Student’s t rv can be generated thru the ratio 2Z //


    , 

where Z ~ N (0, 1) and the rv 2


   has a chi-square distribution with  df and independent 

of Z.  To illustrate the application of the t-distribution to sampling statistics, let X  be any  

N (, unknown 2 )  rv and consider a random sample of size n from this normal population 

with unknown mean and unknown variance.  Then, S2  =
n

2
i

i 1

1
(x x )

n 1 


  = CSS/(n  1)  

is a point unbiased estimator of 2 with  = n  1 df [recall the constraint 
n

i
i 1

(x x) 0


  ].  

From the sampling distribution of x , it follows that ( x   )/ x  = 
x

SE(x)


 = (x ) n /   

= Z ~ N (0, 1).   Recall also that (n  1)S2/2 ~ 2
n 1   and as a result  

  
2

Z
T




 

 2 2

[(x ) n / ] n 1

(n 1)S /

  

 
 = 

(x ) n

S


  = 

x

(x)


se

 

has a Gosset’s Student’s t-distribution with  = n 1 df. 

  

 Bonus HW(5 Points).    (a) Suppose X ~ N (, 2).   Determine the sampling 

distributions of (X  )/  and (X  )/Sx .    

 Example 35.     A random sample of size n = 16 is drawn from a N (, 2) universe. 

 Compute the P ( x μ  < 1.268) given that the standard deviation for the sample was 

computed to be 2.380. 

            Solution.    Pr( x   1.268) = Pr( Estimation Error   1.268) 

Pr( 1.268 x 1.268)     = 
(x ) n1.268 16 1.268 4

P[ ]
2.38 S 2.38

 
   = 
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1.268 16 1.268 4
P[ Studentized Error ]

2.38 2.38

 
   =P(  2.131  T15  2.131) =  

0.95  (see Table A.5 on page A-9 of Devore’s 8th edition). 

 Exercise 53.   A random sample of size n = 20 is obtained from a N(, 2 ) universe 

and S2 was computed to be 0.42014.  Compute the Pr that the absolute error in estimation, 

given by x μ , exceeds 0.368.   ANS: 0.02. 

 Exercise 54.      A normal population has known mean  = 10 and unknown 

variance 2.  A random sample of size n = 25 is selected from this population resulting in 

the sample mean of 11.30 and standard deviation of S = 2.6084.  How unusual are these 

sample results?  That is, what is the occurrence Pr of the event  ( x  11.30)?  ANS: 0.01. 

 

          Bonus HW Continued (5 Points).   (b) A random sample of size nx from a  

N (x, 2 ) universe and one of size ny from another independent N (y, 2 ) population are 

drawn, where the two populations have common equal variance 2.   Show that the 

random variable 

             x y

p
x y

(x y ) ( )

1 1
S

n n

   


  , 

where the pooled estimator of 2 is given by 

                            
2 2

x x y y2
p

x y

(n 1)S (n 1)S
S

n n 2

  


 
 

has a sampling distribution which is the Student’s-t  with  = nx + ny  2  df. 

 The only distribution left to study for statistical inference is that of (SIR Ronald A.)  

FISHER’S  F  which describes the sampling distribution of  
2 2
x x
2 2
y y

S /

S /




 with numerator df of  

nx  1 and denominator df of ny  1.  Confidence interval estimation, which is a branch of 

statistical inference, will begin in chapter 7. 


