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Testing for Goodness-of-Fit (GOF) Maghsoodloo

Reference: Chapter 14 of Devore’s 8" Edition

An Example of a Normal Distribution GOF to a Grouped Data

The following histogram describes the empirical distribution of the length of 68 fish

caught from a nearby lake, measured in inches.
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10.8-12.7 14.8-16.7 18.8-20.7

We wish to test the null hypothesis that the above empirical data have originated from a

normal population with unknown p and 2. Since these two parameters are unknown, we

. e A — . ~2 i
must estimate them by the sample statistics L= X and sample variance G, respectively,

6
where X =Zmifi /68 =14.6618 inches, m1=9.75 = (10.7+ 8.80)/2 , m2 = 11.75, ...., Mg =
i=1

o 1
19.75 inches represent the subgroup midpoints, and 6 = —{Z“mff1 - (Z:mlfl )2 /n}
n

i=1

6
=Z:mi2fi /n —(X)* =7.110 . Therefore, our null hypothesis becomes Ho: X~ N(14.6618,
i=1

7.110 inches?), or
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Ho: F(x) = j f(t)dt =

—00

Lo _1(u—14.6618j2
E J' e 2\ 2.66643 du,

—0
where f(x) is the hypothesized underlying distribution of the rv X, and GX =+7.110 =2.66643
is the moment estimator (and also the maximum likelihood estimator) of population standard
deviation o. It is generally best to estimate the parameters from the (empirical) frequency
distribution rather than the raw data.

The expected frequencies must be computed under the above null hypothesis, i.e.,
assuming that Ho is true. Thus, E; = np1, where p1=Pr(Z < (10.75 — 14.6618)/2.66643) = Pr(Z<
—-1.4671),Z~N(0, 1) and 10.75 equals the upper boundary (UB) of the 15t subgroup. Excel
computations led to the summary in Table 30 below, where the last cell expectation, Es, must

5
be obtained from Eg = 68 —ZEi , and UB stands for upper boundary.
i=1

Table 30 (The Observed and Expected frequency distributions of Fish Length)

subgroup fi uB Zi D(Z) pi Ei
8.8—-10.7" 6 10.75 -1.4671 0.07118 0.071181 | 4.8403
10.8-12.7 12 12.75 -0.7170 0.23670 0.165510 | 11.2547
12.8-14.7 14 14.75 0.0331 0.51319 0.276503 | 18.8022
14.8-16.7 20 16.75 0.7831 0.78323 0.270035 | 18.3624
16.8-18.7 13 18.75 1.5332 0.93739 0.154159 | 10.4828
18.8-20.7 3 o0 N/A 1.00000 0.062612 | 4.2576
Sum 68 1.000000 | 68.0000

In Table 30, fi represents the observed frequency of the it" subgroup, while E; = 68xp; is
the corresponding expected frequency computed under Hp, where pi = ®( ;) — ®(Z-1). For
example, p2 = ®(Z;) — ®(Z2-1)=0.23670 —0.07118 = 0.16551, where ®( Zg) = ®( — ) = 0 and O( Z)
is the cdf of a unit normal density. The value of the chi-square Goodness-Of-Fit (GOF) statistic

is given by
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k=6 2 k=6 2 k=6 2
Xi — Z {@} — Z {@} — z {%} = 2.6757. (79)

Note that some authors use n; or O; for observed frequencies, but the most prevalent notation

for expected frequencies under Ho is Ei. The use of e or ¢; for the it expected frequency by
some authors can be confusing because in statistical literature, e; generally stands for the it
residual. Further, the Xﬁ given in Eq. (79) is an approximation to the exact likelihood ratio
k=6
statistic 22 f; xIn(f; / E;), whose value for Table 30 is 2.771.
i=1

Since the df of the above chi-square statistic in Eq. (79) is v = k =1 — (number of

parameters estimated ) =6 — 1 — 2 = 3, and only the larger values of Xi lead to the rejection of
Ho, we compare the above Xi =2.6757 against the 5 percentage point of the rv Xi , Which

from Table A.7, page 673, is X8.05,3 =7.815. Note that the exact pdf of the GOF statistic in Eq.

(79) is not x% , but chi-square provides a good approximation to the SMD of

k=6
Z [(f;—E; )2 / E;] when each E; >5. This implies that the sample size n has to be sufficiently

i=l1
large so that each E;=nxp;i=>5,i=1, 2, ...., k. Generally, grouping the data into different
classes for conducting a Xz GOF test requires sample sizes n > 30. However, if E{'s are all equal

(i.e., equally-probable classes), then one can group data with an n as small as 20 if k is

restricted to 4.

Since Xﬁ = 2.6757 does not exceed the threshold value of 7.815, we cannot reject the

assumption of normality. This does not at all imply that the length of fish from this lake is
normally distributed, but that the 68 observations do not provide sufficient evidence to the

contrary (i.e., the Goodness-Of-Fit of the normal distribution to the data cannot be rejected).

The P-value of the test is given by & = Pr( xi > 2.6757) = 0.44437, which far exceeds o = 0.05.
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Note that the larger the P-value is, the better the fit! When the P-value = 1, the fit is perfect!

Exercise 113. (a) Verify the values of X, G, and the values in the 14.8-16.7

subgroup of the above Table 30. Then, test the GOF of the above grouped data toa N(15.0",
G?%)at o =0.05. (b) Use a spreadsheet to verify the values in the Table 30 above.

For moderate sample sizes, 20 < n < 50, grouping the data for testing the GOF is
recommended only with equi-probable intervals; see the Example 14.10 on pages 608-609 of
Devore to test for normality with 7 equi-probable intervals. For small sample sizes n < 20, only

the nonparametric Kolmogorov—Smirnov GOF test is appropriate.

Exercise 114. (a) Rework the Example 14.10 on pp. 608-609 of Devore’s 8t"

edition, assuming equal probability intervals. (b) Work Exercise 14.23 on page 613 of Devore’s

8t edition by dividing the data into 5 equi-probable intervals.

GOF for Testing Discrete Distributions
The x2 GOF is applicable when cell Prs depend on unknown parameters, provided that
one df is deducted for every parameter that is replaced by its Maximum Likelihood Estimate

(MLE). For our purposes, all we need is that the MLE of i is L = X and the MLE of G is

n
6= \/Z (x; —i)z/n ; please note that the divisor of the sample variance 6 2 isindeed n

i=1
[and not (n — 1)]. Therefore, the net df for the GOF statistic x20 in equation (79)is v=k—-1-—

m, where m is the number of unknown parameters that are estimated from the data by their
MLEs. Further, it is best that all cell Ei > 5; it turns out that if all Ei’s are nearly equal, then the
constraint Ei > 5 can be relaxed to Ei > 3. Since the SMD of the GOF is only approximately y?

and approximation improving with increasing n, a more accurate P-value can be estimated by

computing the P-value for the Xi—l and immediately rejecting Ho if &k-1< 0.05. Next, the P-

value should be computed using the Xi_l_m distribution from &k-l-m = Pr(xi_l_m > Xﬁ ). If
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&k—]—m > 0.05, the null hypothesis of a good fit should immediately be accepted. If X(Z) lies in

2 2

;X ), the test of GOF should be declared inconclusive.
0.05,k-1-m’ 7~0.05,k-1

the indecision interval (7
Thus, for the Fish Example on pp. 201-204 of these notes, the actual P-value, denoted &a , lies

in the interval 0.44437 < &a <0.74983, where 0.74983 = Pr( Xi > 2.6757). Further, the

indecision interval for the Fish Example is given by 7.8147 < Xi <11.0705.

Example 47. Outgoing lots of size N = 500 are inspected for number of defectives
before shipment to customers. The results for a random sample of size n = 150 lots (each of
size N = 500) are tabulated below, where the random variable X represents the number of
defectives observed per lot. We wish to test if a Poisson distribution is a plausible model for

the pmf (pr mass function) of X.

X (rv) 0 1 2 3 4 5 6 7
f; 23 39 43 23 10 7 4 1

The above table shows that 23 of the 150 outgoing lots, each of size 500, to customers had no
defectives, 39 had exactly 1 defective, 43 lots had exactly 2 defectives, etc., and only one lot

had 7 defectives. The Poisson pmm (Pr mass model) is given by

X

P(x) = Ll eM, x=0,1,23, ...,
x!

where the unknown parameter p = E(X) = V(X). Therefore, a MLE of p is given by the sample

k=8
1 1
average number of defectives per lot as computed next. Clearly, X = —150 Z X fj = _150 (39
i=1

300
+86+69 +...+7) = —— = 2.0 defectives per lot. Therefore, our null hypothesis is constrained

2% _
to Ho: p(x; 1) = — e ,x=0,1,2,3,... Theexpected frequenciesE;,i=0,1,2,3,4,5,6,7
x!
i
must be computed under Hy, i.e., Ei = np;, where pi=Pr(X=1i) = o e_z, i=0,1,2,..,7. Under
1!
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2
2°
Ho, Eo = 150xe™2 = 20.3; E1 = 150x2e 2 =40.6, E; = 150x[a e 2] =40.6,E3=27.1,and E4 =

4
13.5. Thus far, the Z E, =142.1020, which leaves 7.90 expected number of defectives for
i=0

cells 5, 6,and 7. The only way that we can have all E; > 5 is to combine the last 3 adjacent cells,

as shown in the following table.

X 0 1 2 3 4 Xx=5 Sums

fi 23 39 43 23 10 12 150

Ei 20.30 40.60 40.60 27.07 13.53 7.90 150
fi — E 2.70 —-1.60 2.40 —4.07 —-3.53 4.10 0

5
The above table clearly shows that the Z E, has been constrained by necessity to equal to
i=0

5 5
Z f. =150 =n. Hence, there are 2 constraints on the GOF statistic X%) (1) Z:(f1 -E.)=0;

1

i=0 i=0
(2): The value of process mean has been constrained to p =X = 2. Hence, the value of the GOF

statistic is

5 2 5 2
2 (fi—Ep) (n; —E;)
= § =§ = 4.228,
%o i=0 E E

i i=0 i
with df equal to v=6 —1 —m =4, where one (= m) parameter, namely y, is being replaced by

its MLE. This yields the P-value = Pr( xi > 4.228 ) =0.37601, which far exceeds a = 0.05.

Therefore, we cannot reject the null hypothesis of a Poisson fit to the data at levels of
significance even as high as 0.37. Put differently, the Poisson pmf with = 2 does provide an

acceptable fit to the pmf of the number of defectives per lot. The actual P-value lies in the

interval 0.37601 < &a <0.5171, where 0.5171 = Pr( x? >4.228), and the 0.05-level inconclusive

interval is given by 7.8147 < xi <11.0705.
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Exercise 115. (a) Work Exercise 15 on page 612 of Devore. ANS:

0.44424 <, <0.65424. (b) A computer generates the base-10 numbers 0, 1, 2, 3, ..., 9

completely at random (i.e., the discrete uniform distribution). If 1000 trials are made, what is

9 9
the minimum value of Zfiz =Z:ni2 so that the null hypothesis of randomness (i.e., equal Prs
i=0 i=0

for all 10 cells) can be rejected at the 5% LOS?
Exercise 116. Work Exercises 16 and 18 on page 612 of Devore.

Exercise 117. The Mendelian theory claims that 4 types of plants a, B3, v, and 4 should
occur in the ratio of 9:3:3:1. Does the following data support his theory? Write the null
hypothesis and use your P-value to make a judgment about the GOF of the data to the pi’s

theorized under Ho.

Plant Type o B Y ) Total

fi 120 48 36 13 217

Answer: Xﬁ =1.913; @ = P-value = Pr(y’ > 1.913) = 0.5907.

It is paramount to become realistic and be concerned about the fact that in
almost all real-life situations, the experimenter has no clue as to what type of underlying
distribution function (except perhaps for discreteness or continuity) the collected data have
originated from! There are three steps that the experimenter must go through to come to

some sort of decision regarding the underlying distribution for the collected data.

Step 1. Compute the 15t four moments of the collected data, i.e., compute the values

. . ~ n c _
of X, S, 03, and 4,4, where the sample skewness 03 = [————— Z(xi —x)3 1/s3,
(n—-1)(n-2) )
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and the sample standardized fourth moment

A n(n+1) L IV
%4~ (n-l)(n-2)(n-3)iz_:‘(Xi )/

2
. . 3(n—-1)
and the corresponding kurtosis = a, — m
n—2)n-

I

&4 — 3 (for n>30).

Step 2. If there is no information about the values of p and o, then assume that the
underlying distribution, which is being fitted to the data, has the approximate mean X and the

approximate standard deviation & . This implies that we can always obtain a perfect fit for the

15t two moments of the data with those of the theoretical distribution being fitted to the data!

This was the reason why we lost 2 df in the Xi test statistic in equation (79) for using the point

estimates of L and O, because the true values of 1L and G were unknown.

Step 3. Compare the values of &3 and &4 of the data with a3 and a4,

respectively, of the known statistical distributions, which are summarized in Table 31 below.
Then, apply the GOF procedure to the distribution that is listed in Table 31, whose a3 and a4

are closest to those of the data. If there are 2 candidate statistical distributions, whose

population oz and o4 are close to those of &3 and &4 , then more emphasis must be placed

on the skewness @3 than the kurtosis 04— 3. In Table 31, q = 1 - p, and also we have listed
some information about the standard Beta distribution because of its applications to all fields
of engineering and QC are widespread. Almost invariably, the pdf of a sample proportion (or
FNC, f) ) can be represented by the standard Beta distribution given by

I'(a+b) ,a-

. — .. P
f(p)=4T(a)I'(b)
0, elsewhere

(1-p)°", 0< p<i,
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Table 31 (Skewness and Kurtosis of Selected Statistical Distributions)

Discrete pmf’s

a3 (Skewness)

o4 = Kurtosis +3

Binomial (a - p)/(npg)*/? [3pq (n —2) +11/(npa)
Geometric (1+q) /(q*?) (P>-9p+9)/q
Poisson 1/p0>0 3+(1/p)
Negative binomial (1+9)/(rq)? (1+4q+92+3rq)/(rq)
Continuous pdf’s a3 s = Kurtosis +3
Uniform 0 1.80
Triangular —J0.32 <05 <+/0.32 2.40
Normal (Gaussian) 0 3.00
Exponential 2 9
Gamma 2/(n¥2) 3+ (6/n)
Beta 2(b — a)(a+b+1)Y2/[(a+b+2)x (ab)¥/?]
Lognormal

2 2 2
(€ =3¢ +2)/(e° —-D!?

2 2 2
(€% —4e>° +6e° -3)/

(e -1)?

where the rv p = a sample proportion, the parametersa, b >0, E(p)=a/(a+b),and V(p)=
ab/[(a +b)%(a + b +1)]. Further, the Beta distribution has also widespread applications in the
field of Bayesian Statistics and project management. In Table 31, the standardized 4" moment
for the standard Beta pdf is given by

3(a+b+1)(a’b+ab’+2a2+2b%-2ab)

Beta) =
04 (Beta) ab(a+b+2)(@tb+3)

Further, when a = b, the skewness of the Beta distribution a3 = 0 and its kurtosis reduces to a4
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—3=3(2a+1)/(2a+3) -3=— <0.

2a+3
Exercise 118. Show that the skewness and kurtosis of the Binomial, Poisson, and the

Gamma frequency functions approach those of the normal as the sample size n — . The

1-6pq
npq

kurtosis of the binomial is a¢gy — 3 = ; the kurtosis of the Poisson distribution is 1/y; the

kurtosis of Gamma density is 6/n.
Finally, the ranges of a3 and a4 are, respectively, —o < oz <+, 1< ag <+ o, and my
conjecture is that au > 1 + a3? for all statistical distributions! Further, the value of kurtosis (/)

for all Triangular distributions in the universe is exactly equal to — 0.6000 because a4 = 2.400,

but the skewness value for all Triangular distributions lies within the interval —/0.32 < a3 <

v0.32.

Contingency Tables
A two-way contingency table consists of r rows and ¢ columns, in which case it is called
an rxc contingency table. Each unit in the sample is classified according to 2 categories

described by row and column headings. As such, contingency tables have two major
applications: (1) There are r distinct populations from which samples of sizes ni, n, ..., n; are
drawn and each unit is classified according to category 1, category 2, ..., category c. In this
case, the null hypothesis is that the proportion of population i belonging to category j is
homogeneous for all r populations, i.e., Ho: p1j=p2j=...=prj=p; forallj=1, 2, ..., c versus the
alternative that at least 2 of the r populations have different proportions in the j* category of
classification. (2) There is a single population from which N members are selected at random

and each unit in the sample is classified according to both characteristics X and Y. In this case,

the null hypothesis is that the X and Y classifications are independent.

1. Testing for Homogeneity of Proportions

Example 48. Random samples of sizes n1 = 80, n; = 60, n3 = 70, and ns = 40 are

selected at random from a university’s Freshman, Sophomore, Junior, and Senior classes,
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respectively. Note that 4 different frames were used to select the 4 samples at random from
the r = 4 populations. The objective was to determine if the proportion of students belonging
to the ¢ = 3 categories of CGPA: 2.0 < X< 2.5, 2.5<X < 3.4, and the 3" category 3.4 <X<4.0

are the same for the four populations. The data are displayed in the Table 32. Table 32 clearly

Table 32 (The Example 48 contingency Table with fixed rows but random columns)

X 20<X<25 2.5<X<34 3.4<X<4.0
Populations N
Freshmen ni1 =50 18 (25.28) 12 (17.28) 80
(37.44)
Sophomores na1 =35 22 (22.12) na3 =13 70
(32.76) (15.12)
Juniors 20 (28.08) n32 = 25 (18.96) 15 (12.96) 60
Seniors 12 (18.72) 14 (12.64) 14 (8.64) 40
G 117 79 54 N =250

Indicates that the row totals n;, i =1, 2, 3, 4 are fixed a priori, i.e., the experimenter has to
decide what specific sample sizes are needed from each of the 4 populations so that 4 separate
frames were used to draw the 4 random samples. The null hypothesis is Ho : p1j = p2j = p3j = p4;
=p;forj=1, 2,3 vsthe alternative Hi : pjj # pxj for some jand some pairiand k. We next

compute the expected frequencies, Ejj, under Ho in order to compare them against the

3
observed frequencies n11 = 50, n12 = 18, ..., ng3 = 14. Clearly, Z Dij = 1foralli=1,2, 3,4,
j=1

yielding 4 constraints. Table 32 shows that under Ho, p ;= 117/250 = 0.468, p , = 79/250 =

0.316,and p3;=1—- p,— p,=0.216. Hence, E11 = n1xp ;= 80x0.468 = n1xC1/N = 37.44, Ex,
n1x p , = 80x0.316 = 80x79/250 = 25.28, and E13 = 80 — E11 —E1, = 80 — 37.44 — 25.28 = 17.28.

As you may have observed, it turns out that Ej; = nixCj/N. Similar computations, as done for the

Freshmen population, leads to the expected frequencies for the other 3 populations, which are
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listed in parentheses in Table 32. Further, note that the sum of expectations of each row is
constrained to equal to the corresponding n;; this is why the last expectation in each column
must be obtained by subtraction. Further, we also estimated two parameters, namely p.1 and
p.2, and hence there are 12cells — 6 constraints = 6 df. Clearly if the null hypothesis is true,
then we expect Ejj’s to be close to the corresponding njj’s so that the statistic nj— Ejjis a
measure of the validity of Ho. The closer (nj; — Ejj)’s for all i & j are to zero, the stronger our

belief will be in the validity of Ho. Hence, we may again use the GOF statistic

2 2
Lo By | g | ©itE)

=Y | —— (80)
i=l j=1 Eij i=1 j=1 Eij

in order to test Hp and will reject Hopif X?) is too large. Note that some authors use Oj; to
denote the observed frequency of the (i, j) cell. How large should Xf) be depends on the LOS
o, which is nominally taken to be 0.05. It can easily be argued that the df for the equation (80)

is always equal to (r —1)(c — 1). For the example above, two parameters have to be estimated

3 3 3
(namely p.1 and p.2) and we must require that ZEU =80, ZEZj =70, ZE3j =60, and
= = =

W

ZE4j =40, which yield a total of 6 constraints. Hence, the df = 12 cells — 6 constraints = 12 —
i1

6 =3%x2 =6. For the Example 48, the statisticxz has an approximate chi-square distribution

with 3x2 = 6 df. You may easily verify that

»  (50-37.44)° N (18-25.28)° . . (14-8.64)°

. =18.8284,
0 37.44 25.28 8.64
which easily exceeds the 5 percentage point of chi-square with 6 df, Xf) e = 12.592. Hence,

we may reject Ho at the LOS as small as P-value = & = Pr(xi > 18.8284) = 0.004463, and

conclude that the proportions of students belonging to the 3 categories of college
performance are not homogeneous for the 4 college classes. Put differently, college

classification significantly impacts grades.

Exercise 119. Show that the chi-square statistic in Eq. (80) reduces to Xz
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= Z Z [—] —N. Then use this last computational form to re-compute the value of the test

statistic for the Example 48. Verify the P-value = 0.04463. (b) Work Exercises 27, 29, and 30

on pp. 619-620 of Devore’s 8" edition.

2. Testing for Independence in a Two-Way Classification

Example 49. A psychologist wished to determine if there were any relationships
between a person’s educational level, X, and the same persons adjustment to marriage, Y, i.e.,
he wished to test the null hypothesis that X and Y are independent. Accordingly, in a survey he
selected N = 400 individuals at random (from a single frame) and measured the values of both
random variables X and Y from each individual. The data are displayed in Table 33. The null
hypothesis that X and Y classifications are independent can be formally written as Ho: pij =
pi.xp, versus the alternative Hi: pij # pi.xp, for at least one pair (i, j). Without the assumption
of independence, it follows that pj; = pi.xp;; for alli & j, where p;i denotes the conditional Pr of
jgiveni. By independence in a contingency table, we mean that the proportion out of each
row total that belongs to the j™ column, ni/n;, is the same for all rowsi=1, 2, ..., r, and vice a
versa, i.e., pji = p.j. Therefore, under Ho each cell expectation can be estimated as follows:

n. xXn.

£y = Nxpy = Nx(pxpy) = Nl B ) = Nx( o Ju( o1 ) = (81)
ij 1 LAMIT = L J N N N )

Table 33. A Contingency Table with Random Rows and Random Columns

Y very Low High Very High
X low Ni.
College educated 18 29 70 115 232
HS graduate 17 28 30 41 116
Grades 11 10 11 20 52
n,; 46 67 111 176 N =400
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. . . 232%x46
Applying equation (81) to the data of Table 33 yields E11 = 4—00 = 26.68,

23267 _232x111

3
Ei = W =38.86, E13 = =64.38, and E14 =232 - ). E,;=102.08.

j=1

The remaining Ejj's are computed similarly, and their values are E;1 = 13.34, E»; =19.43, Exz =

32.19,E24=116-13.34-19.43 - 32.19=51.04, E31 =46 — 26.68 — 13.34 =5.98, E3, = 67 —

38.86—-19.43=8.71,E33=111-64.38-32.19=14.43,E32 =176 — 102.08 — 51.04 = 22.88.
r ¢ n% r ¢ O%

Therefore, the chi-square statistic is xz = Z Z (—J) -N= z Z (—J) -N=

i=1 j=I Eij i=1 j=I Eij

2
r ¢ f. 2 2 2
>S(L) N = 18 2" 2% 400-19.94265. The P-value for

E: 26.68 38.86 22.88

the above statistic is computed from a = Pr(xi 2> 19.94265) = 0.00284, which is much less

than 0.05. Hence, we may reject Ho at the LOS as small as & = 0.00284 and conclude that X

and Y are not independent. This implies the data indicates that adjustment to marriage is

somehow related to educational level of individuals. The GOF statistic, Xf) , has 6 df in this

example because 5 parameters p1, p2, P.1, P.2, P.3 have to be estimated form the data and we

4 3 4

3 4
must also force Z Zf’ij = Z Zf)l xp j=1. Put differently, the 6 constraints are ZEIJ =
i=l j=1 i=1 j=1 =1

4 3 3 3 3 4
232, Y E, =116, ) E; =46, ) Ejp =67, ) E;3=111and ) 3" Ej; =400 — df = 12Cells
j=1 i=1 i=1 i=1 i=1 j=1

— 6 Constraints = 6.

Exercise 120. A psychologist obtained the following data on human eye and hair color

in order to ascertain if eye (X) and hair (Y) colors of the same individuals are independent?
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Y Light hair Dark hair Red hair
X ni.
Blue eyes 35 15 10 60
Brown eyes 20 30 10 60
Green eyes 10 10 20 40
n,; 65 55 40 N =160

Test the null hypothesis that eye color (X) and hair color (Y) are independent at the LOS o =

0.01. Answer: x? =27.9720, & = P-value = 0.000012637.

Exercise 121. Work exercises 32, p. 620, and 42 on page 622 of Devore (8e).

We have now come to the end of the course STAT 3610, but | need to emphasize what
you should do in order to prepare well for the Final Exam in the STAT 3610. The Final will be
open-pdf-notes and open-book, but you may not bring solutions to homework problems to the
final exam with you, but you should highlight the important equations in my notes. Therefore,
you need to review the notes on SLREG&CORR, MLREG, Chi-square GOF test, and contingency

tables very carefully!
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