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Fitting Regression Models With More Than One Regressor

Reference: Chapter 13 of Devore’s 8" Edition S. Maghsoodloo

Multiple linear regression (MLR, or MLREG) is the generalization of SLR (Simple Linear
Regression) where the response, y, is modeled as a function of 2 or more regressor (or
independent or explanatory) variables. Further, polynomial regression (PREG) is also a special
case of MLR, as will be illustrated later, and therefore, PREG will not be discussed specifically
herein. Consider the example 13.16 on pp. 566-567 of Devore (8e), taken from the article
“Applying Stepwise Multiple Regression Analysis to the Reaction of Formaldehyde with Cotton
Cellulose” (Textile Research J., 1984: 157-165), where there are k = 4 regressor (or predictor)

variables, and the dependent variable y represents durable press rating (a quantitative

measure of resistance to wrinkle). The FLCs (Factor Level Combinations), X, which is the 30x5

design matrix, and the 30x1 response vector Y are reproduced below in Table 29 for your

convenience, where k =4 independent variables (or df)

Table 29. (The 30x5 design matrix X and 30x1 vector-response Y for the Example 13.16 of Devore)

X (is the 30x5 design matrix) Y (is the 30x1 vector) X(continued) Y
FLC. Xo X1 X2 X3 Xa Response Yi FLC, Xo X1 X2 X3 Xa Yi
1 1 8 4 100 1 1.4 16 1 4 10 160 5 4.6
2 1 2 4 180 7 2.2 17 1 4 13 100 7 4.3
3 1 7 4 180 1 4.6 18 1 10 10 120 7 4.9
4 1 10 7 120 5 4.9 19 1 5 4 100 1 1.7
5 1 7 4 180 5 4.6 20 1 8 13 140 1 4.6
6 1 7 7 180 1 4.7 21 1 10 1 180 1 2.6
7 1 7 13 140 1 4.6 22 1 2 13 140 1 3.1
8 1 5 4 160 7 4.5 23 1 6 13 180 7 4.7
9 1 4 7 140 3 4.8 24 1 7 1 120 7 2.5
10 1 5 1 100 7 1.4 25 1 5 13 140 1 4.5
11 1 8 10 140 3 4.7 26 1 8 1 160 7 2.1
12 1 2 4 100 3 1.6 27 1 4 1 180 7 1.8
13 1 4 10 180 3 4.5 28 1 6 1 160 1 1.5
14 1 6 7 120 7 4.7 29 1 4 1 100 1 1.3
15 1 10 13 180 3 4.8 30 1 7 10 100 7 4.6
The MLR model for the example in the above Table 29 is given by
yi = Boxio + Paxiz + Paxiz + Paxis + Paxia + € = Wi + &, (57)
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where x1 = HCHO (Formaldehyde Concentration), x; = Catalyst Ratio, x3 = Curing
Temperature, and x4 = Curing Time, Bi’s (j = 0,1, 2, 3, k = 4) are parameters (i.e., unknown
constants), Xo is a 30x1 vector whose value is always equal to 1 for alli=1, 2,..., n = 30 FLCs for
this example, and pi = Boxio + Bixi1 + P2Xi2 + Paxi3 + Paxia. For instance, the value of ys is modeled
asys=1xPo+ 7P1+ 4P2+ 180Ps + 5B4 + €5, where &/s (i=1, 2, 3, ..., n = 30) are assumed
NID(O, ci ). Henceforth, for convenience we will use the symbol c? for the error variance Gi.
The reader must be cognizant of the fact that in classical regression theory, it is assumed that
the design variables x; (j = 1, 2, ..., k) are fixed, i.e., the levels of all independent variables are
selected without error (not at random) by the experimenter and hence V(x;)=0forallj=1, 2,
..., k, where k = 4 for Table 29. Only the classical regression is covered in this course, i.e., only

yi's and &/s in model (57) are random variables, while ;s and xj’'s are not rv’s, and as a result
] )

k
yi's are NlD(ZBinj ,Gi) .
=0

Exercise 102. Show that in the case of classical regression, E(yi) = pi=
Bo + Bixi1 + Paxiz + Paxiz + ... + Pixik, and V(yi) =c? foralli=1ton.

Our objective, just like in SLREG, is to estimate the k+1 (= 5 for our example)

parameters Bo, B1, B2, ..., Pk in such a manner that the least squares function (LSF)
n ) n )
LB =D &’ = D (yi=Bo—Bixi1 —Baxip —B3Xi3 —BaXig)
i=1 i=1

is minimized. In order to minimize the above L([3;) wrt the parameters 3;(j=0, 1, 2, 3, 4), the
partial derivatives of the LSF, oL /0, must be required to equal zero for all j. This generally
leads to a system of (k+1) least squares normal equations (LSNEs), which must be solved
simultaneously for the k+1 unknowns Bj (j=0,1,2,3,k=4). The k+1 (=5 for Table 29) partial
derivatives are provided below

n

oL/ By = 22;,(3% -Bo -Bixi1 -Paxip - B3Xi3 - Paxig) (-1) (58a)
-
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oL/ 0B, = 22@1 “Bo -BiXi1 -BoXi -BaXiz -BaXis) (- Xi1) (58b)
oL/ 0o, = 2§(yi “Bo -BiXi; -B2Xi -BsXiz -BaXis) (- Xip) (58¢)
L/ 0B, = 2§(yi “Bo -BiXi; -BoXir -B3Xiz -BaXig) (- Xi3) (58d)
oL/ 0B, = 2&“@i “Bo -BiXi1 -B2Xin -BaXiz -BaXis) (- Xi4) (58e)

i=1

The RHS of Eq. (58a) when set equal to zero leads to the 1%t LS normal equation as
n_ . n . . . n 30
D BB xi B X B3 Xis t Ba) Xy =D Vi (59a)
i=1 i=1 i=1 i=1

Dividing both sides of the above equation by the number of FLCs, n, results in

Bo TP X TP Xy +PB3 X3 TPy Xy =Y (59a)

A

- Bo=¥—BiX; —ByX5 —B3X5—B4Xy (59a)

The RHS’s of Equations (58 b, ¢, d, & e) when set equal to zero give rise to the other 4 LS

normal equations, respectively.

Bo D xi + B D xP + By Y xxo+By D XX+ By Do x1x4 = D XY (59b)
Bod Xy + B Y xpxs + By D x5+ By D xox3+ By D Xox4 =Y KXoy (59¢)
Bod X3+ By xixs + By > xoX3+ B3 D X3+ By D XX =D X3y (59d)
Bod Xy By D xxy By D xoxg + By Y xyxs +Bs Y x3= D x,y (59¢)

In equations (59), we have removed the index i from all summations only for convenience,
i.e., all summations range from i = 1to i = n, where n = 30 for this Example. Using the data in

Table 29, we obtain the following raw (uncorrected) statistics: n = 30,
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D ox =182, Y x,=204, > x;=4280, Y x, =118, X;=6.06667, X,=6.80,
X3 =142.66667, X,=3.93333, > x{ =1266, ¥ x;x,=1253, Y x;x3=26160,
> x1x4 =706, > x3=1998, > x,x;=29180, Y x,%x,=766, » x3 = 639200,
> x3%,=16720, > x5 =670, > y;=106.80, > x,y=678.50, > x,y=860.1,

30 30
> x3y=15594.00, Y x,,y;=430.20, USS=> y; =437.080, and y=3.56.
i=1 i=1
Substituting the 20 pertinent statistics out of the above 26 into equations (59) yields a

set of 5 LS normal equations with 5 unknowns, listed below, for Table 29.

30B,+ 182+  204B,+ 4280B;+ 118B, =106.8
182B,+ 1266P,+ 1253, + 261605 + 706B, = 678.5
{ 204B,+ 1253B,+ 1998B,+ 29180B,+ 766f, =860.1 (60a)
4280B, + 26160B,+ 29180, + 6392008, +167208, = 15594
1188, + 706 B,+ 766 p,+ 16720B;+ 670, = 430.2

Egs. (60a) show that (X'X) B = X'Y, where X'Y = XY is the 5x1 vector on the RHS of (60a), and

X'X = XX is a 5x5 matrix of coefficients given below.

Xo X1 X2 X3 Xa

30 182 204 4280 118
182 1266 1253 26160 706
A=XX)=(X"X)=| 204 1253 1998 29180 766 (60b)
4280 26160 29180 639200 16720
| 118 706 766 16720 670

One way to solve the above system of 5 equations with 5 unknowns of Eq. (60a) is to use

Cramer’s Rule. Accordingly, we define 5 other matrices A;(j=0,1, 2, 3, 4) as follows:

The 5x5 matrix of coefficients in equation (60b) and the matrix A; are identical

except for its j™ column, which is COL = X'Y=[106.8 678.5 860.1 15594 430.2]",i.e.,
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fork =4, COL; = [Zy ley szy Zx3y Zx4y]T, and the nx(k+1) = 30x5 design
matrix X is given in Table 29. Then, by Cramer’s Rule, ﬁj = det(Aj )/det(A) forj=0,1,2,3,

4. For example, the matrix A for the data of Table 29 is given by

n le Zy ZX3 ZX4
2

LXp XX XXy XXXy XXXy

A; = sz ZXIXZ szy ZX2x3 ZX2x4 ,

2
XXy XXXz XX3¥ XXy XX3X,

2
Xy LXXy XXy XXXy o XX |

30 182 106.8 4280 118 ]
182 1266 678.5 26160 706
or AZ =| 204 1253 860.1 29180 766
4280 26160 15594 639200 16720
| 118 706 4302 16720 670

The matrix A = X'X = X"™X is always symmetrical, while the matrices Ai(j=01,2,..,k=
4) are not, in general, symmetric. Excel (or Matlab) computations give det(A) =
17.0147010528x10%2, det(Ag) = —15.521016533x10%2, det(A;) = 2.734711393x102, det(A) =
3.73954437984x10'2, det(As) = 0.1909996304x10'2, and det(As) = 1.73506460544x10'2,
Hence, B, = det(A,)/det(A)=—0.912212, B, = det(A, )/ det(A)= 0.1607264,

Bz =0.2197831, B3 =0.0112256, and fi4 = 0.1019744. These 5 estimates of [3;’s give rise to

the following fitted MLREG model:

§,=—0.91221x;y+ 0.16073x;,+ 0.21978x, + 0.011226x;3+ 0.10197x,, (61)

Notice that the coefficients of the above regression model are in complete agreement with
those of Devore’s in the Table at the bottom of his page 566. Further, at 1°t glance, the
regressor variable xz in equation (61) seems to have the largest impact on the response

variable y because its coefficient 0.21978 is the largest in absolute value. The true (or net, or
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partial) statistical influence of the 4 independent variables x; (j = 1, 2, 3, 4) on the

dependent variable y, which represents resistance to wrinkle, will be determined mostly by t,
—k=1 = B_] /SE(BJ), _]:1, 2, 3, 4

We now develop a general matrix algebra approach for obtaining the coefficient
estimates in a MLR (or MLREG) model. The symbol ' or T will denote matrix transpose and

large bolded capital letter is used to represent a matrix. The necessary matrices, including the

design matrix X that is composed of n FLCs, are again defined below.

For our Example, the dimension of the vector Y is 30x1, that of matrix X is 30x5, X’ =

X" is 5x30, that of vector Bis5x1, and E€isa 30x1 vector; clearly, A=X'X = X™X isa5x5

symmetric matrix.

Xo X1 X2 .. Xk
| L Xy Xpp .00 X By | €
\p) 1 X Xpp.oot Xpg B €
y=1| |, x=|" 7 |, B=| |, and €=] | (62a)
| Yn | _1 Xn1 Xn2 Xnk | _Bk_ _En_

First, we rewrite the MLR model (57), which is valid only for the it" observation y; for all the n

values of Y in matrix form using (62a).
Y=XB+€ (62b)

In order to obtain the least-squares estimate of the 5x1 vector B, we first use the fact that

the LSF in matrix form is given by
n=30

LB)= Y. & =€'e =€Te=(Y-XBY(Y-XB) = Y'Y - Y'XB - B'X'Y +B'(X'X)B
=1
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L(B) = Y'Y - 2B'(X'Y) + B'AB

Second, we take the partial derivative of L(B) wrt the vector B and will require

6L(B)/8B to equal to the zero vector,0=[0 O O O 0], in order to minimize the LSF with

respect to all the parameters Bo, B1, B2, ..., Pk (k = 4 for our example). In the following matrix
n=30
development, bear in mind that Y'Y (= z yiz =the USS) is independent of the 5x1 column
i=1

vector B=[Bo B P2 Pz Pal”.

oL/ oB,

/6P, Set to

oL(B)/oP = oL =0-2(X'Y)+2X'X)p —=250 (63)

oL/ 0B,

Eq. (63) yields the heterogeneous system — (X'Y) + (X’X)fi =0 of 5 (= k+1) equations with 5
unknowns whose solutions can now easily be obtained by first transposing [— (X'Y)] to the

RHS and then multiplying both sides by the symmetric (k+1)x(k+1) = 5x5 matrix C = Al=
X'X) 2, e, (XX)B = AR = (X'Y) — XX\ HXX)B = (XX UXY) —
or B = (X'X)UX'Y) = A(X'Y) = C(XTY), (64)
where, again, the (k+1)x(k+1) matrix C = (X'X)2 = the inverse of A = AL, Further, like
(X'X) = (X"X), the matrix C is also square and symmetrical. Applying Eq. (64) to the data
of Table 29, we obtain

B = CIX'Y) = (X'X)1(X'Y) = AY(XTY)

The components of the above 5x1 vector B are identical to the previous LS estimates using

Cramer’s Rule given in Eq. (61) on page 176.
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[1.09527 —0.03213 -0.01123  —0.004844 —0.02533 | C106.8 ]
A 0.006256 —0.000138 —4.1223x10~°  0.000253 678.5
B = 0.001658 —2.3269x107°  0.000285 |x| 860.1
3.53376x10™>  1.73x107°> | | 15594
0.00493 | [ 430.2
B = C x (X'Y)
[—0.912217 |Po
0.16073 B
f} =| 0.21978 | = Bz . (Note that for the above example, C=Atis a
0.01123 | |,
5x5 matrix, while XY = XTY is a 5x1 vector.)
| 0.10197] |,

Exercise 103. Use Excel to verify that X'X = A, which is given in Eq. (60b) for this

Example, and on the same sheet verify the elements of the above 5x1 vector estimator B in

the 2 different methods outlined so far.
Excel Procedure For Matrix Algebra

Step 1: Enter the elements of the nx(k+1) design matrix X on a spreadsheet
and highlight (HL) the entire array — Name Range — Name — X — ok.
For Table 29, You now have a 30x5 design matrix X.

Step 2: HL (highlight) a 5x30 area — = Transpose(X); do not use the Excel Transpose
function because it does not work all the times. Then Shift-Ctrl-Enter. HL this 5x30 area that

contains X' =X" — Right-click — Name Range — Name: XT and ok.
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Step 3: HLa (k+1)x(k+1) = 5x5 area — = MMULT(XT, X) —

Shift -Ctrl -Enter — HL this 5x%5 area again — Name Range — Name: A — ok.

Step 4: HL another (k+1)x(k+1) = 5x5 area — = MINVERSE(A) — Shift-Ctrl-Enter
— You now have the AINV — HL the AINV matrix — Name Range — Assign

name AINV — to this area. Note that AINV = C; it seems that Excel does not allow naming

A

any variable as C? Repeat the above steps until the Betahat = B = C(X"Y) = C(X'Y) column

vector is obtained. Compare your answer against the model (61) at the bottom of p. 177.

Residuals in MLREG

Recall that by definition a model residual e; = y; —§1i , Where §/i is given by the model
(61) on page 176. Equation (62b) shows that \A( = X[§ (because the best predictor of the
vector € isthe 0 vector), and therefore, the fitted vector \A( for all the n = 30 observations of
the Example 13.16 of Devore on his p. 541 is given by
_91 -
92

=XPB = XCX'Y) = XOX'X)- XY = [X(X'X)~X"]Y, or

;-<>
1]

| 930
Y = HY = [X(X'X)IXT]Y = (XCX')Y =(XCXT)Y — H=XCX"

The nxn matrix H = X(X'X)™1X’ = XCXT is called the Hat matrix because it projects the
response vector Y onto the vector Y (or Y-hat) through the matrix equation Y= HY. The nx1

residual vector, therefore, is given by e =Y —Y, and as a result,

n
SSRES =SSResidua|s = Zelz = eTe = (Y _Y),( Y —Y) = Y'Y - 2Y' Y +Y' Y (65)

i=1
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However, Y'Y = (Xﬁ )Y = ﬁ'X'Y = ﬁ’(X'Y) = ﬁ'(X'X)ﬁ = (Xﬁ )'Xﬁ - Y'Y, where we

A A

have made use of Eq. (64) which shows that C_lﬁ = (X'X)ﬁ = X'Y. Notethat Y'Y = Y'Y,

n n
implies that z Viy; = Z 912 . Substituting Y'Y = Y'Y into Eq. (65) results in SSges= Y'Y —
i=1 i=1

n n n
Y'Y=y =297 = QL yi ~CF)=(2§{ —CF). Hence,
i=1 i=1 i=1 i=1

SSgres = SS(Error) = SS (Unexplained) = SSt — SS(Explained), (66)

n
where SS(Explained) = SS(Model) = SS(Regression) = 23\112 — CF. Equation (66) is similar to
i=1

ANOVA where SS(Total) = SS(Model) + SS(Error) = SS(Explained) + SS(Unexplained) for all

statistical models.

Definition. A matrix, B, is said to be idempotent iff B> =B. For example, the identity

matrix, In, is idempotent.

Exercise 104. Show that the three nxn matrices H, I, and I, — H are all symmetrical

and idempotent, where I, is an nxn identity matrix.

Exercise 105. Use Eq. (59a) to show that the model

¥i=Bo B Xj; T By Xip TB3 Xj3 +Pis Xj4 , having 4 regressors, is also given by

Vi= Y B (X1 =X By (xp=X) B3 (X3 = X3) +B4 (Xj4 —X4) -

n n n
Then, prove that Zei - Z(Yi —¥;)=0, which implies that 291 = Zyi . Therefore, the
i=1 i=1 i=1

n n
CF for SS(Regression), which is (Zyi )2/n, is also equal to (Zyi)z/n. As a result, show that
i=1 i=1

n n
SS(Reg) = SS(Explained) = 25112 —CF= Z ¥; —?)2 .
i=1 i=1
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We now develop matrix formulas for SS(Total) = SSt =Sy, SS(Model) = SS(Reg), and

SS(Residuals) = SS(Unexplained). To this end, let I, be the nxn identity matrix and the vector 1
be an nx1 column vector every element of which is equalto 1,i.e.,1"=[1 1.. 1], where 1’

=1Tis an 1xn row vector, and J = (1x1')/n is an nxn matrix all of whose elements are equal

to 1/n. From the above matrix definitions, we deduce that

CF= (iyi)2 /n =(2Y)?/n =(Y'1)Q'Y) /n=Y[(11")/n]Y = Y'JY. (67a)
i=1

SSt=Y'Y-CF=YY-YIY=Y'(l,-J)Y (67b)
SS(Reg)= Y'Y —Y'IY = (HY)(HY) - YJY =Y (HH)Y -YIY >
SSmode = Y'HY = Y'JY = Y'(H - J)Y, (67c)
where we have made use of the fact that the nxn matrix H is idempotent. Thus,
SS(RES) = SS(Total) — SS(Model) = Y'(I, — H)Y. (67d)

k
Exercise 106. Prove that SS(Regression) = Y'( H—J)Y = ZBJ S;y » Where Sy, =
pa

n n n n

DG —XNE =) =D K =Xy = DXy —(QUx) QL yi)/n = D Xy -

i=1 i=1 i=1 i=1

X; (Zyi ). Hint: SS(Reg) = Y'HY — CF = Y/[X(X'X)"X']Y - CcF = f}’ (X'Y) — CF. Further,

show that for our example, S1y = 30.58, S, =133.86, S3y = 357.20, and Say = 10.12.

Example 46. We now use the equations (67), developed above, to obtain the SSt =
SS(Total) = USS — CF = 437.08 — (106.807% )/30 = 56.87200 (with 30 — 1 = 29 df). Next, we

4
compute SSgeg = Y'(H—J)Y = D" B;S;, = (0.1607264)(30.58) + 0.2197831 (133.86) +
=1

0.0112256 (357.20) + 0.1019774 (10.12) = 39.37694 = SS(Model) with 4 df, where Sy, =
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n n 30
D (x5 =Xy = D Xj1Yi— X; D, Y; = 678.50 — 6.066667 (106.80) = 30.5800, etc.

i=1 i=1 i=
Therefore, SSges = SS(Total) — SS(Model) = 56.8720 — 39.3769 = 17.495063 (with 29 — 4 = 25 df).

The exact P-value for Fo(Model) = 14.0672 is & = 0.00000385.

In order to develop Cls (confidence intervals) and conduct tests of hypotheses on the

parameter vector B, we need to show that if B is any pxn constant matrix and Y is an nx1

random vector, then the COV(BY) = BCOV(Y)B’, where E(Y) = il = [l U2 ... Ma) isannxl

parameter vector of the n population means, where 1 = E(y|at FLC1), 12 = E(y|at FLCy), etc.

Proof. By definition, COV(BY) = E[(BY — Bl )x(BY — BLL)"] =

E[(BY — By)(Y'B’ — W'B')] = E[B(Y — p)(Y' — p')B] = BE[(Y — p)(Y' — p')]B’
=BCoV( Y)B' = BcoV( Y)B.

Exercise 107. Use the above covariance property, and the fact that under the
regression model (67b) the COV(Y) = I, (Si , to show that (a) COV(\A( )= Hci, (b) cOV(e) =
(In —H)x ci , Where e is the nx1 residual vector, and (c) COV(B) = (X'X)‘lcé = Co?, where
the diagonal elements of the symmetric (k+1)x(k+1) matrix COV(fS) give the V(Bj ),i=0,1,
2,..., k and its off-diagonal elements give the COV( ﬁj , ﬁr )forr=0,1,2,.., k#]j.

Part (b) of Exercise 107 shows that the V(ej) = (1-hj) ci , and therefore, the

Studentized residuals are given by

ri =ei/\J(1-h;)xMS(RES) , i=1,2,..,n. (67€)

where h; is the amount of leverage exerted by y; on §/i . The diagonal elements of H for Table

29 are h11 =0.190347, hy; = 0.248039, h33 =0.141299, ..., h3p30=0.172067. Any FLC with large

hii, and consequently, with large ri (say with absolute value of r; greater than 2), is highly
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influential on the least squares fit. Minitab provides an option that lists the vectors Y,
the se(¥;) =4/h;; MS(RES), the vector e, and Studentized Residuals ri. Notice that Minitab
uses the designation of SRES for the Studentized residuals ri. For our Example 46 (or Table

29), the largest r; in absolute value is rg = 2.04, which implies that the FLC number 9, FLCo=[ 1

4 7 140 3], has the highest influence on the regression coefficients while rs= 0.01
implies thatthe FLC24=[1 7 1 120 7]" has almost no impact on ﬁj (i=0,1,2,3,4).

As a matter of fact, | removed the FLC24=[1 7 1 120 7]" from the design matrix X of

Table 29 and used Minitab to obtain the following fitted model:

924y = —0.9130x0 + 0.16066x: + 0.21985x; + 0.01123xs + 0.10187xs,

which is almost identical to the previous regression model §/i given in equation (61).
However,ifthe FLCo=[1 4 7 140  3]"is removed from the design matrix X, the

resulting regression model i 3/(9) = —1.14930x0 + 0.18387x1 + 0.21915x, + 0.01127x3 +

0.11102x4, whose coefficients are not as close as 9(24) to the model (61).
Definition. The trace of a square matrix is simply the sum of its diagonal elements.

5 9
For example, the Trace (l,) = n, the Tr{4 5} = 0, Tr(Az) = 642026.10 (see page 176),

k
Tr(12) =12 and the Tr(X™X) = n + Z Xf‘i .
i=1
Exercise 108. (a) Let A and B be 2 compatible matrices (not necessarily square); show

that Tr(AxB) = Tr(BxA) iff AxB is square; further, if A B are square matrices Tr(A + B) = Tr(A) +
Tr(B), Tr(cA) = cTr(A) for any scalar constant ¢, and Tr(B~*AB) = Tr(A). (b) Use these trace

properties of a matrix to prove that E(SSresiduals) = (n —k —1) ci and hence, an unbiased

estimator of Gi is 62 = MSges = (SSresiquais )/( n — k —1) for all classical regression models. As

S

an application of the above stated properties for Trace of a matrix, it follows that the Trace(H)
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= Trace[X(X'X)™2X'] = Trace[X'X(X"™X)™] = Trace(lxs1) = k+1. Thus, any h;i > 2(k+1)/n is

considered significantly larger than its expected value of (k+1)/n, and hence, highly influential.

CONFIDENCE INTERVALS FOR Bi(j=0,1,2,3,..,k)

The main assumption in MLR is that y's (i=1, 2, ..., n) are NID(L;, Gi ). Since B =

(X'X)"4(X"Y) = C(XTY), every Bj is a linear combination of yi's (i=1, 2, ..., n), resulting in the

normality of each ﬁj with E(ﬁj ) = Bj. Further, from Exercise 107 above the se(ﬁj ) =

(CjMSges )2, where Cjj is the diagonal element of the matrix C = (X"X)~* pertaining to B, j = 0,
1, 2, ..., k. Note that Cqo is the element in the first row and 15t column of C. Therefore, a 95% t-

Cl for the parameter B; is given by

A

Bj * to.025,n- k- 1}5€( Bj ). (68)

If the interval in equation (68) excludes 0, then the null hypothesis Ho: Bj = 0 must be

rejected at the 5% LOS foranyj= 0, 1, 2, ..., k. This, in turn, will imply that the regressor
variable x; (j = 1, 2, ..., k) has a statistically significant impact on the response variable y at the
5% level. Further, under the null hypothesis Ho: 3; = 0, the statistic Bj /se(Bj )hasa W.S.
Gosset’s Student t-distribution with (n — 1 —k) df. The reader must be cognizant of the fact

that Bo adds no contribution to the regression of y on xj’s, j=1, 2, ...k.

Example 46 Continued. (c) We now use equation (68) in order to obtain the 95% ClI

for B1. From COV(B) = (X'X) 62 =Co?, we deduce that the se(f,) = (C11MSes)/? =

(0.006256x0.6998)/2 = 0.06617 —> HCIL = t o5 25xse( B, ) = 2.060x0.06617 = 0.1363 — 0.16073

+0.1363 — 0.02442 <[1<0.29703; since this 95% Cl excludes zero, the null hypothesis Ho:

B1=0 must be rejected at the 5% LOS. Thus, the effect of x; on Y is statistically significant
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at the 5% level.

Further, if we wish to directly test Ho: B1 =0, W/O obtaining a Cl, we may compute
the statistic to=[§1/se([§1) =0.16073 / 0.06617 = 2.429 and compare it against the threshold

value to.025,25 = 2.060.

Exercise 109. Obtain the 95% Cl’s for 32, B3 and B4 of the Example 46 above and use
them to test the null hypotheses Ho: B2=0, Ho: B3 =0 and Ho: B2=0 at a = 0.05. Further,
compute all the three t statistics and compare your results against the 2.5 percentage point of

t, making statistical inferences.

CONFIDENCE INTERVAL FOR THE MEAN RESPONSE Lo

LetXo=[1 Xo1 Xoz .. Xok]" be a specified FLC (within the range of the X factor
space) so that ¥, = [§0+ [31 Xo1 +[§2x02 +... +[A3k Xok = B'xo = X:) B is an unbiased estimator of
E(y | Xo) = po =Xy P = Boxo + 1 Xo1 +B2 Xoz +...+ Pi Xok = B'Xo. The reader should not confuse the

(k+1)x1 vector X, with the nx1 vector xo of Table 29. In order to obtain the se(§70), we must 1%

compute the V().
V(§9) = V(X B) = ELXG B - XqBI(Xq B X(B)1 = ELX{ (B ~ BB — BrXa]
= XqEI(B -BIB - BY1Xo= X{COV(B )Xo = X, (Co2 )Xo —

V($,) = (Xg CXo) 62 (69a)

Eq. (69a) clearly shows that the

se($,) = [( X[ CXo)xMSges ]2 (69b)

Therefore, the 95% Cl for the po =E(y | at Xo), the mean of y at Xo, is given by

A

X:) B —tooasn-k-1xse (¥g) < po < X:, B + toozsn-k-1xse( o).
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Example 46 Continued (d). The objective is to estimate the mean of response y at

Xo=FLCs=[1 7 4 180 5]7, and then, obtain the 95% Cl for o = ps = Bo + 7B1 +

[—~0.91221]
0.16073
4Bz + 180B3 + 5Ba. — ¥, = x;)f}=[1 7 4 180 5]x| 0.21978 | =3.62248 — X;CXo =
0.011226
| 0.10197

0.1051521, se( §,) = [0.1051521x0.6998]*2 = 0.271267 — HCIL =0.55881 — X; B —0.55881

<o < 3.62248 + 0.55881 — 3.06367 < < 4.18129.

yXp=[1 7 4 180 5]
THE PREDICTION INTERVAL FOR THE AVERAGE OF N FUTURE OBSERVATIONS AT Xp

Let Yy, be the average of N > 1 future observations at an Xp (that was not necessarily used

N
in design matrix X) , i.e., ¥, = ZYrO / N . Since a point forecast of Y, is X:) B, then the

r=1

forecast error ?O—X:) B is normally distributed with E(?O—X; B) = E(X;B + EO—X; B) =0
and V( flo—X:)B) =V(Yy) +X:)COV(B)X0 = (% + X:)CXo)x Gi. Therefore, the statistic

[(?O—X:) B )— 0]/se(§10—X:) B ) has the Student t-distribution with n —k — 1 df and as a result,

the 95% Pl for the future y, is X:) B +toxsn-k-1x se(yo—X:) B), ie.,

X :)B —t.025,n-k-1x5€( Yo — X ;B )<Yy <X ;)B +to25,n-k-1x5€(yg—X :,B ), (70)

A 1
where se(?O—X; B)= \/(ﬁ + X5CXy)MS, s , and the common value of N =1

observation in the future. The above PI (Prediction Interval) has a 95% probability to

actually contain a future yj,.
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Example 46 Continued (e). Suppose we intend to make N = 3 future observations at

Xo=[1 6 8 150 4]'. Note that this Xo is not a FLC from the design matrix X. We wish

to obtain an interval that has a Pr of 0.95 to contain the average of 3 future observations Y,
made at Xp. From Eq. (70), the se( ?O—X;] B) =0.5096 — HPIL=1.0498 — Pl =3.902144 +

1.0498 — 2.85238 < y,, < 4.95191; this last prediction interval has a 95% Pr of containing a
future y, based on N =3 observations. Note that a Pl for y,, is always wider than the

corresponding Cl for . This is due to the fact that a Pl contains 2 sources of error (from the
model and from repeatability in the future), while a Cl contains only model error. Minitab

provides Pls only for a single future observation (i.e., N =1), which for this example is 2.147

<y < 5.657. This last interval has 95% Pr of containing the random variable yo.

Exercise 110. Obtain a 95% Pl for a single future observation to be made at the
5x1 vector Xo = FLCs = [1 7 4 180 5] and compare the length of your Pl

against the corresponding Cl obtained on page 194.

THE NET (OR PARTIAL) CONTRIBUTION OF ONE OR MORE REGRESSOR VARIABLE(S)

For the sake of illustration, suppose the following MLR model has been fitted to a data

of size n.

y= BO +Byx1+Poxa +B3xs + Pyxa +Psxs (71)
Then the explained variation in y due to the 5 regressors in model (71) is given by

5 . n 2

SSReg(XL XZI X3r X41 X5) = z B 1 S 1 = Z (yi - y) (72)

=1 17 5
] 1

W/O loss of generality, we consider the net (or partial) contributions of the independent

variables x; and xs to the total explained SSmodel in equation (72). In order to compute this net

contribution, designated by SSreg(X2, X5 | X1, X3, Xa), we must 1%t regress the response y on the
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independent variables x1, X3, X4, using the same n data points, which will lead to a new

regression model such as:

? = bo + bix1 + baxs + baxs (73)

The coefficients b; (j = 1, 3, 4) in y-arc of Eq. (73) are, in general, different from Bj (i=1,3,4)

of equation (71) unless the matrix A = X'X = XX is diagonal, in which case the FLCs: [1  xi

Xi2 ... Xikl,i=1,2,..,n, form an orthogonal design. The net contribution of x; and xs is defined

as

SSreg(X2, Xs ‘ X1, X3, X4) = SSreg(X1, X2, X3, X4, X5 ) — SSreg(X1, X3, X4 ) =

Y -9 DG -7) - ZB S biSo-%52- 35l
i -y Vi —¥) = - 2 9; (74)
= i PRI TR g Iy T TS

n n

The last relationship in (74) follows from the fact that Z Y= Zyl z . The partial F-

1=1 i=1 i=1
statistic for testing Ho: B2 = Bs = 0 is given by

SSRe (X2 ’XS Xl ,X3 ,X4)/2
Fo = MSgeg(X2, X5 | x4, X3, Xa)/ MSges = g ‘ , (75)

MSRES

where MSges is computed under model (71).

Finally, it can be proven, using the Gram-Schmidt orthogonalization procedure, that for
any MLREG model the coefficient of the last independent variable, namely Bk' is the same for
both the original non-orthogonal (or oblique) model and its corresponding orthogonal

representation. Since it is quite arbitrary as to which of the x’s we would designate as xy, this

leads to the net (or partial) contribution of any single regressor x as

82 ﬁz/(I kZ, [3 { b:
= = :S > S:,,r=1,2,.,k (76)
r’/rr
r =1 151y e 17y
Therefore, from equation (76) the statistic for testing Ho: Br =0 is Fo= 5? /MSkes, which
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has an F distribution with vi =1 and v, = n — k=1 df. This last Fo statistic is generally

referred to as the partial F, because it tests the significance of the net contribution of x; to the

overall regression. Note that C is the (r+1)th diagonal element of the matrix C = A~ = (X'X)?
= (XTX)‘1, r=0,1,2, ..,k where the element in the 15 row and column pertaining to 60' is
the element in the first row and column of the matrix C = A~ = (X'X)™%, and Cy:1,k+1 pertains to

Xk, k> 0. Further, Fo = (to)? = [Br /Se(Br )12

Example 46 Continued (f).

To obtain the net contribution of x; to the overall regression SS of the model (61) given

on page 182, we regress y on the variables x,, x3 and xa, which results in the following model:

y =—0.086743 + 0.22332 x, + 0.012285 x3 + 0.095486 x2a —

SSreg(X2, X3, Xa) = 35.247613; thus, 812= 39.37694 —35.247613 = 4.129324. On the other hand,

we can also compute 512 from ﬁlz/ C11 = (0.160726)2/0.006256 = 4.12930; the discrepancy in

the 5™ decimal place is strictly due to rounding error. Note that if we form the partial F

statistic for testing Ho: 31=0, we obtain Fo = 512/ MSgres = 4.1293 / 0.6998 = 5.901, which is

consistent with the Minitab output on my website because the value of t%(xl) =(2.429 )=

5.901 of Minitab is the same as the value of the partial F statistic Fo(x1) = 5.901.

Exercise 111. (a) For the regression model of the Example 46, test the null hypothesis

Ho: B1=Pa=0. (b) Conduct the partial F test for the variable x.
SEQUENTIAL SUM OF SQUARES

Minitab provides Seq. SS each with 1 df. In order to obtain the Seq. SS’s, 1%

the total regression of y on x; must be obtained. For the data of Table 29, this leads to ?i =

2.41388 + 0.18892xi1, whose SS(Reg) = Seq. SS(x1) = 0.18892x30.580 = 5.7772, which agrees

with Minitab’s output on my website. Second, in order to obtain the Seq. SS due to x,, we
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regress y on X1 and xy, resulting in ?i = 1.07655 + 0.168475xi1 + 0.21491xi;, whose

SSreg(X1, X2) = 0.168475%30.58 + 0.21491x133.86 = 33.91982. Therefore, the Seq. SS(x2) =
33.91982 — 5.7772 = 28.1426, which also agrees with the Minitab’s output.

Exercisel12. Verify that Seq. SS(x3) = 3.348 and Seq. SS(x4) = 2.1094.

In general, the sequential SS’s will not equal to 6? unless the design matrix is orthogonal

(i.e., the matrix A = X'X = X"X is diagonal). For the 4-regressor model of Example 13.16 on pp.

4
541-542 of Devore, 812 =4.12930, 8% =29.13507, 6% = 3.56598, 8£= 2.10942 so that Z 812

=1

=38.93977 < SSReg(X1, X2, X3, X4) =39.37694.
MODEL BUILDING PROBLEMS IN MLREG

Let p be the maximum possible number of regressor variables (p > k) that are
candidates for inclusion in the MLR model

y = Bo+ Paxs + Poxa + ... + PiX+ ...+ PpXpt E. (77)

It is generally inefficient to include all the p independent variables (or regressors) in the model
(77), rather the objective should be to identify a subset of size k from the p candidate

regressors that satisfies the following 3 conditions: (1) The value of the multiple determination
coefficient Rﬁ = SSreg(X1, X2, ... , Xk )/SS(Total) exceeds at least , say 75%, i.e., the explained
variation in the response y by the k regressors (if at all possible) is at least 75%.

(2) Since SSgeg always increases (albeit perhaps very slightly) as more regressor variables are
added to the model, it is best to adjust the value of Rﬁ in the above condition (1) to account for
this arbitrary increase by measuring the % explained variation in y (from x1, x2, ...xk) using the

(n—-DRE -k
n—1-k

adjusted Rﬁ defined as: Adeﬁ = Eﬁ

(78)

The value of ﬁlz( in (78), unlike Ri, may actually decrease as k increases toward p
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because in general, n >> k. The set of k regressors out of the p independent variables

should be selected in such a manner that has the maximum (or close to maximum) ﬁi among

the oCk = p!/[k!(p — k)!] possible sets.

(3) The value of the C; statistic C, = [SSk(RES)/ MSp(RES)] — n + 2 (k+1) should not exceed k but
should be minimal and less than k. This is due to the fact that C, is an estimator of the total

n
expected standardized Mean Square Error, E 2, (§;— 1 )2 /Gg, and hence, the regressors
i=1

X1, X2, ..., Xk (k < p) must be selected in such a manner that minimize Cx relative to k. Note that

E(Co ) = k.

There are several model building procedures in regression that generally, but not
always, lead to the same “most parsimonious” regression model having the same set of k

predictors. These are Stepwise Regression, Forward Selection, and Backward Elimination.
The significance level (aun) used to judge the contribution of the i" regressor to the

overall regression varies from software to software. SAS sometimes uses ain = 0.50 and
sometimes uses di, = 0.15. Minitab recommends din = 0oyt = 0.15, and personally | believe o
should not exceed the range 0.20-0.25 significance level. The four most common model
building procedures are FORWARD Selection, Stepwise Regression, Backward Elimination, and

Best Subsets in Minitab (or MAXR in SAS) procedure. FORWARD Selection starts with the best
regressor, i.e., the one with the largest Ri/lodel, then finds the next best one to add to what

exists, the next best, etc. Stepwise Regression is similar to FORWARD except that there is an
extra step in which all variables in the new model are checked to see if they remain significant
at the ain level. Backward Elimination starts with all p regressors in the model, then drops the
least significant one, then the next, and the next, etc. Best Subsets (or SAS’s MAXR) procedure
is a rather long and tedious procedure, but basically finds the best (i.e., with the largest R? and
Smallest C, statistic) one-variable regression model, then the best 2-variable model, then the
best 3-variable model, and so on through the best k-variable model. The user must decide,

from the output, which model is the best and most parsimonious. Minitab has only two of the
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above four procedures (Stepwise Regression and Best Subset Regression). | recommend
the following 6 criteria for selecting one out of the k regression models of Minitab’s Best

Subsets Procedure.

(i) The Fo(Model) should be nearly largest (or the P-value for testing the model significance

should be nearly the smallest) amongst all possible regression models.

(ii) Both Ri and specially the value of Eﬁ must be the largest or nearly so.

(i) The value of C, statistic should be less than k and its value relative to k should be
minimum. Regression models for which C, >> k exhibit too much bias (leading to poor

predictions).

(iv) The selected model with k regressors should have all coefficients significant at levels, say,
25% (if possible 15%) or less. The user must be able to assess both statistical and practical

significance of a regressor (this is why o = 0.05 is too small).

(v) The experimenter must leave sufficient df (v2 >6) for MSges = MS(Error) so that the partial
F tests will have sufficient power to reject Ho: B; = 0 at the ain LOS. Note that the sampling
distribution of Fo is not stable when v, < 6. You will be using Minitab’s Best Subsets Procedure

near the end of STAT 3611 Lab.

(vi) Finally, the value of VIF(Var-Inflection-factor) must not exceed 15 for any of the

independent variables in the model because high VIFs are indication of multicollinearity

amongst xi, Xz, ..., Xk. The VIF for the estimated regression coefficient Bj is defined as VIF( Bj)
=(1- Rjg )~%, where RJ% is the coefficient of determination when x;is regressed against the

other (k—1) regressors. If RJ; > 10, then x; should not be included in the regression model.
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