The Simple Linear Regression Model (Reference: Chapter 12 of Devore's 8th Edition) Maghsoodloo The objective of simple linear regression (SLR or SLREG) is to determine if an output y is linearly related to a single input x. The SLREG model is given by $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where ϵ_i 's are assumed NID(0, σ^2_{ϵ}). Regression Versus Correlation Levels of x are fixed (x, y) is a bivariate random vector 30% 28 As an example, the tensile strength (TS) of paper is thought to be linearly related to the amount of hardwood concentration in the pulp. In a pilot plant, 10 sample pairs (x_i, y_i) , i = 1, 2, ..., 10, were produced leading to the following data: $x_i: 10$ 15 15 20 20 20 25 25 y_i : 160 171 175 182 184 181 188 193 195 200 psi where x = Hardwood Concentration is fixed, and <math>y = Paper TS is a rv. Thus, $$V(y_i) = V(\beta_0 + \beta_1 x_i + \epsilon_i) = V(\mu_i + \epsilon_i) = \sigma_{\epsilon}^2 = \sigma^2,$$ and as a result y_i 's are assumed NID($\mu_i = E(y_i | x_i) = \beta_0 + \beta_1 x_i$, σ_{\in}^2). The objective is to estimate the parameters β_0 and β_1 such that the least squares function (LSF): $$L(\beta_0, \beta_1) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$ (52) is minimized wrt (with respect to) β_0 and β_1 . For example, at $(x_1 = 10, y = y_1)$, the expression for the error before experimentation is given by $\epsilon_1 = y_1 - \beta_0 - 10\beta_1$, while at (x_2, y_2) , $\epsilon_2 = y_2 - \beta_0 - 15\beta_1$, ..., and at (x_{10}, y_{10}) the prior error is given by $\epsilon_{10} = y_{10} - \beta_0 - 30\beta_1$. Note that the quadratic loss in Eq. (52) can be traced originally to Carl Gauss (1777-1855). However, after data have been gathered, as shown above, the LSF in Eq. (52) reduces to: $$L(\beta_0, \beta_1) = (160 - \beta_0 - 10\beta_1)^2 + (171 - \beta_0 - 15\beta_1)^2 + \dots + (200 - \beta_0 - 30\beta_1)^2$$. In order to minimize the LSF in Eq. (52) wrt the unknown parameters β_0 and β_1 , we partially differentiate the LSF in Eq. (52) and equate its partial derivatives to zero in order to obtain the optimum point. $$\begin{split} \partial L \, / \, \partial \beta_0 &= \, 2(160 - \beta_0 - 10 \, \beta_1 \, \,)(-1) + 2(171 - \beta_0 - 15 \, \beta_1 \, \,)(-1) + ... + 2(200 - \beta_0 - 30 \, \beta_1 \,)(-1) & \xrightarrow{\text{Set to}} &= 0 \\ \partial L \, / \, \partial \beta_1 &= \, 2(160 - \beta_0 - 10 \, \beta_1 \,)(-10) \, + \, 2(171 - \beta_0 - 15 \, \beta_1 \,)(-15) + ... + 2(200 - \beta_0 - 30 \, \beta_1 \,) \, (-30) & \xrightarrow{\text{Set to}} &= 0 \end{split}$$ The above 2 equations simplify to $$(160 - \hat{\beta}_0 - 10\,\hat{\beta}_1 \) + (171 - \hat{\beta}_0 - 15\,\hat{\beta}_1 \) + ... + (200 - \hat{\beta}_0 - 30\,\hat{\beta}_1) = 0, \text{ and}$$ $$(160 - \hat{\beta}_0 - 10\,\hat{\beta}_1)(10) + (171 - \hat{\beta}_0 - 15\,\hat{\beta}_1 \)(15) + ... + (200 - \hat{\beta}_0 - 30\,\hat{\beta}_1)(30) = 0.$$ After some algebraic simplification, the above two equations reduce to $$\sum_{i=1}^{n} y_{i} - \hat{\beta}_{0} \sum_{i=1}^{10} 1 - \hat{\beta}_{1} \sum_{i=1}^{10} x_{i} = 0$$ $$\sum_{i=1}^{n} x_{i} y_{i} - \hat{\beta}_{0} \sum_{i=1}^{10} x_{i} - \hat{\beta}_{1} \sum_{i=1}^{10} x_{i}^{2} = 0.$$ The above heterogeneous system of 2 equations with 2 unknowns when written as $$\begin{split} & n\,\hat{\beta}_0 \,+\, \quad \hat{\beta}_1 \sum_{i=1}^{10} x_i \,=\, \sum_{i=1}^n y_i \quad \text{ yield } & \rightarrow \ 10\,\hat{\beta}_0 \,+\, 208\,\hat{\beta}_1 \,=\, 1829, \text{ and } \\ & \hat{\beta}_0 \sum_{i=1}^{10} x_i \,+\, \hat{\beta}_1 \sum_{i=1}^{10} x_i^2 = \sum_{i=1}^n x_i y_i \qquad \qquad \rightarrow \ 208\,\hat{\beta}_0 \,+\, 4684\,\hat{\beta}_1 \,=\, 38715, \end{split}$$ is called the LS (Least-Squares) normal equations. Note that in matrix form, the above system of equations can be written as $$\begin{bmatrix} 10 & 208 \\ 208 & 4684 \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = \begin{bmatrix} 1829 \\ 38715 \end{bmatrix}, \quad \text{or} \rightarrow \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$ The 1st normal equation gives rise to $\hat{\beta}_0$ + $\hat{\beta}_1$ \overline{x} = \overline{y} \rightarrow $\hat{\beta}_0$ = \overline{y} $-\hat{\beta}_1$ \overline{x} \rightarrow $$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \ x_i = \overline{y} - \hat{\beta}_1 \ \overline{x} + \hat{\beta}_1 x_i \quad \rightarrow \hat{y}_i = \overline{y} + \hat{\beta}_1 \ (x_i - \overline{x}). \tag{53a}$$ Note that \hat{y}_i is called the fitted value of the LS model, and if the slope $\hat{\beta}_1$ is zero, then the best fit for each y_i is \overline{y} . Substituting $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$ into the 2nd normal equation ($\hat{\beta}_0 \sum_{i=1}^{10} x_i + \hat{\beta}_1 \sum_{i=1}^{10} x_i^2 = \sum_{i=1}^n x_i y_i$) yields $$(\overline{y} - \hat{\beta}_1 \overline{x}) \sum_{i=1}^{10} x_i + \hat{\beta}_1 \sum_{i=1}^{10} x_i^2 = \sum_{i=1}^n x_i y_i$$ $$(-\hat{\beta}_1 \overline{x}) \sum_{i=1}^{10} x_i + \hat{\beta}_1 \sum_{i=1}^{10} x_i^2 = \sum_{i=1}^n x_i y_i - \overline{y} \sum_{i=1}^{10} x_i$$ $$\hat{\beta}_{1}(\sum_{i=1}^{10}x_{i}^{2} - \overline{x}\sum_{i=1}^{10}x_{i}) = \sum_{i=1}^{n}x_{i}(y_{i} - \overline{y})$$ $$\hat{\beta}_{1} \sum_{i=1}^{10} x_{i} (x_{i} - \overline{x}) = \sum_{i=1}^{n} x_{i} (y_{i} - \overline{y}) - \overline{x} \sum_{i=1}^{n} (y_{i} - \overline{y})$$ $$\hat{\beta}_1 \sum_{i=1}^{10} (x_i - \overline{x})^2 = \sum_{i=1}^{n} [(x_i - \overline{x})(y_i - \overline{y})] = S_{xy}$$ $$\hat{\beta}_1 = S_{xy} / S_{xx}$$, where $S_{xx} = \sum_{i=1}^{10} (x_i - \overline{x})^2 = \sum_{i=1}^{10} x_i^2 - (\sum_{i=1}^{10} x_i)^2 / n$, $S_{xx} = 4684 - (208)^2 / 10 = 357.6$, $\overline{x} = 20.80$, and $\overline{y} = 182.90$, $$S_{xy} = \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{10} x_i)(\sum_{i=1}^{n} y_i)/10 = 38715 - (208)(1829)/10 \rightarrow$$ $S_{xy} = 671.8 \rightarrow \hat{\beta}_1 = 671.8 / 357.6 = 1.87864 \rightarrow \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 182.9 - 1.87864 \times 20.8$ = 143.82438. Hence, the fitted regression model is: $$\hat{y} = 143.82438 + 1.87864x$$ (53b) Note that $\,\hat{y}\,$ is an estimate of the (curve) of regression of y on x, which is given by E(y | x) = $\mu_{y|x}$ = β_0 + $\beta_1 x$. For example, when x = 20, then $\hat{E}(y|20)$ = $\hat{\mu}_{y|x=20}$ = \hat{y}_4 = 143.82438 + 1.87864×20 = 181.3971 \rightarrow e₄ = y₄ - \hat{y}_4 = 182 - 181.3971 = 0.6029 (the 4th residual). Similarly, e₁ = -2.6107, ..., e₁₀ = y₁₀ - \hat{y}_{10} = -0.1834 (the 10th residual error). Further, it is necessary that $\sum_{i=1}^n e_i \equiv 0$ for all statistical models. For example, in the case of SLREG $\sum_{i=1}^n e_i^{}$ = The sum of all n residuals = $\sum_{i=1}^n (y_i^{} - \hat{y}_i^{}) =$ $$\sum_{i=1}^n [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})] \equiv 0 \text{ because } \hat{y}_i = \overline{y} + \hat{\beta}_1(x_i - \overline{x}), \ \sum_{i=1}^n (y_i - \overline{y}) \equiv 0 \text{ and } \hat{y}_i = \hat{y}_i$$ $$\sum_{i=1}^{n} (x_i - \overline{x}) \equiv 0.$$ A test of Significance in Regression is $\mathbf{1}^{\text{st}}$ conducted through an ANOVA Table. To this end, we compute the SS's for the ANOVA. USS = $$\sum_{i=1}^{n} y_i^2 = 335825$$ (with n = 10 df), CF = ($\sum_{i=1}^{n} y_i$)²/n = 1829²/10=334524.10 (with 1 $$df$$) \to SS_T = SS_{Total} = USS - CF (with 9 df) = $\sum_{i=1}^{n} (y_i - \overline{y})^2$ = USS - CF =1300.90. SS(Residuals) = $$\sum_{i=1}^{n} e_i^2 = 38.83277405$$ (with n –2 = 8 df because there are 2 constraints; try to determine what the 2 constraints are for bonus points). Now, SS(Residuals) = $$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{x})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) - \hat{\beta}_1(x_i - \overline{y})]^$$ $$\sum_{i=1}^{n} (y_i - \overline{y})^2 - 2\hat{\beta}_1 \sum_{i=1}^{n} [(y_i - \overline{y})(x_i - \overline{x})] + \hat{\beta}_1^2 \sum_{i=1}^{n} (x_i - \overline{x})^2 =$$ $$S_{yy} - 2 \, \hat{\beta}_1 \, S_{xy} + \hat{\beta}_1^2 \, S_{xx} = S_{yy} - 2 \, \hat{\beta}_1 \, S_{xy} \, + \, \hat{\beta}_1 \, (S_{xy} \, / S_{xx}) S_{xx} \, \rightarrow$$ $$SS_{RES} = SS(Total) - \hat{\beta}_1 S_{xy} = SS_T - SS_{Model}.$$ Exercise 93. Show that $$SS_T = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (y_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (y_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) + (y_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) + (y_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i - \overline{y}) + (y_i - \overline{y})]^2 = \sum_{i=1}^{n} [(y_i$$ $$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 = SS_{RES} + SS_{REG} \text{ (where REG = Regression),}$$ and as a result $$SS_{REG}$$ = $SS(Model)$ = $\sum_{i=1}^{n}(\hat{y}_i-\overline{y})^2$ = $\hat{\beta}_1S_{xy}$. For our example, $SS_{REG} = SS_{Model} = \hat{\beta}_1 S_{xy} = 1.87864 \times 671.8 = 1262.0672$. Note that $SS_{REG} + SS_{RES} = 1262.0672 + 38.8328 = 1300.90 = SS_T$. The ANOVA Table is given below. | Source | df | SS | MS | F ₀ | |---------------------|----|------------|------------|----------------------------------| | Total | 9 | 1300.90 | | | | Model or Regression | 1 | 1262.06723 | 1262.06723 | 260.0004 | | Residuals | 8 | 38.83277 | 4.8541 | F _{0.01,1,8} = 11.25862 | Since the *P*-value of the F-test is almost zero, then strongly reject H₀: β_1 = 0. Thus, the regressor variable x accounts for 97.015% (= SS_{REG}/SS_T) of variability in the response y, i.e., $R_{Model}^2 = R_{REG}^2 = 1262.06723/1300.90 = 97.015\%$. To determine how well the model $\ \hat{y} = 143.8244 + 1.87864x$ fits the 10 ordered pairs (x_i, y_i) , we proceed as follows: SS(Pure Error) = $(171^2 + 175^2 - 346^2/2) + (182^2 + 184^2 + 181^2 - 547^2/3) + (188^2 + 193^2 - 381^2/2) = 25.16667$ (with 1 + 2 + 1 = 4 df). \rightarrow SS(LOF = Lack of Fit) = SS_{RES} –SS(PE = Pure Error) = 38.832774 - 25.16667 = 13.66611 (with 8 - 4 = 4 df). The augmented ANOVA Table is given atop the next page. Since the *P-value* for LOF is $\hat{\alpha} = P(F_{4,4} \ge 0.54302) = 0.715623$, the regression model $\hat{y} = 143.8244 + 1.87864x$ fits the 10 points extremely well. **Exercise 94.** Let $$Y_1 = \sum_{i=1}^n a_i U_i$$ and $Y_2 = \sum_{j=1}^m b_j W_j$ be two linear combinations with $E(U_i) = \mu_{1i}$, $E(W_j) = \mu_{2j}$, and $COV(U_i, W_j) = \sigma_{ij}$. Show that the $COV(Y_1, Y_2) = \sigma_{ij}$ | Source | df | SS | MS | F ₀ | | |-----------------------------|----|------------|------------|-------------------------------|--| | Total | 9 | 1300.90 | | | | | Model | 1 | 1262.06723 | 1262.06723 | 260.0004 | | | Residuals | 8 | 38.83277 | 4.8541 | F _{0.01,1,8} = 11.26 | | | Pure Error (PE) | 4 | 25.16667 | 6.29167 | | | | Lack of Fit (LOF) 4 13.6662 | | 13.66611 | 3.41653 | 0.54302 | | he Complete ANOVA Table for the Example on page 155 of my notes $$\sum_{i=1}^n \sum_{j=1}^m a_i b_j \sigma_{ij}$$. As an application of the above Exercise, suppose U1, U2, W1, W2, and W3 are variates (or rvs) with COV(U_i, W_j) = $$(-1/2)^{i-j}$$. Our objective is to compute the COV($-U_1 + 3U_2$, $2 W_1 - W_2 - 2W_3$) = COV(Y_1 , Y_2) = $(-1)(2)(-1/2)^0 + (-1)(-1)(-2) + (-1)(-2)(-1/2)^{-2} + (3)(2)(-1/2) + (3)(-1)(1) + (3)(-2)(-1/2)^{-1} \rightarrow \text{COV}(Y_1, Y_2) = -2 - 2 + 8 - 3 - 3 + 12 = 10.$ Exercise 95. Show the following properties of SLREG estimators: (you must assume that $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$). (1) Both $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased. (2) $V(\hat{\beta}_1) = \sigma_{\epsilon}^2 / S_{xx}$, $COV(\overline{y}, \hat{\beta}_1) = 0$, $V(\hat{\beta}_0) = [\frac{1}{n} + \frac{(\overline{x})^2}{S}] \sigma_{\epsilon}^2$, $COV(\hat{\beta}_0, \hat{\beta}_1) = -\overline{x} \sigma_{\epsilon}^2 / S_{xx}$, $E(e_i) = 0$, $V(e_i) = 0$ $$\left[\frac{n-1}{n} - \frac{(x_i - \overline{x})^2}{S_{--}}\right] \sigma_{\in}^2 \text{ , and } V(\hat{y}_0) = V(\hat{\beta}_0 + \hat{\beta}_1 x_0) = \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{--}}\right] \sigma_{\in}^2 \text{ . (3) E(SS_{RES})}$$ = $(n-2)\sigma_{\in}^2$, which shows that MS_{RES} is an unbiased estimator of σ_{\in}^2 because MS_{RES} = $SS_{RES}/(n-2)$. Exercise 96. The strength of paper, y, used in the manufacture of cardboard boxes is related to % of hardwood in the original pulp (x). Under controlled conditions, a pilot plant manufactures 14 samples, each from a different batch of pulp and measures the TS. The resulting data are provided atop the next page. (a) Fit a SLR model to the data and check your answer via Minitab. (b) Provide the ANOVA table and conduct all tests of significance. (c) After studying through pp. 163-164 of these notes, obtain the 95% CIs for β_0 , β_1 and E(Y | x = 2.5). | Xi | 1.0 | 1.5 | 1.5 | 1.5 | 2.0 | 2.0 | 2.2 | |----|-------|-------|-------|-------|-------|-------|-------| | Уi | 101.4 | 117.4 | 117.1 | 106.2 | 131.9 | 146.9 | 146.8 | | Xi | 2.4 | 2.8 | 2.8 | 3.0 | 3.0 | 3.2 | 3.3 | | Уi | 133.9 | 135.1 | 145.2 | 134.3 | 144.5 | 143.7 | 146.9 | **Exercise 97.** Show that in SLREG with n_i observations at m distinct levels $SS_{RES} =$ $$\begin{split} \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_i)^2 &= \sum_{i=1}^{m} \sum_{j=1}^{n_i} [(y_{ij} - \overline{y}_{i.}) + (\overline{y}_{i.} - \hat{y}_i)]^2 \\ &= \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{i.})^2 + \sum_{i=1}^{m} n_i (\overline{y}_i - \hat{y}_i)^2 = \text{SS(PE)} + \text{SS(LOF)}. \end{split}$$ Note that the terminology regression is due to Francis Galton who first observed (in the late 19th century) that the height of sons tended to be closer to the mean height of species than their fathers, i.e., the height of off-springs tended to regress back toward the mean height of the entire species, no matter what the height of fathers were. This is called regressing toward the mean. #### Statistical Inference in SLREG Recall that if a rv is N(μ , unknown σ^2), then the statistic[rv – E(rv)]/se(rv) ~ T_v, where v is the df of the se(rv). Therefore, to test H₀: β_1 = 0 VS H₁: $\beta_1 \neq 0$, we may use the fact that $$\frac{\hat{\beta}_1 - \mathrm{E}(\hat{\beta}_1)}{se(\hat{\beta}_1)} = \frac{\hat{\beta}_1 - \beta_1}{se(\hat{\beta}_1)} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\mathrm{MS}_{RES} / \mathrm{S}_{xx}}}$$ has a Student's t-distribution with v = n - 2 df. We now apply the above t-test to the regression model of the Example on page 156 of these notes. We 1st compute the $se(\hat{\beta}_1) = \sqrt{MS_{RES}/S_{xx}} = \sqrt{4.8541/357.6} = 0.11651$ (see Exercise 95). Since under H₀ the slope, β_1 , is hypothesized to be zero, then our null test statistic becomes $$t_0 = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{MS_{RES}/S_{xx}}} = \frac{1.87864 - 0}{0.11651} = 16.12455,$$ which far exceeds $t_{0.025,8} = 2.3060$, and hence the null hypothesis of zero slope must be strongly rejected. Note that $(t_0)^2 = F_0 = 260.0004$ of the ANOVA Table on page 161 of these notes. The discrepancy in the 4th decimal is strictly due to rounding. The next SI (Statistical Inference) is to obtain either a 95% or 99% CI for β_1 . Figure 27 shows the sampling distribution (SMD) of $\frac{\hat{\beta}_1 - \beta_1}{\sqrt{MS_{RES} / S_{xx}}}$ for a confidence level of $1 - \alpha$ = 0.95. Figure 27 clearly shows that the Pr($-2.3060 \le T_8 \le 2.3060$) = Pr($$-2.3060 \le (\hat{\beta}_1 - \beta_1)/se(\hat{\beta}_1) \le 2.3060)$$ = 0.95, (note that 2.306= $t_{0.025,8}$), or $$\Pr[\,-2.3060\,se(\hat{\beta}_1)\,-\hat{\beta}_1 \leq -\,\beta_1 \leq -\,\hat{\beta}_1 + 2.3060\,se(\hat{\beta}_1)\,] = 0.95.$$ In order to solve for $\beta_1, \ \mbox{we need to multiply the above 2 inequalities by -1,} \label{eq:balance}$ which results in $$\Pr[\hat{\beta}_1 - 2.3060 \, se(\hat{\beta}_1) \le \beta_1 \le \hat{\beta}_1 + 2.3060 \, se(\hat{\beta}_1)] = 0.95.$$ The above equation clearly shows that the 95% confidence limits are L($\beta_{\text{1}})$ = $\hat{\beta}_1$ –2.3060 $se(\hat{\beta}_1)$ and U(β_1) = $\hat{\beta}_1$ + 2.3060 $se(\hat{\beta}_1)$; further, the 95% HCIL (Half-CI-Length) is given by $t_{0.025,8} \times se(\hat{\beta}_1)$ = 2.3060×0.11651 = 0.2687 and hence the requisite CI is $\hat{\beta}_1 \pm 0.2687$ = (1.6100, 2.1473). Since this 95% CI: 1.6100 $\leq \beta_1 \leq$ 2.1473, clearly excludes the hypothesized value of zero, it is consistent with the rejection of the above t-test on β_1 = 0 at the 5% level. Applying the same procedure as the above to $\hat{\beta}_0$, and using $V(\hat{\beta}_0) = \left[\frac{1}{n} + \frac{(\overline{x})^2}{S_{xx}}\right] \sigma_{\epsilon}^2$, Figure 27. The SMD of $(\hat{\beta}_1 - \beta_1)/se(\hat{\beta}_1)$ we obtain the following 95% CI for the parameter β_0 . $$138.00973 \leq \ \beta_0 \leq 149.63904$$ Since $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ is a point unbiased estimate of E(Y | x_0), then using one of the results of Exercise 95, the 95% CI for $\mu_0 = \beta_0 + \beta_1 x_0$ is given by $\hat{y}_0 \pm 2.3060 \times$ $$se(\,\hat{y}_0\,) = \hat{\beta}_0 + \hat{\beta}_1\,x_0 \pm 2.3060 \times \sqrt{\left[\frac{1}{n} + \frac{\left(x_0 - \overline{x}\right)^2}{S_{xx}}\right] \times MS_{RES}} \quad . \quad \text{As an example, if we wish}$$ to obtain a 95% CI for E(Y|x = 22) = β_0 + 22 β_1 , the above formula yields 185.1544 \pm 2.3060×0.7106 = (183.5158, 186.7930), or 183.5158 \leq β_0 + 22 β_1 \leq 186.7930. Note that this last 95% CI does not have a 0.95 Pr of containing the mean of Y at x = 22; that Pr is either 0 or 1. The length of this CI is 2×2.3060× $se(\hat{\beta}_0 + \hat{\beta}_1 x_0)$ = 3.2773. ## PREDICTION INTERVAL FOR a FUTURE OBSERVATION at a SPECIFIED X₀ As an example, reconsider the regression model of Eq. (53b) on p. 159 of my notes. Suppose we are to make N (the most common value of N is one observation in the future) observations at $x_0 = 22\%$ hardwood concentration in the future. Let y_0 be an actual future observation (not yet observed and hence is a rv). Clearly, the best single point forecast from our model is \hat{y}_0 = 143.8244 + 1.87864×22 = 185.1545. How do we use our rvs y_0 and \hat{y}_0 to obtain a prediction interval for y_0 ? To accomplish this task, we must 1st define the forecast error rv as $\psi=y_0-\hat{y}_0$. Because E(ψ) = E($\beta_0+\beta_1x_0+\epsilon_0-\hat{\beta}_0-\hat{\beta}_1x_0$) = 0, and the variance of forecast error at N = 1 is given by $$V(\psi) = V[y_0 - \overline{y} - \hat{\beta}_1(x_0 - \overline{x})] = V(y_0) + V(\overline{y}) + (x_0 - \overline{x})^2 V(\hat{\beta}_1)$$ $$V(\psi) = \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right] \sigma_{\epsilon}^2.$$ Since $\psi = y_0 - \hat{y}_0$ is a LC (Linear Combination) of NID rvs, then the forecast error ψ is also N(0, V(ψ)), and as a result the rv $$\frac{\Psi - E(\Psi)}{se(\Psi)} = \frac{y_0 - \hat{y}_0}{\sqrt{\left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right] \times MS_{RES}}}$$ has a student's t-distribution with (n-2) df. Therefore, with N=1 future observation at $x_0 = 22$ we obtain the following 95% prediction Pr statement: $$\Pr[-2.3060 \le \frac{y_0 - \hat{y}_0}{\sqrt{\left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right] M S_{RES}}} \le 2.3060] = 0.95$$ Rearranging the inequality inside the above brackets yields the 95% PI (prediction interval) for y_0 . $$\Pr[\,\hat{\beta}_0 + \,\hat{\beta}_1 \, \mathsf{x}_0 - 2.3060se(\psi) \leq \, \mathsf{y}_0 \leq \hat{\beta}_0 + \hat{\beta}_1 \, \mathsf{x}_0 + 2.3060se(\psi)] = 0.95.$$ To obtain the actual 95% PI, we 1st compute the $se(\psi)$: $se(\psi)$ = $se(y_0 - \hat{y}_0)$ = $$\sqrt{\left[1 + \frac{1}{10} + \frac{(22 - 20.8)^2}{357.6}\right] 4.8541} = 2.3150.$$ Next, we insert $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 = 185.1545$ and the $se(\psi)$ into the above Pr statement. $$\Pr[-2.3060 \le \frac{y_0 - 185.1545}{2.3150} \le 2.3060] = 0.95$$ Finally, rearranging the inequality inside the above brackets results in Pr[185.1545 $$-2.3060 \times 2.3150 \le y_0 \le 185.1545 + 5.3383] = 0.95 \rightarrow$$ $Pr(179.8160 \le y_0 \le 190.4927] = 0.95.$ The length of the above prediction band is 10.6766. Note that, unlike a CI, the above PI actually has a Pr of 0.95 to contain a future observation because y_0 is still a random variable, as it has not yet been observed. Further, the length of the 95% PI is always larger than the corresponding 95% CI because it contains 2 sources of error unlike a CI. ### **CORRELATION** Regression is generally applicable if the regressor (or independent) variable on the RHS of the model can be controlled by the experimenter so that V(X) = 0. In studies where both variables X and Y have to be measured from the same sampling unit, i.e., the (x, y) pair form a bivariate random vector, then it is best to conduct a correlation analysis than regressing y on x. To this end, let $[X Y]^T = [X Y]'$ be a 2×1 bivariate vector; then the population correlation coefficient between X and Y is defined as $$\rho_{xy} = \frac{COV(X,Y)}{\sigma_X \times \sigma_Y} = \frac{\sigma_{xy}}{\sigma_X \sigma_Y} = \rho,$$ where σ_{xy} = E[(X $-\mu_X$) \times (Y $-\mu_Y$)] = E(XY) - E(X) \times E(Y) is the covariance between the random variables X and Y. It can be proven that - 1 \leq ρ \leq 1, or $|\rho|$ \leq 1, which you will be asked to do in the following Bonus Exercise. **Exercise 98 (5 Bonus Points).** Prove that $|\rho| \le 1$ by expanding the V(aX + bY), where a and b are arbitrary real constants of your choice. When $\rho=\pm 1$, the two random variables X and Y are said to be perfectly correlated. If X and Y are independent rvs, then $\rho=0$, but $\rho=0$ does not always imply that X and Y are independent. However, if X and Y have the joint bivariate normal density function, then $\rho=0$ does imply that X and Y are independent. In practice, the value of the population correlation coefficient, ρ , is unknown and has to be estimated from a random sample of size n pairs. The sample point estimate of ρ is given by $$\hat{\rho} = r = \frac{\hat{\sigma}_{xy}}{S_x S_y} = \frac{S_{xy} / (n-1)}{S_x S_y}$$ (54a) where the numerator of r is the sample covariance $\,\hat{\sigma}_{xy}^{}$ = S_{xy}/(n–1) = $$\frac{1}{n-1} \sum_{i=1}^n [(x_i - \overline{x})(y_i - \overline{y})]$$; equation (54a) can also be written as $$r = \hat{\rho} = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}} = \frac{\sum_{i=1}^{n} [(x_i - \overline{x})(y_i - \overline{y})]}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right] \times \left[\sum_{i=1}^{n} (y_i - \overline{y})^2\right]}}$$ (54b) **Example 45.** The following data give the final averages of 15 randomly selected INSY students in Engineering Statistics (X) and Operations Research (Y = OR). The sample statistics are: $$\sum_{i=1}^{15} x_i = 1173$$, $\overline{x} = 78.20$, $\sum_{i=1}^{15} y_i = 1185$, $\overline{y} = 79.00$, $\sum_{i=1}^{n} x_i^2 = 1185$ 93405, $$\sum_{i=1}^{n} y_i^2 = 95145$$, $\sum_{i=1}^{n} x_i y_i = 93755$, $S_{xx} = 1676.40$, $S_{yy} = 1530$, $S_{xy} = 1088$, $$S_x$$ = 10.9427, S_y = 10.4540, $\hat{\sigma}_{xy}$ = 77.7143, r = $\hat{\sigma}_{xy}$ /(S_xS_y) = 0.67935. Note that if y is regressed on x and the resulting model R² is computed, then r = $\sqrt{R_{Model}^{\,2}}$. ## TEST OF HYPOTHESIS ABOUT ρ There are two different tests that can be conducted on the population parameter ρ : (1) H_0 : ρ = 0, (2) H_0 : ρ = ρ_0 , where $\rho_0 \neq 0$. (1) Testing H_0 : $\rho = 0$ versus one of the 3 alternatives H_1 : $\rho \neq 0$, or H_1 : $\rho < 0$, or H_1 : $\rho > 0$. Recall that statistical inference on a parameter is conducted using the sampling distribution of the point estimator. The point estimator of ρ is the sample correlation coefficient r. It can be shown that the null sampling distribution (SMD) of the statistic $$t_0 = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$ (55) follows a Student's t-distribution with (n - 2) df. For the example 45 above, the most appropriate alternative is H_1 : $\rho > 0$. Therefore, the critical region for testing H_0 : $\rho = 0$ at the LOS $\alpha = 0.05$ is (1.771, ∞). The value of our test statistic is $t_0 = (0.67935 \sqrt{13})/\sqrt{1-0.46152} = 3.3379$, which easily exceeds $t_{0.05,13} = 1.771$, leading to the rejection of zero correlation between X and Y. The P-value (or the Pr level) of the test is $\hat{\alpha} = P(T_{13} \ge 3.33794) = 0.002672$, which is less than 0.05 as expected because H_0 was rejected at the 5% level of significance. If the assumption of joint bivariate normal density for the 2×1 vector [X Y]^T is indeed tenable, then the rejection of H_0 : $\rho = 0$ implies that X and Y are not independent; otherwise, the rejection of H_0 implies that X and Y are linearly related. **Exercise 99.** Use results from regression to show that the statistic $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ has a Student's t SMD. Hint: First refer to an ANOVA table for the regression of Y on a single regressor X and then use the fact that $F_{1,\nu_2} = t_{\nu_2}^2$. (2) Testing H_0 : $\rho = 0.50$ versus the alternative H_1 : $\rho \neq 0.50$ at the LOS $\alpha = 0.05$. The t_0 given in equation (55) cannot be used to test H_0 : $\rho = 0.50$ because the expression for t_0 is free of ρ . It has been shown, however, in statistical literature that the sampling distribution (SMD) of the statistic $$\xi = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) = \operatorname{arctanh}(r) = \tanh^{-1}(r)$$ is approximately normal with E($\xi \mid \rho$) = $\frac{1}{2} \ln(\frac{1+\rho}{1-\rho})$ = $\tanh^{-1}(\rho)$ and V(ξ) \cong 1/(n -3). For the Example 45 above, the SMD of ξ is depicted in Figure 28, where under the null hypothesis E($$\xi \mid \rho$$ = 0.50) = $\frac{1}{2} \ln (\frac{1+0.50}{1-0.50})$ = 0.54931 = μ_{ξ} and V(ξ) \cong 1/(15 $-$ 3) = Figure 28. The Approximate SMD of ξ $0.08333\overline{3}$. The acceptance interval for testing the 2-sided H₀: ρ = 0.50 is given by (A_L, A_u) = (-0.0165, 1.1151). The value of the test statistic is $\xi = \frac{1}{2} \ln(\frac{1+r}{1-r}) =$ $$\frac{1}{2}\ln(\frac{1+0.67935}{1-0.67935})$$ = arctanh(0.67935) = 0.82791, which is well inside the AI = (-0.0165, 1.1151) and hence we cannot reject H_0 : $\rho = 0.50$. The *P*-value of the test is given by $\hat{\alpha} = 2 \times \Pr(\xi \ge 0.82791) = 2 \times \Pr[Z_0 \sim N(0, 1) \ge 0.96511) = 0.33449$. Therefore, we cannot deduce that the data provide sufficient evidence for $\rho \ne 0.50$ but they do provide sufficient evidence that $\rho > 0$. Note that Kendall and Stuart (Vol. 1, 2^{nd} edition, ρ . 391) give a better approximation for V[$\xi = \frac{1}{2} \ln{(\frac{1+r}{1-r})}$] as $\frac{1}{n-1} + \frac{4-\rho^2}{2(n-1)^2}$. For small ρ and n > 10, this last approximation is almost equal to 1/(n-3). ## **OBTAINING** a 95% CI FOR ρ Again, we have to make use of the fact that $\xi=\frac{1}{2}\,ln\,(\frac{1+r}{1-r})\,$ = arctanh(r) = $\tanh^{-1}(r) \sim N[\frac{1}{2}\ln(\frac{1+\rho}{1-\rho}), 1/(n-3)] = N[\tanh^{-1}(\rho), 1/(n-3)], \text{ as depicted in Figure 29,}$ which clearly shows that $$\Pr[\mu_{\xi} - 1.96 \times se(\xi) \le \xi = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) \le \mu_{\xi} + 1.96 \times se(\xi)] = 0.95$$ $$\Pr[-\frac{1}{2}\ln{(\frac{1+r}{1-r})} - 1.96 \times se(\xi) \le -\mu_{\xi} \le -\frac{1}{2}\ln{(\frac{1+r}{1-r})} + 1.96 \times se(\xi)] = 0.95$$ $Pr[-0.82791 - 1.96 \times se(\xi) \le -\mu_{\xi} \le -0.82791 + 1.96 \times se(\xi)] = 0 \text{ or } 1.$ $$\text{Pr}[-\ 0.82791 - 0.56580 \le -\mu_{\xi} \le -\ 0.82791 + 0.56580\] = 0 \ \text{or} \ 1.$$ $Pr[0.82791 - 0.56580 \le \mu_{\xi} \le 0.82791 + 0.56580] = 0 \text{ or } 1.$ Figure 29. The Approximate SMD of ξ $$0.26210 \le \frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho} \right) \le 1.39371 \longrightarrow (56)$$ $$0.52420 \le \ln\left(\frac{1+\rho}{1-\rho}\right) \le 2.78742 \rightarrow 1.68912 \le \frac{1+\rho}{1-\rho} \le 16.23904$$ $1.68912(1-\rho) \le 1 + \rho \le 16.23904(1-\rho)$. These last two inequalities when solved separately from the left yield $\rho_L = 0.25626$ and from the right yield $\rho_u = 0.88398$, and hence the 95% CI for population correlation coefficient is given by $0.256263 \le \rho \le 0.883985$. The above CI interval could also have been obtained by recognizing that the inverse function of $\frac{1}{2}\ln(\frac{1+\rho}{1-\rho})$ is $\tanh(\rho)$ and taking the tanh of inequality (56), i.e., $\tanh(0.26210) \le \rho \le \tanh(1.39371) \to 0.25626 \le \rho \le 0.88398$, which agrees with the above CI for ρ . As expected, the above CI does include the value of $\rho = 0.50$ because the null hypothesis $H_0: \rho = 0.50$ could not be rejected at the 5% level. Exercise 100. Repeat the above correlation analysis for the data of Exercise 62 on page 517 of Devore (8e). Check your answer for the 95% CI on ρ by using the formulas $$\rho_{\text{L}} = \text{tanh}[\text{arctanh(r)} - Z_{\alpha/2}/\sqrt{n-3}\,] = \text{tanh}[\frac{1}{2}\ln\frac{1+r}{1-r} - Z_{\alpha/2}/\sqrt{n-3}\,]$$ and $$\rho_{\text{u}}$$ = tanh[arctanh(r) + $Z_{\alpha/2}/\sqrt{n-3}$], where tanh(x) = $\frac{e^x-e^{-x}}{e^x+e^{-x}}$ and $tanh^{-1}(x) = arctanh(x) = \frac{1}{2}ln\frac{1+x}{1-x}$. (b) For the data of Exercise 62 on p. 517 of Devore (8e), obtain the 95% lower one-sided CI for ρ . The Microsoft Excel and Matlab functions for arctanh = $tanh^{-1}$ and hyperbolic tangent are ATANH and TANH, respectively. **Exercise 101 (10 Bonus Points).** (a) Show that the inverse function of f(x) = $$\frac{1}{2} \ln (\frac{1+x}{1-x}) \, , \, \left| x \right| < \text{1, is } \, \, f^{-1}(\text{x}) = \tanh(\text{x}) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \, , \, \, \, \text{where} \, -1 \leq \tanh(\text{x}) \leq 1. \, \, \text{(b) Use}$$ your results in part (a) to derive the following 95% CI for ρ : tanh[$\frac{1}{2}ln(\frac{1+r}{1-r})-\frac{1.96}{\sqrt{n-3}}$] $$\leq \rho \leq \tanh[\frac{1}{2}\ln(\frac{1+r}{1-r}) + \frac{1.96}{\sqrt{n-3}}]$$, where the Excel or Matlab function is ATANH(r) = $$\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right) = \xi.$$