Reference: Chapter 5 of Devore (8e) Maghsoodloo JOINT PROBABILITY DISTRIBUTION FUNCTIONS

Consider two production lines that manufacture a certain item. The production rates for both lines vary randomly from day to day. Line 1 has a capacity of 4 units per day while line II has a capacity of 3 units per day. Further, both lines produce at least one unit on any given day. Let $X_1 = No$. of units produced by line I/day, and $X_2 = No$. of units produced by line II per day. The joint probability (Pr) distribution (JPD) of the bivariate vector X =

 $\begin{vmatrix} X_1 \\ X \end{vmatrix}$ is given below:

X ₂	1	2	3	p1(x1)
X ₁				
1	0.01	0.05	0.04	0.10
2	0.05	0.10	0.10	0.25
3	0.10	0.15	0.10	0.35
4	0.04	0.15	0.11	0.30
p ₂ (x ₂)	0.20	0.45	0.35	

The above table implies that the joint Pr P(X₁ = 2, X₂ = 3) = p(2, 3) = 0.10, and p(4, 2) = 0.15, etc. Further, $p_1(x_1)$ and $p_2(x_2)$ are referred to as the marginal Pr distributions (mpds) of X_1

and X₂, respectively. Note that
$$p_1(x_1) = \sum_{R_2} p(x_1, x_2)$$
 and $p_2(x_2) = \sum_{R_{x1}} p(x_1, x_2) =$

 $\sum_{R_1} p(x_1, x_2).$ Further,

 $\mu_1 = E(X_1) = 0.10 + 0.50 + 1.05 + 1.20 = 2.85$ units/day, and $\mu_2 = E(X_2) = 0.20 + 0.90 + 1.05 = 2.15$ units/day.

Similarly,

 $E(X_1^2) = 9.05 \longrightarrow \sigma_1^2 = \sigma_{11} = 0.9275 \longrightarrow \sigma_1 = 0.9631$

 $E(X_2^2) = 5.15 \longrightarrow \sigma_2^2 = \sigma_{22} = 0.5275 \longrightarrow \sigma_2 = 0.7263.$

The covariance between 2 random variables (rvs) is defined as:

$$\sigma_{12} = \text{COV}(X_1, X_2) = \text{E} [(X_1 - \mu_1)(X_2 - \mu_2)] = \text{E} (X_1X_2) - \mu_1\mu_2.$$

For the above example,

$$\begin{split} \mathsf{E}(\mathsf{X}_1\mathsf{X}_2) &= 0.01 + 2 \times 0.05 + 3 \times 0.04 + 2 \times 0.05 + 4 \times 0.10 + 6 \times 0.10 + \\ & 3 \times 0.10 + 6 \times 0.15 + 9 \times 0.10 + 4 \times 0.04 + 8 \times 0.15 + 12 \times 0.11 = 6.11 \\ & \rightarrow \qquad \sigma_{12} = 6.11 - 2.85 \ (2.15) = -0.0175 \end{split}$$

The covariance matrix of the bivariate random vector X is given by:

$$COV(X) = COV(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}) = \Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} = \begin{bmatrix} 0.9275 & -0.0175 \\ -0.0175 & 0.5275 \end{bmatrix}$$

Note that the covariance matrix \sum is always symmetrical because $\sigma_{ij} = \sigma_{ji}$ for all $i \neq j$. Further, covariance must be taken only between two rvs at a time (not 3 or more). The correlation coefficient between X₁ and X₂ is defined as:

$$\rho = \frac{\sigma_{12}}{\sqrt{\sigma_{11}\sigma_{22}}} = \frac{\sigma_{12}}{\sigma_1\sigma_2} = \frac{-0.0175}{(0.9631)(0.7263)} = -0.02502.$$

It can be shown that $-1 \le \rho \le +1$, where $\rho = 0$ implies no correlation between X₁ and X₂ ($\rho = 0$ does not always imply that X₁ and X₂ are independent but shows that there is no linear relationship between X₁ and X₂). A value of $\rho = \pm 1$ implies perfect correlation between X₁ and X₂. A positive $0 < \rho \le 1$ implies that the relationship between x₁ and x₂ is linearly increasing and vice a versa when $-1 \le \rho < 0$. For example, there is a positive correlation between X₁ = the amount of irrigation, and X₂ = crop yield. While, there is a negative association between X₁ = width of road, and X₂ = accident rate.

CONDITIONAL PROBABILITY DISTRIBUTIONS

The conditional Pr distribution of X_2 given $X_1 = x_1$ is defined as:

$$p_2(x_2 | x_1) = \frac{p(x_1, x_2)}{p_1(x_1)}$$
, and similarly, $p_1(x_1 | x_2) = \frac{p(x_1, x_2)}{p_2(x_2)}$

As an example, for the JPD on page 69, $p_2(x_2|X_1=1) = \frac{p(1, x_2)}{0.10}$, i.e.,

$$p_{2}(x_{2} | X_{1} = 1) = \begin{cases} 0.10, & x_{2} = 1 \\ 0.50, & x_{2} = 2, \text{ while } p_{1}(x_{1} | X_{2} = 3) = \begin{cases} 4/35, & x_{1} = 1 \\ 10/35, & x_{1} = 2, 3 \\ 0.40, & x_{2} = 3 \end{cases} = \begin{cases} 4/35, & x_{1} = 1 \\ 10/35, & x_{1} = 2, 3 \\ 11/35, & x_{1} = 4. \end{cases}$$

Exercise 36.

- (a) Obtain $p_2(x_2 \left| X_1 = i \right)$, i = 2, 3, or 4.
- (b) Obtain $p_1(x_1 | X_2 = i)$, i = 1 or 2.

CONDITIONAL EXPECTATIONS

These are defined as follows: E (X₂ | x₁) = $\sum_{R_2} x_2 p_2(x_2 | x_1)$, and

E (X₁ | x₂) =
$$\sum_{R_1} x_1 p_1(x_1 | x_2)$$
, where R₁ = R_{x1} and R₂ = R_{x2}. For example,

 $E(X_2 | X_1 = 1) = 0.10 + 1 + 1.20 = 2.30$, and $E(X_1 | X_2 = 3) = 2.80$.

Exercise 36 (continued).

(c) Compute E (X₂ | X₁ = i), i = 2, 3, or 4 and E (X₁ | X₂ = i), i = 1 or 2. ANS: E (X₁ | X₂ = 1) = 2.850.

Note that for any bivariate random vector X, it is always true that

 $p(x_1, x_2) = p_1(x_1) \times p(x_2 | x_1) = p_2(x_2) \times p(x_1 | x_2).$ For the JPD on page 69, p(1, 3) = 0.04, $p_1(1) \times p_2(3 | X_1 = 1) = 0.10 (4/10) = 0.04$, or $p_2(X_2 = 3) = 0.35$, $p_1(X_1 = 1 | X_2 = 3) = 4/35$, $p_2(X_2 = 3) \times p_1(X_1 = 1 | X_2 = 3) = 0.35 (4/35) = 0.04 = p(1,3).$

Exercise 36 (continued). (d) Verify that $p(3,2) = p_1(3) \times p_2(X_2 = 2 | X_1 = 3) = p_2(2) \times p_1(X_1 = 3 | X_2 = 2)$. (e) Compute the $P(X_1 > 1 | X_2 > 2)$. ANS: (e) $P(X_1 > 1 | X_2 = 3) = 31/35$.

INDEPENDENCE OF TWO RANDOM VARIABLES

Two random variables, X₁ and X₂, are independent iff (if and only if) $p(x_1, x_2) = p_1(x_1) \times p_2(x_2)$. If X₁ and X₂ are independent, then always $\sigma_{12} = 0$ and hence $\rho = 0$. Note that the converse of this last claim is not necessarily true (see Exercise 38 below) unless

the random vector $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ has a bivariate normal density function. In short, two rvs

are independent iff their JPDF factors out into the product of the individual mpds.

Exercise 37. A shop has 2 machines M_1 and M_2 . Let the rv X_i = Number of

defective units produced per hour on M_i (i = 1, 2). The JPDF of random vector X = $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

is given below. (a) Obtain the mpdfs of X₁ and X₂ and the covariance matrix $\Sigma =$

 $COV(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix})$. Then compute the correlation coefficient ρ to 5 decimals.

X2	1	2	3	4	p1(x1)
X1					
0	0.02	0.08	0.08	0.02	
1	0.03	0.12	0.12	0.03	
2	0.03	0.12	0.12	0.03	
3	0.02	0.08	0.08	0.02	
p2(x2)					

(b) Compute E $(X_2 | X_1 = 3)$, E $(X_2 | X_1 = 2)$ and E (X_2) . (c) Compute the P $(X_2 > 2 | X_1 = 1)$ (d) Determine if X_1 and X_2 are independent and why.

Exercise 38. Repeat all parts of Exercise 37 for the following JPDF.

X2	0	1	2	3	p1(x1)
X1					
0	1/12	1/12	1/12	1/12	
1	1/12	0	0	1/12	
2	1/12	0	0	1/12	
3	1/12	1/12	1/12	1/12	
p ₂ (x ₂)					

CONTINUOUS BIVARIATE RANDOM VARIABLES

Suppose X₁ represents surface tension and X₂ represents the acidity of the same sampling unit of a chemical product. The joint probability density function (jpdf) of the

random vector X = $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ is given by

 $f(x_1,\,x_2)={\rm C}(6-x_1-x_2),\qquad 0\leq \ x_1\leq 2, \ \ 2\leq \ x_2\leq 4.$

Example 33. (a) Determine the value of the above constant C such that $f(x_1, x_2)$ is a jpdf, i.e., find C such that the volume under $f(x_1, x_2)$ and rectangular region $R_X = [0 \le x_1 \le 2$, and $2 \le x_2 \le 4]$ is equal to 1 (or 100% probability). That is,

$$C\int_{x_{2}=2}^{4}\int_{x_{1}=0}^{2}(6-x_{1}-x_{2})dx_{1}dx_{2} = C\int_{2}^{4}\left[6x_{1}-\frac{x_{1}^{2}}{2}-x_{2}x_{1}\right]_{0}^{2}dx_{2} \text{ Set to } 1$$

$$C\int_{2}^{4}(12-2-2x_{2})dx_{2} = C\left[10x_{2}-x_{2}^{2}\right]_{2}^{4} = C(24-16) = 8C = 1 \rightarrow C = 0.125.$$

Thus $f(x_1, x_2) = 0.125(6 - x_1 - x_2)$ is a jpdf over R_X : $0 \le x_1 \le 2, 2 \le x_2 \le 4$ because the volume under $f(x_1, x_2)$ is identically equal to 100%.

(b) Compute the joint Pr that a randomly selected unit has a surface tension less

than 1 and an acidity not exceeding 3.

$$P(X_{1} \le 1, X_{2} \le 3) = \frac{1}{8} \int_{0}^{1} \int_{2}^{3} (6 - x_{1} - x_{2}) dx_{2} dx_{1} = 3/8 = 0.3750 = F_{x_{1}, x_{2}}(1, 3)$$

It can be shown that the Joint-cdf of the above joint-pdf is given by

$$F(x_1, x_2) = 0.125 \int_{0}^{x_1} \int_{2}^{x_2} (6 - x_1 - x_2) dx_2 dx_1 = 0.125 (x_1^2 + 6x_1x_2 - 10x_1 - x_1x_2^2 / 2 - x_1^2x_2 / 2),$$

 $0\leq x_1\leq 2, \ \ 2\leq x_2\leq 4. \ \ \text{Note that} \ \frac{\partial^2 F(x_1,x_2)}{\partial x_1\partial x_2}=f(x_1,x_2).$

(c) We next compute the P (X₁ + X₂ \leq 4), or the P (X₂ \leq 4 – X₁).

$$\mathsf{P} (\mathsf{X}_1 + \mathsf{X}_2 \le 4) = 0.125 \int_{x_1=0}^{2} \int_{x_2=2}^{4-x_1} (6 - x_1 - x_2) dx_2 dx_1 = 2/3.$$

Exercise 39. (a) Re-compute the above P ($X_1 + X_2 \le 4$) by integrating with respect to (wrt) x_1 first followed by x_2 .

MARGINAL PROBABILITY DENSITY FUNCTIONS (mpdf)

Analogous to the discrete case, the mpdf of the continuous rv X1 is defined as

$$f_1(x_1) = \int_{R_2} f(x_1, x_2) dx_2 = \int_{x_2=2}^4 0.125(6 - x_1 - x_2) dx_2 = \frac{3 - x_1}{4}, \quad 0 \le x_1 \le 2.$$

Therefore, E (X₁) =
$$\int_{0}^{2} x_1 f_1(x_1) dx_1 = \int_{0}^{2} x_1 \frac{3 - x_1}{4} dx_1 = 5/6.$$

Exercise 39 (b). Obtain the mpdf of X_2 for the Example 33 and verify that both $f_1(x_1)$ and $f_2(x_2)$ are indeed probability density functions. (c) Compute the Pr ($X_2 \le 3$) and $E(X_2)$.

CONDITIONAL PROBABILITY DENSITY FUNCTIONS

 $x_2 \le 4$. Since the expression for $f(x_2 | x_1) = \frac{6 - x_1 - x_2}{2(3 - x_1)}$ is not free of x_1 , then the rv X_2 is

not independent of X1.

Exercise 39(d). Verify that $f(x_2 | x_1)$ is indeed a pdf over the range $R_2 = [2, 4]$. Then obtain $f(x_1 | x_2)$ and determine if X_1 is independent of X_2 . Verify your answer over the range $R_1 = [0, 2]$.

CONDITIONAL EXPECTATIONS

The conditional expectation of X₂ given the value of x₁ is defined as

$$\mathsf{E}(\mathsf{X}_{2}|\mathsf{x}_{1}) = \int_{\mathsf{R}_{2}} \mathsf{x}_{2} f(\mathsf{x}_{2}|\mathsf{x}_{1}) d\mathsf{x}_{2} = \int_{2}^{4} \mathsf{x}_{2} (\frac{6-\mathsf{x}_{1}-\mathsf{x}_{2}}{6-2\mathsf{x}_{1}}) d\mathsf{x}_{2} = \frac{26-9\mathsf{x}_{1}}{3(3-\mathsf{x}_{1})}.$$

Note that because X_2 is not independent of X_1 , then the E ($X_2 | x_1$) is a function of x_1 over the range space $R_1 = [0, 2]$.

Exercise 39(e). Compute E ($X_2 | X_1 = 0.50$) and obtain E ($X_1 | x_2$) and use it to recompute the unconditional expectation E(X_1). Use E ($X_2 | x_1$) and $f_1(x_1)$ to re-compute the unconditional E(X_2). (f) Obtain the covariance matrix Σ . (ANS: $\sigma_{11} = 11/36$, $\rho = -1/11$). (g) Obtain the V($X_2 | x_1$).

Exercise 40. (a) Show that $-1 \le \rho \le 1$ for all bivariate random vectors. Hint: Expand V(c₁X₁ + c₂X₂) and use the fact that V(c₁X₁ + c₂X₂) ≥ 0 for all choices of real constants c₁ and c₂. (b) Show that $\rho = +1$ if X₂ = a + bX₁, but $\rho = -1$ when X₂ = a - bX₁, where the constant b > 0.

Exercise 41. Consider the uniform joint-pdf

$$f(x_1, x_2) = \begin{cases} 1 , & 0 \le x_1 \le 1 , & -x_1 \le x_2 \le x_1 \\ 0 , & \text{elsewhere.} \end{cases}$$

(a) Draw the triangular region $R_X = [0 \le x_1 \le 1, -x_1 \le x_2 \le x_1]$ and obtain the covariance matrix Σ . (b) Verify that $\rho = 0$ but yet X_1 and X_2 are not independent. (c) Show that the

joint-cdf is given by $F(x_1, x_2) = \begin{cases} x_1 x_2 + 0.5(x_1^2 + x_2^2), -1 \le x_2 \le 0 \\ x_1 x_2 + 0.5(x_1^2 - x_2^2), & 0 \le x_2 \le 1 \end{cases}$. Again, note that

 $\frac{\partial^2 F(x_1, x_2)}{\partial x_1 \partial x_2} = f(x_1, x_2).$ (d) Work Exercises 9, 13, and 17 on pp. 204-205 of Devore (8e).

Note that a necessary (but not sufficient) condition for two rvs to be independent is that their range space, or SPUS, Rx must be rectangular.

LINEAR COMBINATIONS (WHEN INDIVIDUAL COMPONENTS of the LC MAY BE CORRELATED)

Suppose X₁, X₂, ..., X_n are random variables with known means μ_1 , μ_2 , ..., μ_n and known variances σ_1^2 , σ_2^2 , ..., σ_2^2 , respectively, and covariances σ_{ij}

(i \neq j). Then the rv Y = $\sum_{i=1}^{n} c_i X_i$, where ci's are known constants, is called a linear

combination (LC). In other words, we have complete information about the 1^{st} two moments of the n inputs X_i's, and the objective is to use them to compute E (Y) and V (Y), i.e., the 1^{st} two moments of the linear output Y, as shown below.

$$\mu_{Y} = E(Y) = E\left[\sum_{i=1}^{n} c_{i}X_{i}\right] = \sum_{i=1}^{n} c_{i}E(X_{i}) = \sum_{i=1}^{n} c_{i}\mu_{i}$$
(31a)

Note that the E(Y) is the same LC of μ_i 's as Y is of X_i's! We next compute the σ_y^2 by applying the nonlinear variance operator V.

$$\sigma_{y}^{2} = V(Y) = E(Y - \mu_{y})^{2} = E\left[\left(\sum_{i=1}^{n} c_{i} X_{i} - \sum_{i=1}^{n} c_{i} \mu_{i}\right)^{2}\right] = E\left[\sum_{i=1}^{n} c_{i} (X_{i} - \mu_{i})\right]^{2}$$

$$= E\left[\sum_{i=1}^{n} c_{i}^{2} (X_{i} - \mu_{i})^{2} + \sum_{j \neq i}^{n} \sum_{i=1}^{n-1} c_{i} c_{j} (X_{i} - \mu_{i}) (X_{j} - \mu_{j})\right]$$

$$= \sum_{i=1}^{n} c_{i}^{2} \sigma_{i}^{2} + 2 \sum_{i=1}^{n-1} \sum_{j>i}^{n} c_{i} c_{j} E\left[(X_{i} - \mu_{i}) (X_{j} - \mu_{j})\right] =$$

$$= \sum_{i=1}^{n} c_{i}^{2} \sigma_{i}^{2} + 2 \sum_{i=1}^{n-1} \sum_{j>i}^{n} c_{i} c_{j} \sigma_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \sigma_{ij} \qquad (31b)$$

If the rvs X₁, X₂, ..., X_n are independent, then σ_{ij} 's in equation (31b) are all zero for any i \neq j and as a result the V(Y) reduces to $\sum_{i=1}^{n} c_i^2 \sigma_i^2$, as before. Further, if X_i's are also normally

distributed (besides being jointly independent), then Y ~ $N(\sum_{i=1}^{n} c_{i} \mu_{i}, \sum_{i=1}^{n} c_{i}^{2} \sigma_{i}^{2})$. For

example, the sample mean $\overline{\mathbf{x}}$ from a normal universe is a LC whose $c_i = 1/n$ for all i = 1, 2,

..., n so that
$$\overline{x} \sim N(\mu, \sum_{i=1}^{n} (1/n)^2 \sigma_x^2)$$
, or $\overline{x} \sim N(\mu, \sigma_x^2/n)$. However, if X_i's are

correlated (i.e., $\sigma_{ij} \neq 0$) and normally distributed, then the linear combination Y = $\sum_{i=1}^{n} c_i X_i$ is

also Gaussian with E(Y) = $\sum_{i=l}^n c_i \mu_i ~~\text{and}~ V(Y) = ~\sum_{i=l}^n ~\sum_{j=l}^n c_i c_j \sigma_{ij}~~.$

SIMPLE RANDOM SAMPLING

Suppose X is a continuous random variable with pdf f(x; μ , σ^2) and let a random sample of size n be drawn from this population. Denote the n sample values by x₁, x₂, ...,

 x_n ; then X₁, X₂, ..., X_n are random variables with pdfs f₁(x₁), f₂(x₂), ..., f_n(x_n). The method of sampling, which possesses the following two properties, is called random sampling: (1) X₁, X₂, ..., X_n are mutually independent. (2) f(x_i) = f(x) for all i. Therefore, if X₁, X₂, ..., X_n are elements of a random sample, then E (X_i) = μ and V(X_i) = σ^2 for all i because all X_i's are identically distributed like the parent pdf f(x; μ , σ^2).

Exercise 42. Let \overline{x} be the mean of a random sample of size n from a population with mean μ and variance σ^2 . (a) Show that $E(\overline{x}) = \mu$ and $V(\overline{x}) = \sigma^2/n$. (b) Further, if the population is normal, then \overline{x} is also N (μ , σ^2/n). (c) Now consider the LC: Y = 2X₁ – 3X₂ – 4X₃ + 5X₄, where $\mu_1 = 50$, $\mu_2 = \mu_3 = 25$, $\mu_4 = 35$, $\sigma_1^2 = \sigma_4^2 = 1.25$, $\sigma_2^2 = \sigma_3^2 = 1.95$, $\sigma_{12} = 1.40$, $\sigma_{34} = 1.20$ and all other covariances are 0. Assuming that Y is normally distributed, compute the Pr(Y > 110). Part(c) ANS for $\sigma_{34} = 1.20 : 0.013042$

Exercise 43. Work Exercises 1, 3, 15, 37, 39, 42, 46, 47, 50, 53, 56, 58, 59, 60, 65, 73, 76, 77, and 78 on pages 203-236 of Devore's 8th Edition.

Exercise 44. The smog content of air in a certain area is monitored daily. The acceptable content of a particular constituent is at 7.7%. If the actual content, X, of this constituent is N (7.6, 0.0016), and the measuring instrument has an error ε which is N (0, 0.0009), compute: **(a)** The Pr that a single measurement will exceed 7.7%, **(b)** The Pr that the mean of 5 measurements is less than 7.55. ANS: (a) 0.02275, (b) 0.012674.

Exercise 45. Suppose X, Y and Z are NID (normally and independently distributed) with means 100, 48, 48 and variances 10, 13 and 13, respectively. Compute the Pr(X > Y + Z). ANS: 0.74751.