## Reference: Chapter 5 of Devore (8e) JOINT PROBABILITY DISTRIBUTION FUNCTIONS

Maghsoodloo

Consider two production lines that manufacture a certain item. The production rates for both lines vary randomly from day to day. Line 1 has a capacity of 4 units per day while line II has a capacity of 3 units per day. Further, both lines produce at least one unit on any given day. Let $\mathrm{X}_{1}=$ No. of units produced by line $\mathrm{I} /$ day, and $\mathrm{X}_{2}=$ No. of units produced by line II per day. The joint probability (Pr) distribution (JPD) of the bivariate vector $\mathrm{X}=$ $\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$ is given below:

| $\mathrm{X}_{1} \mathrm{X}_{2}$ | 1 | 2 | 3 | $\mathrm{p}_{1}\left(\mathrm{x}_{1}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.05 | 0.04 | 0.10 |
| 2 | 0.05 | 0.10 | 0.10 | 0.25 |
| 3 | 0.10 | 0.15 | 0.10 | 0.35 |
| 4 | 0.04 | 0.15 | 0.11 | 0.30 |
| $\mathrm{p}_{2}\left(\mathrm{x}_{2}\right)$ | 0.20 | 0.45 | 0.35 |  |

The above table implies that the joint $\operatorname{Pr} P\left(X_{1}=2, X_{2}=3\right)=p(2,3)=0.10$, and $p(4,2)=0.15$, etc. Further, $p_{1}\left(x_{1}\right)$ and $p_{2}\left(x_{2}\right)$ are referred to as the marginal $\operatorname{Pr}$ distributions (mpds) of $X_{1}$ and $\mathrm{X}_{2}$, respectively. Note that $\mathrm{p}_{1}\left(\mathrm{x}_{1}\right)=\sum_{\mathrm{R}_{2}} \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and $\mathrm{p}_{2}\left(\mathrm{x}_{2}\right)=\sum_{\mathrm{R}_{\mathrm{x} 1}} \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=$ $\sum_{\mathrm{R}_{1}} \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$. Further,

$$
\begin{aligned}
& \mu_{1}=E\left(X_{1}\right)=0.10+0.50+1.05+1.20=2.85 \text { units/day, and } \\
& \mu_{2}=E\left(X_{2}\right)=0.20+0.90+1.05=2.15 \text { units/day. }
\end{aligned}
$$

Similarly,

$$
E\left(X_{1}^{2}\right)=9.05 \longrightarrow \sigma_{1}^{2}=\sigma_{11}=0.9275 \longrightarrow \sigma_{1}=0.9631
$$

$$
\mathrm{E}\left(\mathrm{X}_{2}{ }^{2}\right)=5.15 \longrightarrow \sigma_{2}^{2}=\sigma_{22}=0.5275 \quad \rightarrow \quad \sigma_{2}=0.7263 .
$$

The covariance between 2 random variables (rvs) is defined as:

$$
\sigma_{12}=\operatorname{COV}\left(X_{1}, X_{2}\right)=E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left(X_{1} X_{2}\right)-\mu_{1} \mu_{2} .
$$

For the above example,

$$
\begin{aligned}
E\left(X_{1} X_{2}\right)= & 0.01+2 \times 0.05+3 \times 0.04+2 \times 0.05+4 \times 0.10+6 \times 0.10+ \\
& 3 \times 0.10+6 \times 0.15+9 \times 0.10+4 \times 0.04+8 \times 0.15+12 \times 0.11=6.11 \\
\rightarrow \quad & \sigma_{12}=6.11-2.85(2.15)=-0.0175
\end{aligned}
$$

The covariance matrix of the bivariate random vector X is given by:

$$
\operatorname{COV}(X)=\operatorname{CoV}\left(\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\right)=\sum=\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right]=\left[\begin{array}{rr}
0.9275 & -0.0175 \\
-0.0175 & 0.5275
\end{array}\right]
$$

Note that the covariance matrix $\Sigma$ is always symmetrical because $\sigma_{i j}=\sigma_{j i}$ for all $i \neq j$. Further, covariance must be taken only between two rvs at a time (not 3 or more).
The correlation coefficient between $\mathrm{X}_{1}$ and $\mathrm{X}_{2}$ is defined as:

$$
\rho=\frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{22}}}=\frac{\sigma_{12}}{\sigma_{1} \sigma_{2}}=\frac{-0.0175}{(0.9631)(0.7263)}=-0.02502 .
$$

It can be shown that $-1 \leq \rho \leq+1$, where $\rho=0$ implies no correlation between $X_{1}$ and $X_{2}$ ( $\rho=0$ does not always imply that $X_{1}$ and $X_{2}$ are independent but shows that there is no linear relationship between $X_{1}$ and $X_{2}$ ). A value of $\rho= \pm 1$ implies perfect correlation between $X_{1}$ and $X_{2}$. A positive $0<\rho \leq 1$ implies that the relationship between $X_{1}$ and $X_{2}$ is linearly increasing and vice a versa when $-1 \leq \rho<0$. For example, there is a positive correlation between $\mathrm{X}_{1}=$ the amount of irrigation, and $\mathrm{X}_{2}=$ crop yield. While, there is a negative association between $\mathrm{X}_{1}=$ width of road, and $\mathrm{X}_{2}=$ accident rate.

## CONDITIONAL PROBABILITY DISTRIBUTIONS

The conditional $\operatorname{Pr}$ distribution of $\mathrm{X}_{2}$ given $\mathrm{X}_{1}=\mathrm{x}_{1}$ is defined as:

$$
\mathrm{p}_{2}\left(\mathrm{x}_{2} \mid \mathrm{x}_{1}\right)=\frac{\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)}{\mathrm{p}_{1}\left(\mathrm{x}_{1}\right)} \text {, and similarly, } \mathrm{p}_{1}\left(\mathrm{x}_{1} \mid \mathrm{x}_{2}\right)=\frac{\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)}{\mathrm{p}_{2}\left(\mathrm{x}_{2}\right)} \text {. }
$$

As an example, for the JPD on page 69, $\mathrm{p}_{2}\left(\mathrm{x}_{2} \mid \mathrm{X}_{1}=1\right)=\frac{\mathrm{p}\left(1, \mathrm{x}_{2}\right)}{0.10}$, i.e.,

$$
\mathrm{p}_{2}\left(\mathrm{x}_{2} \mid \mathrm{X}_{1}=1\right)= \begin{cases}0.10, & x_{2}=1 \\
0.50, & x_{2}=2, \text { while } \mathrm{p}_{1}\left(\mathrm{x}_{1} \mid \mathrm{X}_{2}=3\right)=\left\{\begin{array}{ll}
4 / 35, & x_{1}=1 \\
10 / 30, & x_{2}=3
\end{array}, x_{1}=2,3\right. \\
11 / 35, & x_{1}=4 .\end{cases}
$$

## Exercise 36.

(a) Obtain $p_{2}\left(x_{2} \mid X_{1}=i\right), i=2,3$, or 4 .
(b) Obtain $\mathrm{p}_{1}\left(\mathrm{x}_{1} \mid \mathrm{X}_{2}=\mathrm{i}\right)$, $\mathrm{i}=1$ or 2 .

## CONDITIONAL EXPECTATIONS

These are defined as follows: $E\left(X_{2} \mid x_{1}\right)=\sum_{R_{2}} X_{2} p_{2}\left(x_{2} \mid x_{1}\right)$, and $E\left(X_{1} \mid x_{2}\right)=\sum_{R_{1}} X_{1} p_{1}\left(x_{1} \mid x_{2}\right)$, where $R_{1}=R_{x_{1}}$ and $R_{2}=R_{x_{2}}$. For example, $E\left(X_{2} \mid X_{1}=1\right)=0.10+1+1.20=2.30$, and $E\left(X_{1} \mid X_{2}=3\right)=2.80$.

## Exercise 36 (continued).

(c) Compute $E\left(X_{2} \mid X_{1}=i\right), i=2$, 3 , or 4 and $E\left(X_{1} \mid X_{2}=i\right), i=1$ or 2 . ANS: $E\left(X_{1} \mid X_{2}=1\right)=2.850$.

Note that for any bivariate random vector $X$, it is always true that $p\left(x_{1}, x_{2}\right)=p_{1}\left(x_{1}\right) \times p\left(x_{2} \mid x_{1}\right)=p_{2}\left(x_{2}\right) \times p\left(x_{1} \mid x_{2}\right)$. For the JPD on page $69, p(1,3)=0.04$, $p_{1}(1) \times p_{2}\left(3 \mid X_{1}=1\right)=0.10(4 / 10)=0.04$, or $p_{2}\left(X_{2}=3\right)=0.35, p_{1}\left(X_{1}=1 \mid X_{2}=3\right)=4 / 35$, $p_{2}\left(X_{2}=3\right) \times p_{1}\left(X_{1}=1 \mid X_{2}=3\right)=0.35(4 / 35)=0.04=p(1,3)$.

Exercise 36 (continued). (d) Verify that $p(3,2)=p_{1}(3) \times p_{2}\left(X_{2}=2 \mid X_{1}=3\right)=p_{2}(2) \times$ $p_{1}\left(X_{1}=3 \mid X_{2}=2\right)$. (e) Compute the $P\left(X_{1}>1 \mid X_{2}>2\right)$. ANS: (e) $P\left(X_{1}>1 \mid X_{2}=3\right)=31 / 35$.

## INDEPENDENCE OF TWO RANDOM VARIABLES

Two random variables, $X_{1}$ and $X_{2}$, are independent iff (if and only if) $p\left(x_{1}, x_{2}\right)=$ $p_{1}\left(x_{1}\right) \times p_{2}\left(x_{2}\right)$. If $X_{1}$ and $X_{2}$ are independent, then always $\sigma_{12}=0$ and hence $\rho=0$. Note that the converse of this last claim is not necessarily true (see Exercise 38 below) unless the random vector $\mathrm{x}=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$ has a bivariate normal density function. In short, two rvs are independent iff their JPDF factors out into the product of the individual mpds.

Exercise 37. A shop has 2 machines $M_{1}$ and $M_{2}$. Let the $r v X_{i}=$ Number of defective units produced per hour on $\mathrm{M}_{\mathrm{i}}(\mathrm{i}=1,2)$. The JPDF of random vector $\mathrm{X}=\left[\begin{array}{c}X_{1} \\ X_{2}\end{array}\right]$ is given below. (a) Obtain the mpdfs of $X_{1}$ and $X_{2}$ and the covariance matrix $\Sigma=$ $\operatorname{COV}\left(\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]\right)$. Then compute the correlation coefficient $\rho$ to 5 decimals.

|  | 1 | 2 | 3 | 4 | $\mathrm{p}_{1}\left(\mathrm{x}_{1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.02 | 0.08 | 0.08 | 0.02 |  |
| 1 | 0.03 | 0.12 | 0.12 | 0.03 |  |
| 2 | 0.03 | 0.12 | 0.12 | 0.03 |  |
| 3 | 0.02 | 0.08 | 0.08 | 0.02 |  |
| $\mathrm{p}_{2}\left(\mathrm{x}_{2}\right)$ |  |  |  |  |  |

(b) Compute $E\left(X_{2} \mid X_{1}=3\right), E\left(X_{2} \mid X_{1}=2\right)$ and $E\left(X_{2}\right)$. (c) Compute the $P\left(X_{2}>2 \mid X_{1}=1\right)$
(d) Determine if $X_{1}$ and $X_{2}$ are independent and why.

Exercise 38. Repeat all parts of Exercise 37 for the following JPDF.

| $\mathrm{X}_{2}$ | 0 | 1 | 2 | 3 | $\mathrm{p}_{1}\left(\mathrm{x}_{1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $1 / 12$ | $1 / 12$ | $1 / 12$ | $1 / 12$ |  |
| 1 | $1 / 12$ | 0 | 0 | $1 / 12$ |  |
| 2 | $1 / 12$ | 0 | 0 | $1 / 12$ |  |
| 3 | $1 / 12$ | $1 / 12$ | $1 / 12$ | $1 / 12$ |  |
| $\mathrm{p}_{2}\left(\mathrm{x}_{2}\right)$ |  |  |  |  |  |

## CONTINUOUS BIVARIATE RANDOM VARIABLES

Suppose $X_{1}$ represents surface tension and $X_{2}$ represents the acidity of the same sampling unit of a chemical product. The joint probability density function (jpdf) of the random vector $X=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$ is given by

$$
f\left(x_{1}, x_{2}\right)=C\left(6-x_{1}-x_{2}\right), \quad 0 \leq x_{1} \leq 2, \quad 2 \leq x_{2} \leq 4 .
$$

Example 33. (a) Determine the value of the above constant $C$ such that $f\left(x_{1}, x_{2}\right)$ is a jpdf, i.e., find $C$ such that the volume under $f\left(x_{1}, x_{2}\right)$ and rectangular region $R x=\left[0 \leq x_{1} \leq\right.$ 2 , and $2 \leq x_{2} \leq 4$ ] is equal to 1 (or $100 \%$ probability). That is,

$$
\begin{aligned}
& C \int_{x_{2}=2}^{4} \int_{x_{1}=0}^{2}\left(6-x_{1}-x_{2}\right) d x_{1} d x_{2}=C \int_{2}^{4}\left[6 x_{1}-\frac{x_{1}^{2}}{2}-x_{2} x_{1}\right]_{0}^{2} d x_{2} \xlongequal{\text { Set to }} 1 \\
& C \int_{2}^{4}\left(12-2-2 x_{2}\right) d x_{2}=C\left[10 x_{2}-x_{2}^{2}\right]_{2}^{4}=C(24-16)=8 C=1 \rightarrow C=0.125 .
\end{aligned}
$$

Thus $f\left(x_{1}, x_{2}\right)=0.125\left(6-x_{1}-x_{2}\right)$ is a jpdf over $R x: 0 \leq x_{1} \leq 2,2 \leq x_{2} \leq 4$ because the volume under $f\left(x_{1}, x_{2}\right)$ is identically equal to $100 \%$.
(b) Compute the joint Pr that a randomly selected unit has a surface tension less
than 1 and an acidity not exceeding 3.

$$
P\left(X_{1} \leq 1, X_{2} \leq 3\right)=\frac{1}{8} \int_{0}^{1} \int_{2}^{3}\left(6-x_{1}-x_{2}\right) d x_{2} d x_{1}=3 / 8=0.3750=F_{x 1, \times 2}(1,3)
$$

It can be shown that the Joint-cdf of the above joint-pdf is given by
$\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0.125 \int_{0}^{\mathrm{x}_{1}} \int_{2}^{\mathrm{x}_{2}}\left(6-\mathrm{x}_{1}-\mathrm{x}_{2}\right) \mathrm{dx} \mathrm{x}_{2} \mathrm{dx} \mathrm{x}_{1}=0.125\left(\mathrm{x}_{1}^{2}+6 \mathrm{x}_{1} \mathrm{x}_{2}-10 \mathrm{x}_{1}-\mathrm{x}_{1} \mathrm{x}_{2}^{2} / 2-\mathrm{x}_{1}^{2} \mathrm{x}_{2} / 2\right)$,
$0 \leq x_{1} \leq 2, \quad 2 \leq x_{2} \leq 4$. Note that $\frac{\partial^{2} F\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}}=f\left(x_{1}, x_{2}\right)$.
(c) We next compute the $P\left(X_{1}+X_{2} \leq 4\right)$, or the $P\left(X_{2} \leq 4-X_{1}\right)$.

$$
P\left(X_{1}+X_{2} \leq 4\right)=0.125 \int_{x_{1}=0}^{2} \int_{x_{2}=2}^{4-x_{1}}\left(6-x_{1}-x_{2}\right) d x_{2} d x_{1}=2 / 3 .
$$

Exercise 39. (a) Re-compute the above $P\left(X_{1}+X_{2} \leq 4\right)$ by integrating with respect to (wrt) $x_{1}$ first followed by $x_{2}$.

## MARGINAL PROBABILITY DENSITY FUNCTIONS (mpdf)

Analogous to the discrete case, the mpdf of the continuous $\mathrm{rv} \mathrm{X}_{1}$ is defined as
$f_{1}\left(x_{1}\right)=\int_{R_{2}} f\left(x_{1}, x_{2}\right) d x_{2}=\int_{x_{2}=2}^{4} 0.125\left(6-x_{1}-x_{2}\right) d x_{2}=\frac{3-x_{1}}{4}, \quad 0 \leq x_{1} \leq 2$.
Therefore, $E\left(X_{1}\right)=\int_{0}^{2} x_{1} f_{1}\left(x_{1}\right) d x_{1}=\int_{0}^{2} x_{1} \frac{3-x_{1}}{4} d x_{1}=5 / 6$.
Exercise 39 (b). Obtain the mpdf of $X_{2}$ for the Example 33 and verify that both $f_{1}\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)$ are indeed probability density functions. (c) Compute the $\operatorname{Pr}\left(X_{2} \leq 3\right)$ and $E\left(X_{2}\right)$.

## CONDITIONAL PROBABILITY DENSITY FUNCTIONS

The conditional pdf of $x_{2}$ given $x_{1}$ is defined as $f\left(x_{2} \mid x_{1}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)}=\frac{6-x_{1}-x_{2}}{2\left(3-x_{1}\right)}, 2 \leq$ $x_{2} \leq 4$. Since the expression for $f\left(x_{2} \mid x_{1}\right)=\frac{6-x_{1}-x_{2}}{2\left(3-x_{1}\right)}$ is not free of $x_{1}$, then the $r v X_{2}$ is not independent of $X_{1}$.

Exercise 39(d). Verify that $f\left(x_{2} \mid x_{1}\right)$ is indeed a pdf over the range $R_{2}=[2,4]$. Then obtain $f\left(x_{1} \mid x_{2}\right)$ and determine if $X_{1}$ is independent of $X_{2}$. Verify your answer over the range $\mathrm{R}_{1}=[0,2]$.

## CONDITIONAL EXPECTATIONS

The conditional expectation of $X_{2}$ given the value of $x_{1}$ is defined as
$E\left(X_{2} \mid x_{1}\right)=\int_{R_{2}} x_{2} f\left(x_{2} \mid x_{1}\right) d x_{2}=\int_{2}^{4} x_{2}\left(\frac{6-x_{1}-x_{2}}{6-2 x_{1}}\right) d x_{2}=\frac{26-9 x_{1}}{3\left(3-x_{1}\right)}$.
Note that because $X_{2}$ is not independent of $X_{1}$, then the $E\left(X_{2} \mid x_{1}\right)$ is a function of $X_{1}$ over the range space $\mathrm{R}_{1}=[0,2]$.

Exercise 39(e). Compute $E\left(X_{2} \mid X_{1}=0.50\right)$ and obtain $E\left(X_{1} \mid X_{2}\right)$ and use it to recompute the unconditional expectation $E\left(X_{1}\right)$. Use $E\left(X_{2} \mid x_{1}\right)$ and $f_{1}\left(X_{1}\right)$ to re-compute the unconditional $E\left(X_{2}\right)$. (f) Obtain the covariance matrix $\sum$. (ANS: $\sigma_{11}=11 / 36, \rho=-1 / 11$ ). (g) Obtain the $\mathrm{V}\left(\mathrm{X}_{2} \mid \mathrm{x}_{1}\right)$.

Exercise 40. (a) Show that $-1 \leq \rho \leq 1$ for all bivariate random vectors. Hint: Expand $V\left(c_{1} X_{1}+c_{2} X_{2}\right)$ and use the fact that $V\left(c_{1} X_{1}+c_{2} X_{2}\right) \geq 0$ for all choices of real constants $\mathrm{c}_{1}$ and $\mathrm{c}_{2}$. (b) Show that $\rho=+1$ if $\mathrm{X}_{2}=\mathrm{a}+\mathrm{b} X_{1}$, but $\rho=-1$ when $X_{2}=a-b X_{1}$, where the constant $b>0$.

Exercise 41. Consider the uniform joint-pdf

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)= \begin{cases}1, & 0 \leq \mathrm{x}_{1} \leq 1, \quad-\mathrm{x}_{1} \leq \mathrm{x}_{2} \leq \mathrm{x}_{1} \\ 0, & \text { elsewhere. }\end{cases}
$$

(a) Draw the triangular region $\mathrm{R}_{\mathrm{x}}=\left[0 \leq \mathrm{x}_{1} \leq 1,-\mathrm{x}_{1} \leq \mathrm{x}_{2} \leq \mathrm{x}_{1}\right]$ and obtain the covariance matrix $\sum$. (b) Verify that $\rho=0$ but yet $X_{1}$ and $X_{2}$ are not independent. (c) Show that the joint-cdf is given by $F\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}x_{1} x_{2}+0.5\left(x_{1}^{2}+x_{2}^{2}\right),-1 \leq x_{2} \leq 0 \\ x_{1} x_{2}+0.5\left(x_{1}^{2}-x_{2}^{2}\right), \quad 0 \leq x_{2} \leq 1\end{array}\right.$. Again, note that $\frac{\partial^{2} F\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}}=f\left(x_{1}, x_{2}\right)$. (d) Work Exercises 9, 13, and 17 on pp. 204-205 of Devore (8e).

Note that a necessary (but not sufficient) condition for two rvs to be independent is that their range space, or SPUS, $R \times$ must be rectangular.

## LINEAR COMBINATIONS ( WHEN INDIVIDUAL COMPONENTS of the LC MAY BE CORRELATED)

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are random variables with known means $\mu_{1}$, $\mu 2, \ldots, \mu_{\mathrm{n}}$ and known variances $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{2}^{2}$, respectively, and covariances $\sigma_{\mathrm{ij}}$ $(\mathrm{i} \neq \mathrm{j})$. Then the rv $\mathrm{Y}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$, where ci's are known constants, is called a linear combination (LC). In other words, we have complete information about the $1^{\text {st }}$ two moments of the $n$ inputs $X_{i}$ 's, and the objective is to use them to compute $E(Y)$ and $V(Y)$, i.e., the $1^{\text {st }}$ two moments of the linear output Y , as shown below.

$$
\begin{equation*}
\mu_{Y}=\mathrm{E}(\mathrm{Y})=\mathrm{E}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{E}\left(\mathrm{X}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mu_{\mathrm{i}} \tag{31a}
\end{equation*}
$$

Note that the $E(Y)$ is the same LC of $\mu_{i}$ 's as $Y$ is of $X_{i}$ 's! We next compute the $\sigma_{y}^{2}$ by applying the nonlinear variance operator V.

$$
\begin{align*}
\sigma_{y}^{2} & =\mathrm{V}(\mathrm{Y})=\mathrm{E}\left(\mathrm{Y}-\mu_{\mathrm{y}}\right)^{2}=\mathrm{E}\left[\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}-\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mu_{\mathrm{i}}\right)^{2}\right]=\mathrm{E}\left[\sum \mathrm{c}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)\right]^{2} \\
& =\mathrm{E}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}^{2}\left(\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)^{2}+\sum_{\mathrm{j} \neq \mathrm{i}}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}-1} \mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}}\left(\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)\left(\mathrm{X}_{\mathrm{j}}-\mu_{\mathrm{j}}\right)\right] \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}^{2} \sigma_{\mathrm{i}}^{2}+2 \sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}>\mathrm{i}}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}} \mathrm{E}\left[\left(\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)\left(\mathrm{X}_{\mathrm{j}}-\mu_{\mathrm{j}}\right)\right]= \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}^{2} \sigma_{\mathrm{i}}^{2}+2 \sum_{i=1}^{\mathrm{n}-1} \sum_{\mathrm{j}>\mathrm{i}}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}} \sigma_{\mathrm{ij}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{j=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}} \sigma_{\mathrm{ij}} \tag{31b}
\end{align*}
$$

If the rvs $X_{1}, X_{2}, \ldots, X_{n}$ are independent, then $\sigma_{i j}$ ' in equation (31b) are all zero for any $\mathrm{i} \neq$ $j$ and as a result the $\mathrm{V}(\mathrm{Y})$ reduces to $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}^{2} \sigma_{i}^{2}$, as before. Further, if $\mathrm{X}_{\mathrm{i}}$ 's are also normally distributed (besides being jointly independent), then $\mathrm{Y} \sim \mathrm{N}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mu_{\mathrm{i}}, \quad \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}^{2} \sigma_{i}^{2}\right)$. For example, the sample mean $\overline{\mathbf{X}}$ from a normal universe is a LC whose $c_{i}=1 / n$ for all $i=1,2$, $\ldots, \mathrm{n}$ so that $\overline{\mathrm{X}} \sim \mathrm{N}\left(\mu, \sum_{\mathrm{i}=1}^{\mathrm{n}}(1 / \mathrm{n})^{2} \sigma_{\mathrm{x}}^{2}\right)$, or $\overline{\mathrm{X}} \sim \mathrm{N}\left(\mu, \sigma_{\mathrm{x}}^{2} / \mathrm{n}\right)$. However, if $X_{i}$ 's are correlated (i.e., $\sigma_{\mathrm{ij}} \neq 0$ ) and normally distributed, then the linear combination $\mathrm{Y}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$ is also Gaussian with $E(Y)=\sum_{i=1}^{n} c_{i} \mu_{i}$ and $V(Y)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \sigma_{i j}$.

## SIMPLE RANDOM SAMPLING

Suppose $X$ is a continuous random variable with pdf $f\left(x ; \mu, \sigma^{2}\right)$ and let a random sample of size $n$ be drawn from this population. Denote the $n$ sample values by $x_{1}, x_{2}, \ldots$,
$X_{n}$; then $X_{1}, X_{2}, \ldots, X_{n}$ are random variables with pdfs $f_{1}\left(X_{1}\right), f_{2}\left(X_{2}\right), \ldots, f_{n}\left(X_{n}\right)$. The method of sampling, which possesses the following two properties, is called random sampling:
(1) $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent. (2) $f\left(X_{i}\right)=f(x)$ for all i.

Therefore, if $X_{1}, X_{2}, \ldots, X_{n}$ are elements of a random sample, then $E\left(X_{i}\right)=\mu$ and $V\left(X_{i}\right)=\sigma^{2}$ for all i because all $X_{i}$ 's are identically distributed like the parent pdf $f\left(x ; \mu, \sigma^{2}\right)$.

Exercise 42. Let $\bar{X}$ be the mean of a random sample of size $n$ from a population with mean $\mu$ and variance $\sigma^{2}$. (a) Show that $E(\bar{x})=\mu$ and $V(\bar{x})=\sigma^{2} / n$. (b) Further, if the population is normal, then $\bar{X}$ is also $N\left(\mu, \sigma^{2} / n\right)$. (c) Now consider the LC: $Y=2 X_{1}-3 X_{2}-$ $4 X_{3}+5 X_{4}$, where $\mu_{1}=50, \mu_{2}=\mu_{3}=25, \mu_{4}=35, \sigma_{1}^{2}=\sigma_{4}^{2}=1.25, \sigma_{2}^{2}=\sigma_{3}^{2}=1.95, \sigma_{12}$ $=1.40, \sigma_{34}=1.20$ and all other covariances are 0 . Assuming that $Y$ is normally distributed, compute the $\operatorname{Pr}(\mathrm{Y}>110) . \operatorname{Part}(\mathrm{c})$ ANS for $\sigma_{34}=1.20: 0.013042$

Exercise 43. Work Exercises 1, 3, 15, 37, 39, 42, 46, 47, 50, 53, 56, $58,59,60,65,73,76,77$, and 78 on pages 203-236 of Devore's $8^{\text {th }}$ Edition.

Exercise 44. The smog content of air in a certain area is monitored daily. The acceptable content of a particular constituent is at $7.7 \%$. If the actual content, X , of this constituent is $\mathrm{N}(7.6,0.0016)$, and the measuring instrument has an error $\varepsilon$ which is $\mathrm{N}(0$, 0.0009 ), compute: (a) The Pr that a single measurement will exceed $7.7 \%$, (b) The Pr that the mean of 5 measurements is less than 7.55 . ANS: (a) 0.02275 , (b) 0.012674 .

Exercise 45. Suppose $X, Y$ and $Z$ are NID (normally and independently distributed) with means 100, 48, 48 and variances 10, 13 and 13, respectively. Compute the $\operatorname{Pr}(\mathrm{X}>\mathrm{Y}+\mathrm{Z})$. ANS: 0.74751 .

