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STAT 3600  Reference:  Chapter 3 of Devore(8e)    S.  Maghsoodloo     

   

Discrete  One-Dimensional  Random Variables  (rvs) 

 DEFINITION:   A rv, X, is a function defined on the universe (U) of an 

experiment, where X assigns a unique real number to every outcome (O) in U (i.e., X(O) 

is a real number for any outcome O in U). 

 

 Example 16.    Let an experiment consist of tossing 3 fair coins (Quarter, Dime, 

and a Nickle).  Then U = {HHH, HTH, HHT, THH, HTT, THT, TTH, TTT}.  Define the 

function X as the number of heads observed in one toss of the 3 coins (N= Nickel, D= 

Dime, Q = Quarter).  Then the range space of X is the subset of real numbers Rx = {0, 

1, 2, 3}.  The assignments that the function X makes are: X(HHH) = 3, X(HTH) = 2, 

X(TTH) = 1, X(TTT) = 0, etc.  Note that Rx is a subset of real numbers.  

 Further, the function X maps U onto Rx (a subset of real numbers) and for each 

outcome O in U, there exists a unique real value of X(O).  Note that capital letters must 

be used to represent random variables.   

 Exercise 12.   (a) Two dice are tossed.  Let the rv, X, represent the sum of the 2 

up faces.  Determine the range space Rx. 

 A random variable is said to be discrete if its range space Rx is finite or countably 

infinite.  If Rx cannot be put onto a 1 to 1 correspondence with the set of integers, then X 

is a continuous rv.  

 Example 17.    A certain type of electron tube is placed on life test and  

its time to failure, TTF in hours, is recorded.  Let X represent the time to failure (TTF) of 

the tube.  Then X is a continuous rv with 

  Rx = {x x is a real number,  0 <  x < } = [0, ). 

Other examples of continuous rvs are provided in Example 1.2 (X = flexural strength) on 

page 5 of Devore, Example 1.10 (X = Adjusted Consumption of BTUs) on page 18 of 

Devore,  X = Tensile ultimate strength (ksi) in Exercise 13 on page 24 of Devore, etc. 

 Definition:  Let the event A belong to an U and suppose the rv, X, maps A onto 

a subset of Rx denoted by RA , i.e.,  

   A = {All outcomes O in U X(O) = x   RA }. 
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Then p(x) is said to be a probability mass (or distribution) function if : (1)  p(x) = P(A),   

(2)  0 < p(x) < 1,  and (3) 
RRx

p(x)  = 1. 

           Example 18:  Consider the rv, X, defined in Example 16.  Let A = {the 3 coins 

show exactly 2 heads } = {HHT, HTH, THH}.  Then the rv X maps A onto the subset of 

Rx denoted by RA = {2 heads}, and P(X = 2) = px(2) = p(2) = P(A) = 3/8.  The probability 

mass function (pmf), or the frequency function, is give below: 

              pmf(x) = p(x) = 1 / 8, x =0, 3
3 / 8, x =1, 2.

 

= 0.125 + 0.375x 0.125x2, x = 0, 1, 2, 3. 

Note that in statistical theory, the set on which p(x) > 0, i.e., p(x) is positive-definite, is 

also referred to as the support-set of the frequency-function p(x).  Thus, the support-set 

of p(x) for the Example 18 above is SUPS = {0, 1, 2, 3}.   

 Exercise 12 (b).   Obtain the Pr distribution function (PDF) of the rv defined in 

Exercise 12(a).  In Example 18 above, let the event B = {The 3 coins show at most one 

head}.  Determine RB, express P(B) in terms of the rv X, and then compute its Pr. 

   

The  Cumulative  Distribution  Function  (The cdf) 

The cdf for a discrete rv, X, at a specified value x in Rx is defined as 

          X
y

F (x) P(X x) p(y)


   
x

 

Note that, starting from   , the cdf accumulates all the Prs to the left of and at the 

value of the specified x. 

 For example, for the PDF of Example 18, the cdf is given by 

             F(x) = 

0, x < 0
1 / 8, x =0
4 / 8, x = 1
7 / 8, x =2
1, x 3.








  = 
2 31 7x x x

8 24 8 24
   ,  x = 0, 1, 2, 3, 

and the inverse function of the above cdf is given on p. 38 of these notes.  

 For the rv of Exercise 12(b) above, the cdf is given by F(x) = 
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0, x 2
x (x 1) / 72, 2 x 7,
(x 4)(21 x) / 72, 8 x 12,
1, x 12.


   
    
 

  Note that the rv, X, for this last cdf is the sum of 2 

faces of 2 balanced dice. 

 

Properties  of  the  cdf  F(x)   

(1) 0 < F(x) < 1  for all x in RX,  (2) F(x) must be monotonically non-decreasing,  (3)  

F( ) = 0 and F(+ ) = 1,  (4) Given that  RX  = [a, b], where a and b are real numbers 

and b > a , then for certain F(x) = 0 for all x < a, and F(x) = 1 for all x  b. 

            Exercise 12(c).    Consider the Example 4 on pp. 13-14 of my notes.  Define the 

rv X = as the number items that have to be drawn at random one at a time from the lot 

of N = 10 units in order to remove both defective units.  For this rv, X, obtain both the 

pmf, p(x), and the cdf, F(x).   [In developing the cdf you must use the fact that the sum 

of the first n nonnegative integers is given by  
n

x 0

x


 n (n + 1)/2]. 

 

THE  EXPECTED  VALUE  OF  A  DISCRETE  RANDOM  VARIABLE 

 Suppose X is a discrete rv over the range space RX with PDF p(x).  Then the 

weighted average (or population mean) of X is defined as its expected value and is 

given below: 

                   = E(X) = 

xR

x p(x)[ ]                       (2)           

           Example 18 (Continued).   Find the population mean for the PD of Example 18. 

  The use of equation (2) yields 

          = E(X) = 0(1/8) + 1(3/8) + 2(3/8) + 3(1/8) = 1.50 heads. 

 Exercise 12(d).   Compute the population mean,  = E(X), for the rv defined as 

the sum of 2 balanced dice.  Then, compute the population mean  for the rv of the 

Exercise 12(c).   For the 2nd part of this exercise you must make use of the fact that 

n
2

i 1

i n (n 1)(2n 1 ) / 6.


    ANS:  E(X) = 7.0,    = E(X) = 7.33333 .  The formula for 
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n
2

i 1

i

 can be verified by considering the identity 

n
3

i 1

i

  

n
3

i 1

(i 1)


 = n3 and expanding (i 

 1)3.  Similarly, 
n

3 2

i 1

i n (n 1) / 4[ ]


 
 

and  
n

4 2

i 1

i n (n 1)(2n 1)(3n 3n 1) / 30[ ]


     . 

 

THE  VARIANCE  OF  A  DISCRETE  RV 

 A population’s Variance, by definition, is the weighted average of deviations from 

the mean () squared, i.e., the population variance of a rv, X, is defined as 

              V(X) = 2 = E[(X  )2] = 
x

2

R

(x ) p(x)                                        (3) 

Note that    is used only when X is discrete.  Later in Chapter 4 we will learn that only 

when X is a continuous rv, then   sign will replace the summation in equation (3), and 

p(x) will be replaced by the density function of X.  The positive square root of V(x) in Eq. 

(3) is called the population standard deviation and is universally denoted by .  Students 

must be cognizant of the fact that whenever the operator E is applied to any rv, the end 

result is always and invariably a population parameter, i.e.,  is a population parameter. 

 Further, the variance is simply the 2nd central moment. 

 Example 18 (Continued).    V(X) = E[(X  )2] = E [(X  1.5)2] =  

(0  1.5)2 (1/8) + (1  1.5)2 (3/8) + (2  1.5)2 (3/8) + (3 1.5)2 (1/8) = 0.75, 

       The population (or process) standard deviation  = + 0.75  = 0.86603. 

 Exercises 12(e).   Obtain the variance and standard deviation [std for Matlab 

and STDEV for Microsoft Excel] of the rv, X, that represents the sum of 2 faces of dice.  

      ANS:  = 2.41523. 

 

THE  PROPERTIES  OF  THE  OPERATOR  E 

The expected value operator, E, is linear because 

 (1)  E(CX) = CE(X)  for any constant C and rv X, 

 (2)  E(X + Y) = E(X) + E (Y) 

where X and Y are rvs.  Clearly E(C) = C for any constant C. 

We now use the properties of E in order to obtain a computing formula for V(X). 
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V(X)  = E [(X  )2] = E[X2  2X + 2] = E(X2)  2E(X) + E(2)=  

 = E(X2)  2 = E[(X2)]  [E(X)]2,                            (4) 

where E(X2) is the weighted average of x2 values in the range space Rx (or SUPS of 

p(x)) given by E(X2) = [x2p(x)], and this last sum extends over all x  Rx. 

 Example 18 (Cont’d).    E(X2) = 02  1/8 + 12  3/8 + 22 3/8 +32 1/8  = 3.0    

2 = 3.0  (1.5)2 = 0.75, which is identical to the same value obtained using the 

definition of V(X) near the middle of page 25. 

  Exercise 12(f).  Compute the (population) variance and stevd of the rv of 

Exercise 12(c).  In computing E(X2), you need to make use of the fact that 

n
3 2 2

i 1

i n (n 1) 4./


          ANS : x = 2.2111 1 . 

 In the remaining of Chapter 3, we will study several discrete PDFs, all of which 

are based on the very fundamental distribution called Bernoulli.  The range space for a 

Bernoulli rv is always Rx  = {0, 1}, where 0 pertains to the occurrence of a failure and 1 

pertains to the occurrence of a “generic” success.  The discrete frequency functions that 

are derived from independent Bernoulli trials are:  Binomial, Geometric, Pascal (or 

Negative Binomial), and the Poisson. 

 

DISCRETE  FUNCTIONS  OF  RANDOM  VARIABLES 

 As an example, suppose a contractor is going to bid on a project but  

the days to completion, X, is a rv whose PD follows the pmf tabulated below: 

 

x 10 days 11 12 13  14 days 

p(x) 0.10 0.30 0.40 0.10 0.10 

 

The contractor's net profit function per project is Y = $600(13  X). 

(a)  What is the PDF of Y, p(y)?   Clearly, Ry = { 600, 0, 600, 1200, 1800}. 

pY(1800) = P(Y = 1800) = P(X = 10) = 0.10 
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pY(1200) = P(Y = 1200) = P(X = 11) = 0.30, etc.   Hence, 

              pmf(y) = p(y) = 
0.10, y= 600, 0, 1800
0.30, y=1200
0.40, y=600.





  

(b) What are the contractor's expected net profit and the variance of Y? 

       E(Y) =  
yR

y p y  = ( 600)0.10 + 00.10 + 6000.40 + 12000.30 + 18000.10 = 

$ 720.00 /project. V(Y) = E[(Y  720)2] = E(Y2)  7202.   E(Y2) = [y2p(y)] = 

(600)20.10 +  020.10 + 60020.40 + 120020.30 + 180020.10 = 936,000.00    2
y  

= 936,000  7202 = 417,600        y = $646.22/project.      

The coefficient of variation of Y is given by CVy = y/E(Y) = 89.753%.  Note that the 

reciprocal (or inverse) of CV is called the Signal-to-Noise Ratio(S/N Ratio).  The quality 

of any process can be improved by increasing its S/N ratio. 

      We now show that the above E(Y) and V(Y), because Y is a function of X, can 

and should be computed W/O obtaining the PDF of Y, as shown below. 

   E(Y) =    
xR

Y x p x  = 
14

x 10

600(13 x) p(x)


   = 600
14

x 10

(13 x) p(x)


  = 

= 600 [
14

x 10

13 p(x)


 
14

x 10

x p(x)


 ]= 600 [13  E(X)] = 600(13  11.8) =  $720.00 per 

project as before!   

 Before computing the V(Y) using the pmf of X, we need to state the properties of 

the variance operator V. 

(1) V(C) = 0 for any constant C, (2) V(CX) = C2V(X), where X is any rv. 

Note that property (2) clearly shows that V is a nonlinear operator because V(CX)  C 

V(X) for all real constants C.  (3) V(X + C) = V(X),  (4) If X and Y are any two rvs, then 

V(X   Y) = V(X) + V(Y)  2 COV(X, Y), where the covariance between two random 

variables X and Y is defined as  COV(X, Y) = xy = E[(X  x)(Y  y)].  If the rvs X and 

Y are independent, then for certain COV(X, Y) = xy = 0.  The converse of this last 

statement is not always true.   
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 Exercise 13.   (a) Compute E(X) and V(X) of the above example and then re-

compute E(Y) and V(Y) as functions of E(X) and V(X).  Note that you must use the 

properties of the variance operator stated above.  (b)  Show that  

                     COV(X, Y) = E[(XY)]  E(X)E(Y) = E(XY)  xy. 

   Exercise 14.     A well-known inventory problem is the "newsboy problem", 

described as follows:  A newsboy buys papers for 15 cents each and sells them for 35 

cents each, and he cannot return unsold papers (i.e., the salvage value of each unsold 

paper at the day's end is zero).   From past experience, the daily demand distribution is 

given below (D = daily demand).                           

                               p(d) =  

0.06, d 100, 101, 102, 103, 111

0.08, d 104, 105

0.10, d 106, 107, 108

0.12, d 109, 110















             

 (a) Obtain E(D) and V(D).  (b) Determine the daily net profit function, Y in dollars, given 

that his daily stock level is I (100 < I < 111).  Note that Y is a function of d and I. (c) 

Determine the optimum value of I by maximizing E(Y).  ANS:  I0 = 107, E[Y(d,107)] = 

$20.763. 

 

THE  BERNOULLI  DISTRIBUTION 

 Consider an experiment whose outcomes can be classified as either success or 

failure, i.e., U = {Success, Failure}, i.e., a dichotomist process.  

 Define the discrete rv, X, such that the value of X is 1 if a success occurs and the 

value of X is 0 if the experiment results in a failure.  Thus RX = {0, 1} and X(Failure) = 0, 

X(Success) = 1.  Further, suppose the Pr of success in one trial of the experiment is p 

and failure Pr per trial is q, i.e., p + q = 1 so that q = 1  p.  Hence 

                                   p(x)  = 1 p, x =0
p, x =1
   = pxq1-x  , x = 0, 1.          

The mean of a Bernoulli rv is  = E(X) = 0(1  p) + 1p = p. 

 Exercise 15.   Show that the variance of a Bernoulli rv is 2 = pq. 

 Example 19.   A small part of a steel pipe is produced by an automatic machine, 
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but the machine is not perfect and manufactures one NCU in 100 units, i.e., the pr of a 

randomly selected unit being defective is p = 0.01.  One item is selected at random from 

a lot of N = 5000 parts.  Let X be the Bernoulli rv with 

                    U = {good,  NC },           Rx = {0, 1}.  

Then the PDF of X is given by  p(x) = 0.99, x =0
0.01, x =1  = (0.01)x0.991-x.                             

The proportion p = 0.01 is called the FNC of the process.  As a continuation of Exercise 

12, Verify that E(X) = 0.01 and V(X) = 0.0099. 

 

THE  BINOMIAL PDF (or pmf) 

 Now, consider n > 1 independent Bernoulli trials in successions.  The binomial rv, 

X, is defined as  X = “The number of successes observed in n trials”,  where Rx = {0, 1, 

2, 3,..., n 1, n}, and p = Pr of success at each single trial. 

 Example 20.   Two dice are tossed 10 times.  Compute the Pr that the event 

“sum of the 2 observed faces add to 8” come up exactly x = 3 times (out of n = 10 trials). 

 Define Success = {The 2 faces of the dice sum to 8 in one toss} = {(2, 6), (3, 5), (4, 4), 

(5, 3), (6, 2)}.       p = Pr of success in a single trial = 5/36, q = Pr of failure per trial  = 

1  p = 31/36.  The Binomial rv  X = The number of Eight’s observed in n = 10 tosses.  

The following table shows one possible way to obtain exactly three successes in 10 

trials, where  Success = {8}  and Failure =  { 8 8 } ={Non-eight}.  Because of the  

 

Trials 1 2 3 4 5 6 7 8 9 10 

outcomes 8  8  8 8  8 8  8  8  8 8  

probability 31/ 36 q 5/36 q p q q q p q 

 

multiplication principle, the Pr for the above specific sequence 8 8 8 8 8 8 8 8 8 8  is  

(31/36)(31/36)(5/36)(31/36)(5/36)(31/36)(31/36)(31/36)(5/36)(31/36) = (5/36)3(31/36)7. 

 However, since we are just interested in exactly three 8's in n = 10 trials and each 

sequence of 8's and 8s  are MUEX and have the same exact Pr of (5/36)3(31/36)7, plus 
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the fact that the total number of different ways of placing the three successes in 10 

different trials is 10C3, we obtain: b(3;10, 5/36) = 10C3(5/36)3(31/36)7 = 0.1128751.          

For the above example, the Pr of observing exactly x successes in 10 trials is given by 

p(x) = b(x; 10, 5/16) = 10Cx(5/36)x(31/36)10x,  x = 0, 1, 2, ..., 10.  This last PDF is called 

the Binomial with parameters n = 10 and p = 5/36, denoted as Bin(n, p) = Bin(10, 5/36). 

 The general form of the Binomial pmf is given by b(x; n, p) = nCxpxqnx , (where q = 1  

p),  and its cdf is given by   F(x) = B(x; n, p) = 
x

i 0

b(i;n,p)

  = 

x
i n i

n i
i 0

C p q 



  . 

 It is paramount to observe that the binomial rv, X, is the sum of n independent Bernoulli 

rvs, Xi, i.e., 

        X = X1 + X2 + ... + Xn                                              (5) 

where Xi represents the Bernoulli rv at the ith trial whose value is equal to 0 or 1 (0 for failure 

and 1 for success) so that the Rx = 0, 1, 2, ..., n. 

 Exercise 16.   Use equation (5) and the fact that the operator E is linear  

to show that E(X) = np  and V(X) = npq  for any binomial rv X.  

 Example 21.   A manufacturing process produces parts which are, on the average, 1% 

NC to customer specifications.  A random sample of n = 30 items is drawn from a conveyor belt. 

 (a) Compute the Pr that the sample contains exactly x = 2 NCUs.    

                       b(2; 30, 0.01) = 30C2 (0.01)2(0.99)28 = 0.03283. 

(b) Compute the Pr that the above sample of 30 units contains at most 2 NCUs. 

            P(X < 2) = FX(2) = B(2; 30, 0.01) = 
2

2 30 x
30 x

x 0

C (0.01) (0.99) 


 = 0.996682 

(c) Compute the Pr that the sample contains at least 2 NCUs. 

 P(X > 2) = 1  P(X < 1) = 1  F(1) = 1  B(1; 30, 0.01) = 0.036148. 

Note that the statistic p̂ = X/n  is called the sample FNC and is used as a point estimate 

of process FNC, p. 

 Exercise 17.    Prove the 2 properties of the variance operator: V(CY) = C2V(Y), 

and V(Y1 + Y2) = V(Y1) + V(Y2), iff Y1 and Y2 are independent. 

 Exercise 18.   Work Exercise Exercises 46, 47, 50, 51, 52, 55, 56, and 60 on 
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pages 120-122 of Devore(8e). 

 Exercise 19.  Prove that 
n

x 0

b(x;n, p)

  = 

n
x n x

n x
x 0

C p (1 p) 



 = 1.   Hint:  You must 

use the fact that  (a + b)n = 
n

n i i
n n i

i 0

C a b



 .  This last equality is called the binomial 

expansion of (a + b)n. 

 

The  Geometric  Distribution 

 Consider one Bernoulli trial after another and define the rv X = Number of trials 

required to achieve the 1st success, and as in the case of Bin(n, p), p = Pr of success at 

each trial.  Bear in mind that trials are independent.  Then, the Pr that the 1st success 

occurs at the xth trial is given by g(x; p) = (1  p)x 1p = qx 1p,  x = 1, 2, 3, 4, ....  Note 

that our author Devore uses the general notation p(x) and special notation nb(x; 1, p) for 

the above pmf but my preference is to use g(x; p), where g denotes Geometric Pr and 

nb stands for Negative Binomial. 

 Example 22.   Consider launching of rockets in succession where the success Pr 

of a single launch is 0.95.  Compute the Pr that the 1st failure occurs at the 8th trial, 

assuming that trials are independent. 

                 g(8; 0.05) = (0.95)7(0.05) = 0.034917 

Compute the Pr that the 1st failure occurs after the 10th trial. P(X > 10) = (0.95)10 = 

0.598737.  Compute the Pr that the 1st failure occurs within the 1st  seven trials.             

                       P(X  7) = 1  P(X > 7) = 1  (0.95)7 = 0.301663  

Before computing the mean and variance of a Geometric rv, we will verify that g(x; p) = 

qx 1p  = nb(x; 1, p) is indeed a PDF.  Recall from calculus that the geometric infinite 

sum  i

i 0

ar



  converges to [a / (1  r)]  iff   r  < 1.  Because  0 < p <1, then it follows that 

 
x 1

g(x;p)



  = x 1

x 1

q p





  = p x

x 0

q



  = p/(1  q ) = 1  because  1  q = p. 

 The mean of the Geometric distribution can be computed using the definition of  
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 = E(X) = 
x=1

xg(x; p)


 = x 1

x 1

x q p





 = p x

x 1

d
q

dq




  = p

d q

dq 1 q
( )


 =  

         =  p 
2

(1 q) 1 q( 1)

(1 q)

   


 = p/(1q)2 = 1/p. 

 Exercise 20.  (a)  Compute E(X2) and use it to show that the variance of  

the Geometric rv is given by  2 = q / p2.   (b) Show that the finite geometric sum Sn = 

n
i

i 0

ar

  = 

n 1a (1 r )

1 r




 .   Then use this last result to prove that if r < 1, then the Lim Sn 

(as n  ) = a /(1  r).   (c) Prove that the Geometric distribution is memory-less!   That 

is, show that P(X > a+b x > a) = P(X > b).   Hint:  First obtain the cdf of a Geometric 

random variable given by G(x; p) = 1  qx.    

  

THE  PASCAL  (OR  NEGATIVE  BINOMIAL)  DISTRIBUTION 

 Again consider Bernoulli trials performed one after another (independently of 

each other).  The Pascal rv occurs when the interest lies in the rth success (r > 1) 

occurring at the xth trial, x = r, r+1, r+2, r+3, .... Note that the Geometric distribution is a 

special of the Pascal with r = 1. 

 For example, consider a rocket launching problem where the Pr of success is 

assumed to be 0.95 at each trial.  We wish to compute the Pr that the 3rd failure occurs 

at the 15th launching. 

             nb(15; 3, 0.05) = [14C2 (0.05)2 (.95)12 ](0.05) = 0.0061466. 

Note that the only way the 3rd failed launching can occur at the 15th trial is that during 

the first 14 trials exactly 2 failures and 12 successes occur.  In other words, we have a 

Bin(14, 0.05) distribution in the first 14 trials followed by the occurrence of the 3rd 

Bernoulli event at the x = 15th trial.  

 Exercise 21.   Explain the relation between the Binomial and Pascal 

distributions, i.e., explain why the Pascal PDF is also called Negative Binomial. 

 In general, the Pr that the rth success will occur at the xth Bernoulli trial is first the 

Pr that exactly (r 1) successes occur in the 1st (x 1) trials followed by the rth success 
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at the xth trial, i.e., 

  nb(x; r, p) = [x1Cr1pr 1q (x 1)  (r 1)]p = x1Cr1pr qx  r , x = r, r+1, …                  (6a)   

Note that Devore defines the Negative-Binomial rv as the number of failures, Y,  

occurring before the occurrence of the rth success.  Letting Y = X  r  in  Eq. (6a) results 

in  nb(y; r, p) = y+r1Cr1 pr qy , y = 0, 1, 2, …                                             (6b) 

Equation (6b) is identical to the equation atop page 126 of Devore (8e).      

 The Example 3.38 on page 126 of Devore(8e).   For this example that Devore 

provides on page 126, r = 5 , p = 0.20 and x = 15.   Hence the Pr that the doctor has to 

interview exactly 15 couples in order to recruit 5, from equation (6a), is given by 

           nb(15; 5, 0.20) =  14C4( 0.20)5(0.80)10  = 0.0343941. 

The Pr that the doctor has to interview at most 15 couples to recruit 5 is given by   

P(X  15) = 
15

5 x 5
x 1 4

x 5

C (0.20) (0.80) 



  = nbincdf(10, 5, 0.20) = 0.164234, where  

nbincdf(10, 5, 0.20) is a built-in Matlab function that gives the cdf of the Pascal at x = 15 

with p = 0.20.  MS Excel provides the point mass Pr as negbinom.dist(10, 5, 0.20,false) 

= 0.0343941, and the corresponding cdf as negbinom.dist(10, 5, 0.20,true) = 0.164234. 

 Since the Geometric distribution is memory-less, a Pascal rv is simply the sum of 

Geometric rvs as described below. 

 Let X be the number trials needed to obtain exactly r successes.  Let X1 be the 

number of trials required to obtain the 1st success;  X2 = number of extra trials (beyond 

X1) required to obtain the 2nd success; X3 is the number of extra trials beyond the 2nd 

success to attain the 3rd success,  and so forth.  Finally, Xr is the number of extra trials 

required after the (r 1)th success to obtain the rth success.  Then the total number 

trials required to obtain exactly r successes at the Xth trial is given by   

           X = X1 + X2 + ... + Xr,                 (7) 

where each Xi (i = 1, 2,..., r) is a Geometric rv with parameter p. 

 Exercise 22.   Use the above relationship (7) between the Pascal and the 

Geometric distributions to show that the mean and variance of a Pascal rv, X, are given 

by E(X) = r/p and V(X) = rq/p2.  Further, if the the negative-binomial rv is defined as the 

number of failures, Y, before the rth success, then E(Y) = rq/p and V(Y) = rq/p2.  
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 Exercise 23.   An aircraft has 3 computers, only one of which is needed to 

operate the aircraft.  The other 2 are on standby redundancy (i.e., they are cold-spares) 

that are activated one at a time in case the one on line fails.  From past experience it 

has been determined that the Pr of failure (for the on-line computer) during any one 

hour is roughly 0.0004.  Let X1, X2, and X3 denote the number of hours of operation 

before the failure of the 1st, 2nd and 3rd computer, respectively.  Then the time to 

failure (TTF) of the standby system is 

                X = X1 + X2 + X3  hours. 

(a) Assuming that failures can occur only at the end of each hour and hours can be 

thought of independent Bernoulli trials, compute the Pr of system failure during a 7-hour 

flight.  (b) Compute MTTF (Mean TTF).  (c) Compute the variance of TTF.   Hint:  Again, 

consider each hour as one Bernoulli trial, where the on-line computer either fails or 

survives by the end of the hour. 

Answers:  0.22373 x 108,  MTTF = 7500 hours,  2 = 4329.26091 hours2. 

 

THE  HYPERGEOMETRIC  DISTRIBUTION 

 Study pages 122-126 of Devore(8e) and work the following exercise. 

 Exercise 24.  Lots of size N = 200 pump shafts are inspected before shipment.  

The outgoing average lot quality (AOQ) is p = 0.02 over many lots.  The inspection plan 

calls for random samples of n = 25 units (w/o replacement) and accepting an outgoing  

lot if the number of defectives in the sample is 1 or less.  (a) Compute acceptance Pr of 

a lot, denoted by Pa.  (b) Compute Pa if FNC increases to 5%.  (c) Repeat part (a) if 

sampling is done with replacement. 

ANS:  (c) Pa = 0.911355.  For parts (a) and (b) it is sufficient to give answers in terms of 

nCx.   The approximate Pr for part (b) is Pa = 0.642376. 

 

THE  POISSON  DISTRIBUTION 

 Consider numerous many Bernoulli trials (i.e., n  ) such that the occurrence 

Pr of success at each trial is small (p < 0.15) and average number of successes per 

time unit =  = np = , is a constant.  Let the rv, X, denote the number of Poisson 
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events (or generic successes, or the event of interest) that occur during one time 

interval of unit length.  It can be shown that the PDF (or pmf) of X is given by 

                p(x; ) = 
x

e
x!


 ,   x = 0, 1, 2, 3, 4, .....                                 (8) 

It will be shown later that a Poisson process is simply the limiting distribution for a Bin(n, 

p) as n    and simultaneously as p  0 such that the product np stays fixed at the 

value of , and is generally required that np  20.  

 Example 23.   The number of no-hit games occurring during a major league 

season is Poisson distributed with an average rate of  = 1.8 no-hit games per year.  (a) 

Compute the Pr of exactly 2 no-hit games during the next year.  P( X = 2) = p(2; 1.8) = 

21.8

2!
 e1.8  = 0.267784  (b) Compute the Pr of at most 2 no-hit games occurring during 

the next season. P(X  2) = cdf(of X at  2) = FX(2; =1.8) = 
x2

1.8

x 0

1.8
e

x!



  = 0.73062.  

Note that Table A.2 in Appendix A-4 of Devore gives the cdf of the Poisson for  = 

0.10(0.10)1(1)20.0.  (c)  Compute the Pr that at least 2 no-hit games occur during the 

next  baseball season.  P(X  2) = 1  P(X  1) = 1  FX (1;1.8) = 1  p(0;1.8)  p(1;1.8) 

 = 1  0.46284 = 0.537163. 

 Exercise 25.   The number of accidents per day in a certain city is Poisson 

distributed at an average rate of 5 accidents/day.  (a) Compute the Pr of no accidents 

occur in the city during the next day.  (b) Compute the Pr of at most 4 accidents 

occurring during the next day.  (c) Compute the Pr of an odd number of accidents 

occurring during next day. ANSWERS:  (a) 0.006738, (b) 0.4404933,  (c) 0.4999773.  In 

order to obtain the answer for part (c), you have to make use of the fact that  Sinh(x)   = 

 (ex  ex )/2 = (x/1!) + (x3/3!)  + (x5/5!) + (x7/7!) + ....  For your info Cosh(x) =  

(ex + ex )/2, and hence the Tanh(x) = (ex  ex )/(ex + ex). 

 The Poisson distribution can be used to compute probabilities over intervals of 

length t (t  1 unit of time).  Let Y = number of Poisson events occurring during an 

interval of length t (t  1) where the average number of Poisson events per unit of time (t 



 36

= 1)  is = .  Then the average number of Poisson events per interval of length 

t is E(Y) = t.   As a result, the pmf for the rv Y is given by 

                                    p(y; t ) = 
y

t( t)
e

y!


 ,     y = 0, 1, 2, 3, 4, ... 

 Example 24.   Consider the Poisson process of Example 25.  We wish  

to compute the Pr of exactly 6 no-hit games during the next 4 years: 

        = np = 1.8/year, t = 4 years     t = 7.2 no-hit games/four years     

P(Y = 6) = 
6

7.27.2
e

6!
  = 0.1444582, i.e., Y is p(y ; 7.2) read as Poisson distributed at an 

average rate of 7.2.  The Pr of at least 6 no-hit games in the next 4 years of major 

leagues is given by  P(Y  6) = 1  P(Y  5) = 1  FY (5; 7.2)  = 1  0.27590 = 0.72410. 

 Exercise 25 (Continued).   Compute the Pr that there will be exactly 11 

accidents in the city during the next 3 days.  Secondly, compute the Pr that there will be 

at least 11 accidents in the next 3 days.  Finally, compute the Pr that there will be at 

most 18 accidents in the next 4 days. ANSWERS:  0.0662874, 0.881536, 0.381422. 

 

PROPERTIES  OF  THE  POISSON  DISTRIBUTION 

 (1)  We 1st verify that p(x; ) is indeed a PDF ( or a pmf). 

x

x 0

e
x!






  =  e [ 1 + 
2 3

1! 2! 3!

  
  + ... ] = ee = e0 =1 

Recall from calculus that the infinite series in the above bracket is the Maclaurin series 

(i.e., Taylor’s expansion about the origin) for e . 

          (2)  Compute the long-term (or long-run) average of X. 

 = E(X) = 
x

x 0

x ( e )
x!






 = e
x

x 1

x ( )
x!





  = e
x

x 1 (x 1)!






 =e

x 1

x 1 (x 1)!






 =   

    = e(e ) = . 

Therefore, the process average for the Poisson distribution, as expected, is   = . 

By now the reader must be cognizant of the fact that the mean of the binomial is 

larger than its variance (CV < 100%); the mean of the Negative-binomial is less than 
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its variance iff q > p, while the mean of the Poisson distribution is equal to its 

variance. 

 Exercise 26 (Property 3).   Use the above procedure to show that for a Poisson 

distribution E(X2) =  2 +    and hence V(X) =  =  .  As a result, all Poisson processes 

have a CV (coefficient of variation) equal to (100/ λ )%. 

 (4)  The Poisson distribution is simply the limiting distribution of the binomial as n 

  and p  0  such that n p =   stays at a constant value. 

Proof.      
Lim Bin(n,p)
n
p 0, n p

  
 

      =  

x n x
n xLim C p q

n
p 0, n p

  
 

      =  

x n xn!
Lim ( / n) (1 / n)

x!(n x)!
n
p 0, n p

  


 
  

  =  

x
n x

x

n(n 1) ... (n x 1)
Lim (1 / n)

x! n
n
p 0, n p

   
  

 
 

 

                  

=  

x
n x1 2 1 x

Lim[1(1 )(1 )...(1 )(1 ) ]
x! n n n n
n

      

 

  = 

x
n xLim[(1 ) (1 ) ]

x! n n
n

  
  







 = 

x
nLim (1 )

x! n
n

 








  .                                                                                                (9) 

Recall that by definition  e = 
m1

Lim (1 )
m

m









  2.71828183.   Now make the  

transformation  1/m = /n  and substitute into equation (9). 
 

x n x
n xLim C p q

n
p 0, n p

  
 

    =  

x
m1

Lim (1 )
x! m
m










  = 

x
m1

[ Lim (1 ) ]
x! m
m










 =  
x

e
x!


 .       

           Finally, consider K independent sources of Poisson arrivals at a service center 

with rates i  (i =1, 2, 3, ..., K ).   Now, consider the total arrival stream, which is formed 

by merging the inputs from all K sources.  It has been shown in the theory of stochastic 
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processes that the merged stream X = 
K

i
i 1

X

 , where each Xi (i = 1, 2, ..., K) is Poisson 

distributed with E(Xi) = i , is also Poisson distributed with parameter   = 
K

i
i 1

 .  As an 

example, the Compass Bank in downtown Auburn has K = 2 doors for customer 

entrances.  During the 10:00-11:00 am hour, if  1 = 1.3 customers arrive per minute 

thru the east door and 1 = 0.90 customers arrive per minute thru the west door, then 

the total customer stream into the bank is Poisson distributed at an average rate of  = 

2.2 customers per minute during 10:00-11:00 am. 

 Exercise 27.    Verify that the variance of Poisson distribution over t units of time 

is given by V(Y) = t, where  is the average number Poisson events occurring per unit 

of time. 

 Exercise 28.   Work Exercises 72, 75, 76, 77, 81, 85 and 87 on pages 127-132 

of Devore’s 8th edition. 

Finally, it can be shown that the quantile function of the Example, when tossing 3 coins 

whose cdf is given on p. 23, is given by F1(q) = xq = 

0, q 0.125
0.50, q =0.125
1, 0.125 < q < 0.50
1.5, q 0.50
2, 0.50 q 0.875
2.5, q 0.875
3, 0.875 q 1



 

 


 

  . 
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