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STAT 3600    Reference: Chapter 1 of Devore’s 8th Ed.    Maghsoodloo 
 

 Definition.   A population is a collection (or an aggregate) of objects or elements 

that, generally, have at least one characteristic in common.  If all the elements can be well 

defined and placed (or listed) onto a frame  from which the sample can be drawn, then the 

population is said to be concrete and existing; otherwise, it is a hypothetical, conceptual, or 

a virtual population. 

 Example 1.   (a) All Auburn University students (N  33000 members on 2 

campuses).  Here the frame may be AU Telephone Directories.   (b)  All households in the 

city of Auburn.  Again the frame can be the Auburn-Opelika Tel. Directory.  (c)  All AU 

COE (College of engineering) students, where the frame can be formed if need be. 

 Examples 1.1 and 1.2 on pp. 4-6, 1.5 on  p. 11, 1.11 on pp. 20-21, and 1.14 on p. 

29 of Devore’s 8th edition provide sampling from conceptual (or virtual) populations, while 

Example 1.20 on p. 41 of Devore is from a concrete population.  

 A variable, X, is any (performance) characteristic whose value changes from one 

element of a population to the next and can be categorical, or quantitative.   

 

 Example 2.    (a) Categorical or Qualitative variable X: Examples are Grade 

performance in a college course; Success/Failure;  Freshman, Sophomore, Junior, and 

Senior on a campus; Pass/Fail, Defective/ Conforming, Male/Female, etc. 

 (b) Quantitative Variable X:  Flexural Strength in MPa (Example 1.2 of Devore, p. 

5), Diameter of a Cylindrical Rod, Length of steel pipes, Bond Strength of Concrete 

(Example 1.11 on pp. 20-21, sample size n = 48), Specific Gravity of Exercise 12 on p. 24 

and Shear Strength (lb) of Exercise 24 on p. 26 of Devore,  etc. 

 

 Note that the late W. Edwards Deming (perhaps the most prominent of Quality 

gurus in the 20th century who also was responsible for the Japan’s Quality evolution 

after World War II, starting with late 1940’s to early 1960’s) generally refers to 

studies made on concrete populations as enumerative and those made on 

conceptual populations as analytic. 
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Branches  of  Statistics  

 (1)  Descriptive,   (2) Inductive or Inferential 

(1)  Descriptive Statistics comprises of all methods that summarize collected data and is 

subdivided into 2 categories: (i)  Pictorial and Tabular : Stem-and-leaf plot, Histogram, and 

Boxplots.  (ii)  Numerical (or quantitative) Measures: of Location (i.e., the mean, median, 

the mode, percentiles, etc.), of Variability, of Skewness, and of Kurtosis. 

 

1(i)  Stem-and-leaf Plot for the Exercise 12 on page 24 of Devore’s (8e) 

The data is already in order-statistics format with x(1)  = 0.31 and x(n) = x(36) = 0.75. The 

sample size, universally denoted by n, is equal to 36.  The variable X = Specific Gravity (a 

quantitative measure).   Stem = 0.10 (The same as Minitab’s increment = 0.10) and 

Minitab’s Leaf unit = 0.01.    

 

(Cumfi )             Stem            Leaf       (n/2 = 18) 

     6         3             156678 

  (19)                    4   0001122222345667888 

   11         5   14458 

    6          6    26678 

    1         7              5 

I will name the increment  “0.4” as the median stem for the above data because its sample 

median lies in the interval  0.40   x  = 0.50x̂ = Sample Median = 0.4450 < 0.50. 

 

Histograms.    (See the Example 1.10 on pp. 18-19 of Devore’s 8th edition)  

The 1st-order statistic is x(1) = 2.97,  the nth-order statistic is x(n) = 18.26, and the sample 

size n = 90.  Sample range R = x(90) – x(1) = 15.29, C = No. of subgroups (or classes, or 

bins) for which there are 3 statistical guidelines:  C1 = 1 + 3.3log10(n)  [which is called 

Sturges’ practical  guideline], C1 = 1+3.3 log10 (90) = 7.45 (use for n < 125),  C2  n  , 

(125  n < 600)   C2  = 9.49,  or  Shapiro’s recommendation C3 = 4[0.75(n  1)2]0.20 = 

4[0.75(89)2]0.20 = 22.7420; this last guideline is generally too large and should be used only 

when n > 600.  Thus, it is best to select  between 7 to 10 subgroups.  So, we choose C = 9 

subgroups.  As a result, j = jth subgroup width = R/C = 15.29/9 = 1.6988  1.70   = 
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1.70.  (Always round up to obtain  to the same number of decimals as the original data.)  

Note that class limits must have the same number of decimals as the original data, but 

boundaries must carry one more decimal.  In Table 1, the upper class limit of the 1st 

subgroup is 4.66 while the upper boundary of the 1st class is Ub1 = 4.665.  The lower class 

limit of the 4th subgroup is 8.07 while the lower boundary of the 4th subgroup is Lb4 = 

8.065, etc.  Further, j = Ubj  Lbj  for all j.  The frequency distribution for the Example 1.10 

of Devore is given Table 1 below; the 
C

j
j=1

f  must always add to n (= 90 in this case).  This 

Table 1.  The Frequency distribution of Example 1.10, on pp. 18-19 

Subgroups 2.97 –  4.66 4.67 – 6.36 6.37 – 8.06 

ƒj 2 5 17 

Classes 8.07 – 9.76 9.77 – 11.46 11.47 – 13.16 

ƒj 18 22 13 

Subgroups 13.17 – 14.86 14.87 – 16.56 16.57 – 18.26 

ƒj 8 3 2 

 

is why the subgroup intervals must be non-overlapping.  The histogram from Minitab is 

provided in Figure 1.  In Figure 1, the area inside each rectangle (or bar) represents 

Relative Frequency (fj/n), and the ordinate represents the height or density hj = dj of each 

rectangle.  Because every histogram in the universe must have the “Total Area Under the 

Histogram” =
C

j=1
 jRelf   1= 

C
h j jj 1



  =

C
d j jj 1



, and because both (Relfj , djj ) 

represent the same jth rectangular area of the histogram, then it follows that Relfj = djj , 

and hence dj  = Relfj/j   for all j = 1, 2, 3, ..., C.  For the histogram of Figure 1, the density 

d1= (2/90)/1.70 = 0.02222/1.70 = 0.013072 = h1, d2 = h2 = 0.05555/1.70 = 0.032676/BTU, 

etc. Note that   must have the same number of decimals as the original data. It is 

extremely paramount to understand that the densities dj have very little (if any) statistical or 

geometrical meaning but it is their product with the corresponding class-width, j, that 

gives the corresponding jth rectangular area aj = Relfj = djj.  Further, all histograms 

should be constructed with equal j’s; if this is impossible, then the histogram-ordinate must 
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always be expressed in terms of densities.  Finally, the midpoint of each subgroup (or bin) 

is simply mj = (Ubj +Lbj )/2 = (UclassLj +LclassLj )/2, where Ubj is the upper boundary and 

LclassLj  is the lower class limit of the jth subgroup.  For example, m1 = (4.66+2.97)/2 = 

Minitab Project Report 

The Histogram for the Exp1.10 on pages 18-19 of Devore’s 8th edition based on 

midpoints (mj) and 9 subgroups each of length 1.70.  The values inside each bar 

represent the Relfj  

 

   

   

 

 

 

 

 

 

 

                                                      

                                                      Figure 1 

 

3.815, m2 = (6.36+4.67)/2,…, and m9 =(18.26+16.57)/2  = 17.415.  The 3rd pictorial 

summary, the Boxplot, will be discussed on pp. 11-12 of these notes.  Note that the Relfj ’s 

are unit-less while dj’s  always have units. 

 

 

1 (ii)  (Quantitative)  Measures in Descriptive Statistics From Data 

(a) Measures of Location are: The sample Mean (or arithmetic average), median, 

sample geometric  mean, harmonic mean, trimmed mean, mode, and sample 

quantiles (or percentiles).  A bar is almost universally used to denote sample averages 

such as the arithmetic mean x  (or y ).  The arithmetic mean is defined as x  = 
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n

i
i 1

x / n

 .  For the example 1.11 of Devore’s 8th edition, p. 20, n = 48, 

n

i
i=1

x  = 387.80 

  x  = 8.0792; the corresponding Bond-Strength data, in order-statistics format, are 

reproduced below for your convenience.  Note that the sample mean represents  

3.40 3.60 3.60 3.60 3.60 3.70 3.80 3.80 3.90 4.00 4.10 4.20 
4.80 4.90 5.00 5.10 5.10 5.20 5.20 5.20 5.40 5.50 5.60 5.70 
6.20 6.60 7.00 7.60 7.80 8.20 8.50 8.90 9.30 9.30 9.90 10.70 
10.70 11.50 12.10 12.60 13.10 13.40 13.80 14.20 15.20 17.10 20.60 25.50 

 

the center of gravity of a data set and must carry at least one more decimal than the 

original data; see Figure 1.15 on p. 29 of Devore’s 8th edition.  Please note that in the 

above data set 3.40 is called the 1st-order statistic, i.e., x(1) = 3.40, 3.60 = the 2nd-order 

statistic = x(2), …, 25.50 = x(n)= x(48).  Clearly, a 1st-order statistic is the smallest element of 

a sample, and the nth-order statistic is the largest observation in a sample of size n for all 

random samples in the universe. 

          The median, x  = 0.50x̂ , is another measure of central location (or tendency) of data 

such that exactly (or at most) half of the data are below  0.50x̂  and at most half of the data  

exceed 0.50x̂ .  To obtain 0.50x̂  for any data (whether n is odd or even), 1st multiply 0.50 by 

n +1.  If this result is an exact integer, say r, then 0.50x̂  = x(r); if 0.50(n+1) is not an exact 

integer, then 0.50x̂ =  0.50x(r) + 0.50x(r+1).  When n is an even integer, then exactly half the 

data will lie below and the other half above the sample median x = 0.50x̂ .  Thus, for the 

Example 1.11, 0.50(n+1) = 24.50 so that 0.50x̂  = 0.50x(24) + 0.50x(25)  = 0.50(5.70) + 

0.50(6.20)  = 5.950; note that exactly 24 data points lie below, and 24 data points (or 

observations) lie above 5.950.  However, for the data of Example 1.14 on p. 29 of Devore’s 

8th edition, the sample size n = 21 (odd integer) gives 0.50(n+1) = 11 = r, which is an 

exact integer.  Thus, 0.50x̂ = x = x(11) = 21.20, while x = 21.181.  Note that in this case only 

47.61905% of the data are below 21.20, and 47.61905% of the data are above 0.50x̂  = x =  

21.20 = x(11). 

          The geometric mean is defined as gx  = (x1x2…xn)1/n, i.e., gx
 
is the nth root of  
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(
n

i
i=1

x ) only if all xi’s  > 0 for all i, and in general gx   x .  For the data of example 1.14 of  

Devore on p. 29 of his 8th edition, gx = 19.379764 < 21.180952 = x .   Geometric mean has 

limited applications in DOX (Design of Experiments; some authors use the acronym DOE) 

where at least 2 responses from each experimental unit is observed.      

          The harmonic mean is defined as hx = 

1n

i
i 1

(1 / x ) / n





 
 
  
  = 

i

n

(1 / x )
 , i.e., 

hx  is the inverse of the average reciprocals of xi’s.  For the data of Example 1.14 on  

page 29 of Devore, n = 21, and 
 

21

i
i=1

1
(1 / x )

21
 = [(1/16.1) + (1/9.6) + ... + (1/28.5)]/21 =  

1.1902504/21 = 0.0566786, which yields  hx  = 1/ 0.0566786  = 17.643346 < gx < x .    

The harmonic mean  has applications in ANOVA (Analysis of Variance) when the design is 

unbalanced.  It gives the average sample size over all levels of a factor, and always hx   

gx   x .  In general, the geometric and harmonic means are not as important measures of 

central tendency as x  and x . The sample mean, x , is the most common measure of 

central tendency and always is the central gravity of a data set. 

  

TRIMMED  MEANS 

 A 10% trimmed mean, tr(10)x  = TrMean, is computed by deleting the smallest and 

largest 0.10n of the order-statistics from the two tails of data and computing the arithmetic 

average of the remaining 80% of the data.  It seems that such a mean should be called the 

20% trimmed mean because 20% of the data is actually removed from the original n 

observations x1, x2, …, xn.  However, our author, Devore, is notationally consistent with 

other statistical literature, and therefore, we will also use Devore’s notation of tr(10)x .  To 

illustrate, consider the Bond-Strength data of Example 1.11, of size n = 48, on page 20 of 

Devore (8e), for which 0.10n = 4.8. 

          Step 1.    Trim or remove the order-statistics x(1), x(2), x(3), x(4), x(48), x(47), x(46), and  
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x(45).  Next, compute 

44

(i)
i=5

x / 40 = 7.380 = tr4x .                 

         Step 2.    Trim tr4x  further by removing x(5) and x(44) in order to obtain tr5x . 

                                          tr5x  = 
43

(i)
i=6

x / 38 = 7.300. 

             Step 3.   Interpolate between tr4x  and tr5x   to obtain tr(10)x , i.e., the exact trimmed 

mean for the Example 1.11 should be computed from the following convex combination. 

                                     tr(10)x   = 0.2 tr4x  + 0.8 tr5x  = 7.3160  

Had n been equal to 44, then 0.10×n = 4.4 and the above formula would change to tr(10)x  

= 0.6 tr4x  + 0.4 tr5x .  Note that most statistical packages, such as Minitab, only give the 

tr(5)x  and they round the value of 0.05n to the nearest integer in order to obtain the 

5% trimmed mean tr(5)x .  

 The trimmed mean, trx , has applications when data contain outliers (or when the 

data originate from an underlying distribution with heavy tail probabilities), and trx  is 

always as close or closer to 0.50x̂ ( = 5.950 for the Example 1.11) than is x = 8.0792.  

 

The MODE 

The mode is the observation with the highest frequency.  For the data of Example 

1.11 on p. 20 of Devore, MO = 3.6 and modal frequency f = 4 (this is the highest 

frequency).  Most populations have a single mode; however, if a population has two or 

more modes, then it should be stratified for the purpose of sampling.  In calculus, Mode is 

referred to as the point on the abscissa at which the maximum of the ordinate, y, occurs. 

 

Computing Sample Percentiles (or Quantiles) 

The pth sample quantile (or 100pth  percentile), px̂ , is obtained using the following steps. 

(1)  First rearrange the data in ascending order of x(1), x(2), …, x(n), where x(1) is 

called the 1st-order statistic, x(2) the 2nd-order statistic, …., x(n) is called the nth- 
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order statistic.  The nth-order statistic is always the maximum of the sample. 

(2)  Multiply p by  n+1:  if (n+1)p is an exact integer, say I, then px̂  = (I)x .  

(3)  If (n+1)p is not an exact integer such that  I < (n+1)p < I +1, then the sample 

pth-quantile is given by the convex combination px̂ = ax(I) + (1a)x(I+1), where 0 < 

a = (I +1)  (n+1)p < 1.  For the data of Example 1.11 on p. 20 of Devore’s 8(e), 

where X represents Bond Strength (BNDS in psi), the 10th, 25th, 50th, 75th, 80th,  

and  90th sample quantiles (or percentiles) are computed below: (Note that only 

for convenience hats have been removed from sample percentiles, and the 

sample size is n = 48 so that n +1 = 49) 

x0.10 :  0.1049 = 4.9                 x0.10 = 0.10x(4)+0.90x(5) = 3.60 

x0.25 :   0.2549 = 12.25                x0.25 = 0.75x(12) + 0.25x(13) = 4.35 

x0.50 :  0.5049 = 24.5                   x0.50 = 0.5x(24) + 0.5x(25) = 5.950 

x0.75 :  0.75(n+1) = 36.75            x0.75 = 0.25x(36) + 0.75x(37) = 10.70 

x0.80 :  0.8049 = 39.2                    x0.80 = 0.80x(39) + 0.20x(40)= 12.20 

x0.90 :  0.90(n +1)= 44.1               x0.90 =  0.9x(44) +0.10x(45) = 14.30. 

The above sample percentiles are also called the 0.10, 0.25, 0.50, 0.75, 0.80, and 0.90 

sample quantiles, respectively.  The 0.10 quantile is also called the 1st decile, and the 0.90 

quantile is called the 9th decile.  Every data set has 9 sample deciles.   

Minitab’s Descriptive Statistics: BNDS (Example 1.11 pp. 20-21) 
Variable  Mean  SE Mean  TrMean  StDev  Variance  CoefVar     Sum  
BNDS     8.079   0.703   7.607   4.868   23.702    60.26     387.800 
 
Sum of 
Squares    Minimum    Q1   Median   Q3     Maximum   Range      IQR 
 
4247.080    3.400   4.350  5.950  10.700    25.500   22.100    6.350 
 
Mode  N for Mode   Skewness   Kurtosis 
3.6      4           1.54      2.64                         
                  

(b) Measures of  Variability  (Three  Quantitative  Measures) 

(1)  Standard deviation (Stdev) = S,  (2) Sample Range/d2 = R/d2, and (3) the IQR =  

x0.75 – x0.25, where the sample range R = x(n) – x(1) and the IQR (or fs) have already been 

defined.  The parameter d2 is a Quality Control constant that will be defined in INSY 4330, 

and for the most common QC sample size n = 5 the corresponding value of d2 is 
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approximately equal to 2.325929, and d2 is an increasing function of n (at n = 10, d2 = 

3.077505).  The most common measure of variability is the standard deviation followed by  

R/d2.  In order to compute S, we must always compute the variance first; there are no 

other alternatives.  

 Definition.    The sample variance, var, is the average of deviations of n  

observations from their-own-mean squared.  (USS = Uncorrected Sum of Squares) 

Data Set 1:  2.7, 3.5, 3.8, 4.6, 5.4.   n = 5    x  = 4.0, Sample range R = 2.7, USS = 

n
2
i

i 1
x


 = 84.30, CF = Correction Factor =

n
2

i
i 1

( x ) / n

  = n( x )2 =  202/5 = 80   

xi   x  = xi    4 = 1.30,  0.50,  0.20,  0.60, 1.40           
5 5

i i
i=1 i=1

(x x ) = (x 4) 0         

(xi – 4)2: 1.69, 0.25, 0.04, 0.36, 1.96,                   
5

2
i

i=1

(x x )  = 4.30                  Sample  

variance var1 = 4.3/5 = 0.86.  Note that 
n

i
i=1

(x x ) 0  for all data sets in the universe. 

Data Set 2:   2.1,    3.2,    3.6,  4.5,   6.6,  ( x = 4.0, R = 4.5, USS = 91.42, CF = 80),      

       xi  x : 1.9,  0.8, 0.40, 0.50, 2.6          
5 5

i i
i=1 i=1

(x x ) = (x 4.0) = 0    

    (xi – x )2 : 3.61, 0.64, 0.16, 0.25, 6.76                 CSS = Corrected Sum of  Squares = Sxx   

= 3.61+ 0.64 + 0.16 + 0.25 + 6.76 = 
5

2
i

i=1

(x x ) = 
25

2
i i

i=1

(x 2x x + x )  = 
5 n

2
i i

i=1 i 1

x 2x x +


   

2n

i 1

x

 = USS2x(nx) +

2

nx  = USS 
2

nx = USS 
n

2
i

i 1

n( x / n)

 = USS  

n
2

i
i 1

( x ) / n

 = USS 

 CF = 91.42 – 80 = 11.42; thus, var2 = 11.42/5 = 2.284. 

Data sets 3:  1.9,    2.9, 4.0, 4.5, 6.7, ( x  = 4.0, R = 4.8, USS = 93.16, CF = 80).    

 (xi – x ):  2.1, 1.1,  0, 0.50, 2.7           CSS = Sxx = 13.16  var3 = 13.16/5 = 2.632. 

Note that in general as the overall spread of the data increases, so does the variance, i.e.,  

variance is a measure of variability.  Further, the divisor of var is n, i.e., var = (1/n)× (xi –  
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x )2.  Note that the n deviations from the mean (x1  x ), (x2  x ), (x3  x ),…, (xn  x )  are 

not independent because of the constraint 
n

i
i=1

(x x ) 0   for all data sets in the universe.  

For the data set number  3 above, if we are given x1  x  =  2.1, x2 – x = 1.1, x3  x  = 0, 

and x5  x  = 2.7, then the value of x4  x  is automatically constrained to x4 – x = (2.1) – 

(1.1) – (0) – 2.7 = 3.2 – 2.7 = 0.50, i.e., the variables x1  x , x2 , x …, xn  x  have (n 1) 

degrees of freedom (df) not n, i.e., before the sample is taken, we have freedom to specify 

any of the (n1) of them, and the nth deviation from the mean is automatically determined 

from 
n

i
i=1

(x x ) 0  .  Therefore, we define the most common measure of variability with 

the divisor of (n 1) for Sxx = (xi  x )2, given by  

                S2 = 
n

2
i

i=1

1
(x x)

n 1



  = nvar/(n 1) = Sxx/(n1) = CSS/(n  1)       (1)              

For data above sets 1, 2 and 3 the values of 2
1S  = 4.30/4 = 1.075, 2

2S  = 2.855, and 2
3S  = 

13.16/4 = 3.29 because df = 4 (not 5).  Further, as stated in equation (1), 2
1S  = 5var1/4 = 

5 0.86/4 =1.075, and so forth.  The reader should deduce from above examples that the 

USS plays a much more important role in determining the value of S2 than does the CF. 

The exact name for S2 is not the sample variance as defined by Devore on his p. 

36.  In actuality the sample variance is var =  (xi – x )2 /n as defined by me herein, but var 

generally underestimates the population variance 2 because  
n

2
i

i 1

(x c)


 , where c is any 

real constant, attains its minimum value iff c = x  = 
n

i
i 1

x / n

 .  To compensate for this 

underestimation, we divide the CSS = Sxx = (xi  x )2  by a smaller number than n, namely 

its df  (degrees of freedom) = n 1, in order to obtain an “unbiased estimate” of 2.  The 

positive square root of S2 provides the standard deviation, S, and dividing S  by n  gives 

the sample standard error of the mean, i.e., se( x ) = S / n .  Further, the ratio S/ x  is 

called the coefficient of variation (or variation coefficient), and generally the sample cv =  
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S/ x  is expressed in % with at least, but most commonly, 2 decimals. 

The IQR (InterQuartile Range) is defined as IQR = 0.75 x̂ – 0.25x̂ = Q3  Q1 = the 

Devore’s 4th spread, while the interdecile range is defined by me as 0.90 x̂ – 0.10x̂ .  The 4th 

spread, fs = Q3  Q1, is Devore’s uncommon terminology explained near the bottom of his 

p. 39, and his terminology should be avoided.  For the Example 1.11 of Devore (8e), the 

value of Interquartile-range is equal to IQR =10.70  4.35 = 6.350.  

Identifying Outliers 

If Q1 – 3IQR < x(i) < Q1 – 1.5  IQR, or Q3 + 1.5IQR < x(i) < Q3 + 3IQR, then  

the ith order-statistic, x(i), is a mild outlier.  If the value of x(i)  < Q1 – 3IQR, or x(i)  > Q3 + 

3IQR, then x(i) is an extreme outlier.  For the Example 1.11 of Devore, since Q1  

1.56.35 = 4.35  9.525 < 0 and Q3 +1.5IQR = 20.225, then the data contain 2 outliers 

on the RHS (or the upper tail).  Further, because Q3+ 3IQR = 29.75, then the data has no  

extreme outliers.  

 

Graphical  Measure  of  Variability (The Boxplot) 

Step 1.   Draw a vertical line thru the median x  = 0.50x̂ . 

Step 2.   Draw vertical lines thru Q1 = 0.25x̂  and Q3 = 0.75x̂  and connect at the bottom and 

the top to make a rectangular box.  For the data of Example 1.11 on p. 20 of Devore (8e), 

the box is shown atop the next page, where hats are removed from sample percentiles 

only for convenience.  

Step 3.   Compute both 1.5IQR  and  3IQR.  For the Example 1.11 on p. 20, 1.5IQR =  

9.525, which yields the mild interval (Q1  1.5IQR =  5.175, Q3 +1.5IQR = 20.225).  If 

the entire data lies in this last interval, then the data has no outliers.  Thus, the data of 

Example 1.11 contain 2 outliers on the right tail, namely 20.60  & 25.50.  Because, 

Q3+3IQR = 10.70 +19.050 = 29.750, then both outliers are mild.  Note that the dots on 

the RHS of the Boxplot represent the mild outlier x(47)  = 20.6 and  x(48) = 25.50.  

Step 4.    Draw whiskers from Q1 and Q3 to the smallest and largest order statistics that 

are not outliers.  The Box-plot is given atop the next page. 

Exercise 1.   (a)  Prove that 
n

i
i=1

(x c)  0  iff  (if & only if) the real constant c  
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The Box-Plot for the Example 1.11 on page 20 of Devore’s 8th Edition 

                      xhat0.25      xhat0.50                          xhat0.75 

  

 

 

= x .  (b) Prove that the SS = 
n

2
i

i 1

(x c)


  attains its minimum value only if real the 

constant c = x .   (c)  Prove that for any data set of size n the Corrected Sum of Squares =  

CSS  = Sxx = 
n

2
i

i=1

(x x) = USS  CF ,  where  the Uncorrected  Sum of Squares  USS= 

n
2
i

i=1

x , and  the correction factor  CF = 
n

2
i

i=1

( x ) / n = n( x )2.  (d)   By definitions the mean 

and variance of a grouped (gr) data (or an empirical distribution) are given by 

             

            grx = 
C1

m fj jn j 1



  ,   and     2

grS  =  gr
C1 2(m x ) fj jn 1 j 1

 
 

 = 
grCSS

n 1
  

Prove that for a histogram (or a frequency distribution) gr
C

(m x ) fj j
j 1

 


 0, 

and that the computing formula for 2
grS  is given by 2

grS  = CSSgr / (n1) = 
C

2
j j

j 1

1
m f

n 1
[



    

C 2( m f )j j
j 1

n


 ], where 

C 2m f jjj 1



 = USSgr, and   

C 2( m f )j j
j 1

n




   =  CFgr = Grouped 

Correction Factor. 
 
 My Chapter 1 notes have been edited mostly by Rong Huangfu (rzh0024) and 

also by Mohammad-Ali  Alamdar-Yazdi (mza0052).   S. Maghsoodloo (08/23/2014) 

  3.4        4.35        5.95                     10.70                   x(46) = 17.10 

 
                 


