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Abstract 

The renewal and availability functions for some common failure and 
repair underlying distributions are explored. Exact results for the 
renewal functions and availability of normal time to failure and time to 
repair, and gamma time to failure and exponential time to repair are 
provided. Because obtaining the n-fold convolutions of time between 
cycles for general classes of failure and repair distributions is 
intractable, we obtained the availability functions for some commonly-
encountered failure distributions but at a constant repair-rate. A 
MATLAB program was devised to perform all calculations. 

1. Introduction 

This article generalizes the work in [1] by the same authors, where we 
now assume the MTTR (mean time to repair) is not negligible and that TTR 
has a pdf (probability density function) denoted as ( ).tr  Let the variates 

...,,, 321 XXX  represent the ith time to failure ( )iTTF  be independently and 

identically distributed (iid) with the same underlying failure density ( )xf  

having mean xμ=MTTF  and variance ;2
xσ  further, ...,,, 321 YYY  represent 
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the ith time to restore ( ),TTR i  ...,4,3,2,1=i  with the same pdf ( )yr  

having mean yμ=MTTR  and variance .2
yσ  Then iii YXT +=  represents 

the time between cycles (TBCs) which are also iid whose density is given by 
the convolution ( ) ( ) ( ),trtftg ∗=  and whose Laplace transform (LT) is 

given by ( ){ } ( ) ( ) ( ).srsfsgtg ×==L  Clearly, the mean and variance of 

the cycle-times s’iT  are yx μ+μ  and .22
yx σ+σ  As described by [2] there 

will be two types of renewals: 

(1) A transition from a Y-state (i.e., when system is under repair) to an        
X-state (at which the system is operating reliably). 

(2) A transition from an X-state (or operating-reliably state) to a Y-state 
(where system will go under repair or restoration). 

Let ( )tM1  represent the expected number of cycles (or number of 

renewals of type 1), and ( )tM2  represent the mean number of failures (or 

renewals of type 2). Then, as proven by [3] and later by [2], the LTs of the 
two renewal functions (RNFs), respectively, are given by 

( ) ( )
( )[ ]

( ) ( )
[ ( ) ( )]

,
111 srsfs

srsf
sgs

sgsM
×−

×=
−

=  (1a) 

( ) ( )
( )[ ]

( )
[ ( ) ( )]

.
112 srsfs

sf
sgs

sfsM
×−

=
−

=  (1b) 

The corresponding LTs of RNIFs (renewal-intensity functions) are given 
by 

 ( ) ( ) ( )
( ) ( )srsf

srsfs
×−

×=ρ
11  and ( ) ( )

( ) ( )
.

12 srsf
sfs
×−

=ρ  (2) 

It is essential to note that authors in Stochastic Processes refer to inverse-
transforms of equations (2) as the renewal densities. 

As an example, suppose ( ),,0Exp~TTF λi  i.e., exponential with zero 

minimum-life and constant hazard rate ( ) ,λ=th  and ( );,0Exp~TTR ri  
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then as has been documented both in Stochastic Processes and Reliability 

Engineering literature, ( ) ( )∫
∞ −λ− +λλ=λ=
0

sdteesf stt  and ( ) =sr  

( )∫
∞ −− +=
0

.srrdtere strt  Such a process is refereed as an “alternating 

Poisson Process” [2], which we acronym as APP. On substituting the above 
2 LTs into equation (1a), we obtain the well-known 

( ) ( ) ( )[ ] ( )
,2221

ξ+ξ

λ+
ξ

λ+
ξ

λ−
=

λ−++λ
λ=

s
r

s
r

s
r

rsrss
rsM  

where ,r+λ=ξ  and 

( ) { ( )}
( )⎭

⎬
⎫

⎩
⎨
⎧

ξ+ξ

λ+
ξ

λ+
ξ

λ−
== −−

s
r

s
r

s
rsMtM 222

1
1

1
1 LL  

,22
tertrr ξ−

ξ

λ+
ξ
λ+

ξ

λ−
=  

which gives the expected number of transitions from a repair-state to an 
operational-state (or the mean number of cycles). Similarly, 

( ) ( )
[ ( ) ( )] ( )

,
1 2

2

22

2
2

ξ+ξ

λ−
ξ

λ+
ξ

λ=
×−

=
ss

r
ssrsfs

sfsM  

which upon inversion yields ( ) ,2

2

2

2
2

tetrtM ξ−

ξ

λ−
ξ
λ+

ξ

λ=  representing the 

expected number of failures during the interval ( ).,0 t  For example, if =λ  

hour0005.0  and the constant repair-rate 05.0== r  per hour, then +λ=ξ  

,0505.0=r  ( ) ,237721792.0hours5001 ==tM  while 

( ) .2476227821.05002 =M  

Note that the limit of both above RNFs ( )tM1  and ( )tM2  as repair-rate 

∞→r  ( )0MTTR.,i.e →  is exactly equal to the exponential RNF ( )tM  

,tλ=  as expected. Further, a comparison of ( )tM2  with ( )tM1  reveals that 
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( ) ( )tMtM 12 >  for all ,0>t  which is intuitively meaningful because the 

expected number of failures must exceed the expected number of cycles for 
all ,0>t  as we are assuming that time zero is when a system starts in the 
last renewed state X. 

2. (a) Types 1 and 2 Renewal Functions Using Laplace Transforms 

Elsayed [4] obtains the (point) availability function (AVF) for a system 
comprising of 2 similar components A and B, using their RNFs ( )tM A  and 

( ),tM B  where his ( )tPA  represents the Pr that component A is in use at time 

t. Using a similar argument, we first obtain ( )tM2  and ( )tM1  by inverting 

equations (1), and we later use these 2 functions in order to obtain the 
availability (AVL) function ( ).tA  Equation (1a) shows that 

( )[ ( )] ( ) ( ) ( ) ( ) ( ) →+=→=− sgsMs
sgsMs

sgsgsM 111 1  

( ) ( ) ( ) ( )∫ −+=
t

dxxgxtMtGtM
0 11 ,  

where ( )tG  is the cdf of TBCs. Equation (1b) now shows that 

( )[ ( )] ( ) ( ) ( ) ( ) ( ) →+=→=− sgsMs
sfsMs

sfsgsM 222 1  

( ) ( ) ( ) ( )∫ −+=
t

dxxgxtMtFtM
0 22 ;  

thus, in general the well-known expected number of cycles is given by 

 ( ) ( ) ( ) ( )∫ −+=
t

dxxgxtMtGtM
0 11 .  (3a) 

While the corresponding well-known expected number of failures during 
( )t,0  is given by 

 ( ) ( ) ( ) ( )∫ −+=
t

dxxgxtMtFtM
0 22 .  (3b) 
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(b) The Normal TTF and TTR 

Suppose time between failures ( )2,MTBF~TBFs xxN σ=μ  and TTR is 

also ( );, 2
yyN σμ  then ( ).,~TBCs 22

yxyxN σ+σμ+μ  We are making the 

tacit assumption that both coefficient of variations are sufficiently small (say 
CV < 15%) such that the normal distribution can qualify as a failure and 
repair densities; further, the system initially starts in an X-state. As a result, 

equation (3a) shows that ( ) ∑
∞

=
⎟
⎠
⎞⎜

⎝
⎛
σ

μ−Φ=
1

1 ,
n n

nttM  where ,yx μ+μ=μ  =σ  

,22
yx σ+σ  and ( )tM1  gives the expected number of cycles. However, 

because a system is under repair a small (but not negligible) fraction of the 

interval ( ),,0 t  then ( ) ∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

μ−
Φ≠

1
2 .

n x

x
n

nttM  In order to obtain an 

approximation for ( )tM2  and the resulting availability function (AVF), 

( ),tA  defined later, we may argue that the expected duration of time a system 

is under repair during the interval ( )t,0  is given by ( ) ;MTTR1 ×tM  letting 

( ) ,MTTR12 ×−≅ tMtt  then equation (3b) shows that the expected number 

of failures, assuming that the system starts in the X-state, is approximately 

given by ( ) ∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

μ−
Φ+⎟

⎠
⎞

⎜
⎝
⎛

σ
μ−

Φ≅
2

2
2 .

n x

x
x

x
n

ntttM  

3. Point Availability 

Because we are assuming that a system can be either in an operational-
state ( ),X  or under repair, then it has been well-known that the reliability 

function, ( ),tR  must be replaced by the instantaneous (or point) AVF at time 

t, denoted ( ),tA  which represents the probability (Pr) that a repairable 

system (or unit) is functioning reliably at time t. Thus, if restoration-time is 
negligible, the AVF is simply ( ) ( ).tRtA =  However, if a system (or a 

component of a system) is repairable, then there are two mutually exclusive 
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possibilities [5]: 

(1) The system is reliable at t, in which case ( ) ( ).1 tRtA =  

(2) The system fails at time x, ,0 tx <<  gets renewed (or restored to 

almost as-good-as-new) in the interval ( )xxx Δ+,  with unconditional Pr 

element ( ) ,dxxρ  ( )tρ  being the RNIF of TBCs, and then is reliable from time 

x to time t. This second Pr is given by ( ) ( ) ( )∫ −ρ=
t

xtdxRxtA
02 ;  because the 

above two cases are mutually exclusive, then 

 ( ) ( ) ( ) ( ) ( ) ( )∫ ρ−+=+=
t

dxxxtRtRtAtAtA
021 .  (4) 

Taking Laplace transform of the above equation (4) (and observing that 
the integral is the convolution of ( )tR  with ( )tρ  [6]) yields the very well-

known LT of AVF 

( ) ( ) ( ) ( ) ( )[ ( )]ssRssRsRsA ρ+=ρ+= 1  

( ) ( ) ( )
( ) ( )

( )
( ) ( )

,
11

1
srsf

sR
srsf

srsfsR
×−

=⎥⎦
⎤

⎢⎣
⎡

×−
×+=  (5) 

where ( )sr  is the LT of ( ),tr  the density (or pdf ) of repair-time. For the case 

when the TTF (of a component or system) has a constant failure-rate λ and 
time to repair (TTR) is also exponential at the rate r (i.e., an APP), ( ) =sR  

( )∫
∞ −λ− +λλ=
0

,sdtee stt  and hence the Laplace transform of AVL from 

equation (5) is given by 

( ) ( )
( )[ ] ( )[ ] ( )[ ]rss

sr
srrs

ssA
+λ+

+=
++λλ−

+λ= 1
1  

( ) { ( )} ,1 tersAtAss
r ξ−−

ξ
λ+

ξ
==→

ξ+
ξλ+

ξ
= L  

where ,r+λ=ξ  which is provided by many authors in Reliability 
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Engineering such as [4, 7, 8] and many other notables. For example, given 
that the failure-rate 0005.0=λ=  and =r  repair-rate 05.0=  per hour,         
then 0505.0=+λ=ξ r  and the Pr that a network is available (i.e., not 

under restoration) at 500=t  hours is given by ( ) += 0505.0
05.0500A  

( ) ,99009901.00505.0
0005.0 5000505.0 =−e  while R (at 500 hours with minimal-

repair) ( ) =<== − 5007788007831.0250.0 Ae 0.9901. Thus, restoration has 

improved AVL by 27.31%. As stated by numerous authors in Stochastic 
Processes and Reliability Engineering, as ,∞→t  ( ) 0→tR  for all failure 

densities, while for an APP 

( ) ( ) ( )MTTRMTTFMTTFinf +==+λ=ξ→ ArrrtA  

,9901.020202000 ==  

where restoration includes administrative, logistic and active repair-times. 

Note that in the APP case (i.e., both rate-parameters are constants), we 
can also obtain the AVF, ( ),tA  directly from equation (4) as follows: 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ρ+=ρ−+= −λ−λ−t t xtt dxxeedxxxtRtRtA
0 0 11 ,  

where 

( ) ( ) xx errerxrr
dx
ddxxdMx ξ−ξ−

ξ
λ−

ξ
λ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

ξ

λ+
ξ
λ+

ξ

λ−
==ρ 2211  

is the RNIF of the number of cycles. Upon substitution of this RNIF into the 
expression for ( ),tA  we obtain 

( ) ( ) ( )∫ ξ−ξ−−λ−λ−
ξ
λ+

ξ
=−

ξ
λ+=

t txxtt erdxereetA
0

,1  

as before. 
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As pointed out by [4], we also observe that 

( ) ( ) ( )( )[ ]∫ ∫
∞ ∞ −− −==
0 0

1 dttFedttResR stst  

( ) ( )∫
∞ − −=−=
0

.11 sFsdttFes
st  

Hildebrand [6] proves that ( ) ( ) ssfsF =  so that ( ) ( ) ;1
s

sfsR −=  on 

substitution into equation (5), we obtain 

( ) ( )
[ ( ) ( )] [ ( ) ( )]

( )
[ ( ) ( )]srsfs

sf
srsfssrsfs

sfsA
×−

−
×−

=
×−

−=
11

1
1

1  

( ) ( )
[ ( ) ( )]

( )
[ ( ) ( )]

.
11

1
srsfs

sf
srsfs

srsf
s ×−

−
×−

×+=  

Inverting these last 3 LTs from equations (1), we obtain 

 ( ) ( ) ( )tMtMtA 211 −+=  (6) 

for all underlying failure densities ( )tf  and TTR-density ( ).tr  Equation (6) 

is identical to that of Elsayed [4] atop his page 467, which he derived using a 
system of 2 alternating components. Further, equations (3) imply that ( )tM2  

( )tM1−  yields the unconditional Pr that a system is under repair at time t, 

and hence equation (6) is intuitively appealing because ( ) [ ( )tMtA 21 −=  

( )].1 tM−  For the above exponential example with 0005.0=λ  and repair-

rate ,05.0=r  equation (6) shows that ( ) −+== 20.237721791500tA  

0.2476227821 = 0.99009901, as before. 

Example 1. Our experience shows that in the case of normal TTF and 
TTR the approximate value of ( ) MTTR12 ×−= tMtt  is a bit too small.      

If ,05.0MTTFMTTR005.0 ≤≤  then ( )[ ] ;MTTR475.012 ×−−≅ tMtt  

however, if ,10.0MTTFMTTR05.0 ≤<  then ( )[ ] ×−−≅ 425.012 tMtt  

MTTR is a better approximation. These values were obtained such that the 



Renewal and Availability Functions 73 

limiting AVL, given by ( ),MTTRMTTFMTTFinf +=A  is approximately 

equal to ( ) ( ) ( )tMtMtA 211 −+=  at MTTF120 ×=t  to 3 decimals. For 

example, if ( )2hours160000,hours5000~TTF N  and also (200~TTR N  

),hours576,hours 2  then 

( ) ∑
∞

=

=⎟
⎠
⎞⎜

⎝
⎛

σ
−Φ=

1
1 9028875850224.1145200600000600000

n n
nM  

expected cycles, where ,8227193531637.400576160000 =+=σ  ( )tM2  

∑
∞

=
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
σ

μ−
Φ+⎟

⎠
⎞

⎜
⎝
⎛

σ
μ−

Φ≅
2

2 926696731.114600000

n x

x
x

x
n

nt  expected failures, 

where 

( )[ ] ,4829955020.577117MTTR475.012 =×−−≅ tMtt  

( ) ( ) ( ) ,9608883.01hours000,600 21 ≅−+= tMtMA  

which is close to .49615384615.052005000inf ==A  

Similar calculations will show if ( )2304,hours400~TTR N  so that 

,080.0MTTFMTTR =  then ( ) ( ) ( ) ,925806.01 21 ≅−+= tMtMtA  ≅2t  

( )[ ] ,44217462.555924MTTR425.01 =×−− tMt  and == 54005000infA  

0.925925926. It should be noted that if ,005.0MTTFMTTR0 <<  then 

from a practical standpoint the renewal process approximately reduces to the 
minimal-repair case (i.e., a nonhomogeneous Poisson process) for which 

( ) ( ).21 tMtM ≅  Further, the normal ( )tA  generally decreases on the interval 

[ )MTTF,0  as t increases, seems to attain its worst value around the MTTF, 

tends to increase with increasing time beyond MTTF, and then converges 
toward .infA  

4. Markov Analysis When Only Repair-rate r is a Constant 

The Markov analysis of AVF, ( ),tA  for case of constant failure- and 
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repair-rates (i.e., the APP) has been reported by nearly all authors in 
Stochastic Processes and Reliability Engineering. Our objective is to make a 
slight generalization to when the hazard function (HZF) is time-dependent, 
i.e., ( ) ,λ≠th  where λ is the CFR (constant failure-rate). We can obtain the 

AVL of a simple on and off (or up-time and down-time) system from Figure 
1, where state “0” represents a system in the reliable-state and “1” represents 
the same system under repair. The transition-rate in Figure 1 shows that its 
Kolmogorov equation is given by ( ) ( ) ( ) ( ),100 trPtPthdttdP +−=  where 

( ) ( )tAtP =0  represents the unconditional Pr of finding the system in the 

operational state “0” at time t, and similarly for ( ).1 tP  Because ( ) =tP1  

( )tP01 −  for all t, we obtain ( ) ( ) ( ) ( ),1 000 PrtPthdttdP −+−=  and hence 

( ) ( )[ ] ( ) .00 rtPrthdttdP =++  This last is a simple differential equation 

with the integrating factor ( )[ ] ( ) ,rttHdtrth ee ++ =∫  where ( ) HtH =  is the 

antiderivative of ( );th  it should be noted that the antiderivative ( )∫ dtth  

does not seem to match the definition of the cumulative HZF ( )∫
t

dxxh
0

.  

However, if the cumulative hazard at minimum-life is zero, which is 
expected, then ( )tH  is also the cumulative HZF. It is widely known that the 

general solution of the above differential equation is given by 

 ( ) ( ) ( ) ( )∫ +−++− +×= ,0
rtHrttHrtH CedtreetP  (7a) 

where the constant of integration will be computed as usual from the 

boundary condition ( ) δ=δ= ,10 tP  being the minimum-life. Because ( )tHe  

( ),1 tR=  then (7a) is modified to 

( ) ( ) ( ) [ ( )]
⎭
⎬
⎫

⎩
⎨
⎧ +== ∫+− dttRreCetAtP rtrtH

0  

( ) [ ( )] .
⎭
⎬
⎫

⎩
⎨
⎧ +×= ∫− dttRreCtRe rtrt  (7b) 
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Unfortunately, there is no exact solution to (7b) for the general classes of 
failure distributions, ( ) ( ),1 tRtF −=  because the indefinite-integral ( ) =tI  

[ ( )] [ ( )]∫ ∫ −= dttFredttRre rtrt 1  has no closed-form antiderivative for all 

uncountably infinite number of failure distributions. However, we may 
obtain an exact solution for a few failure distributions ( ),tF  and then have to 

approximate equation (7b) for others. We start with the simplest case of            

2-parameter exponential ( ) ( )δ−λ−−= tetF 1  and then solve (7b) case by 

case as listed below, increasing solution difficulty. Further, merely for 
writing simplicity we let ( ),tFF =  ( ),tRR =  and as stated above the 

repair-rate stays constant at r. 

 

Figure 1. The transition-rate diagram for an on and off system. 

Case (a). When the HZF is a CFR but minimum-life δ is not necessarily 

zero, then the reliability function ( ) ( )⎩
⎨
⎧

∞<≤δ
δ≤≤

= δ−λ− te
t

tR t ,
0,1

 and applying 

the boundary condition ( ) ,10 ≡δ=tP  equation (7b) after extensive algebra 

yields ( ) ( ) ( ),0
δ−ξ−

ξ
λ+

ξ
== tertAtP  ,r+λ=ξ  ,δ≥t  which at 0=δ  is 

the same function given in Section 3 for an APP. Clearly, ( ) 1=tA  for ≤0  

.δ≤t  For example, suppose a network’s ( 0005.0,400Exp~TTF =λ=δ  

)hours  and constant repair-rate 05.0=r  per hour. Then, the characteristic- 

life now improves to 24001 =δ+λ  hours, which is also equal to MTTF of 

the ( ),0.0005400,Exp  and λ is the rate-parameter. As before, =+λ=ξ r  
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0.0505 and the Pr that the network is available (i.e., not under repair) at 
500=t  hours is given by 

( ) ( ) ,9901624687.00505.0
0005.0

0505.0
05.0500 1000505.0 =+= −eA  

while the value of reliability function is R(500, minimal-repair) = 
0.9512294245. 

Case (b). Secondly, suppose TTF is uniformly distributed over the real-
interval [ ],, ba  i.e., ( ),, baU  where 0≥a  is the minimum-life, =b  

maximum-life a>  and 0>−= abc  is the uniform-density base. Then the 
cdf ( ) ( ) ( ) ( ) ( ) 1,,, ≡<≤−=−= tRbtactbtRcattF  for all ,0 at ≤≤  

and ( ) 0≡tR  for all ,bt ≥  at which point the system will be transition to the 

repair-state. For ,0 at ≤≤  the substitution of ( ) 1≡tR  into (7b) and 

applying the boundary condition ( ) 100 ==tP  will not yield the value C 

because the indefinite-integral on the far RHS of (7b) has to be evaluated 
first. When ( ) 0, ≡≥ tRbt  results in an indeterminate form for the RHS of 

(7b), ( ) [ ( )]∫×− .dttRretRe rtrt  Thus, we will have to compute the value of 

the constant C after obtaining the general solution for ( ).tA  Next, for ta ≤  

,b<  ( ) ,ctbR −=  ( ) ,10 <−=< catF  0>−= abc  and substitution 

into (7b) yields 

( ) ( ) ( ) [ ( )]
⎭
⎬
⎫

⎩
⎨
⎧ −+×== ∫− dtFreCtRetAtP rtrt 10  

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+×= ∫ ∑

∞

=

− dtFreCtRe
n

nrtrt

0
 

( ) ( ){ },tICtRe rt +×= −  

where 

 ( ) [ ]∫ ∑∫∑
∞

=

∞

=
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

00
.

n

nrt

n

nrt dtFredtFretI  (8) 
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Note that the alternative procedure 

( ) [ ( )] [ ( ) ] ( )[ ]∫ ∫ ∫ −=−== ,1 dtbtbrcedtctbredttRretI rtrtrt  

and using the geometric series for ( ),11 bt−  will lead to the same exact 

result for ( ).tA  We now obtain the antiderivative ( )tI  of equation (8) as 

follows: 

( ) [ ] ( )∑∫ ∑ ∫
∞

=

∞

=

−
⎥⎦
⎤

⎢⎣
⎡ −==

0 0

1

n n

nrtnrtnrt dtdtdFFneFedtFretI  

( )∑ ∫
∞

=

−
⎥⎦
⎤

⎢⎣
⎡ −=

0

1 ,1
n

nrtnrt dtcFneFe  (9) 

where ( ) ;catF −=  the integral under the summation on the far RHS of 

equation (9) is valid only for the uniform-TTF. Repeated integration by parts, 
as shown above, will show that at a specific n, 

( ) [( ) ( ) ( ) ]∫ ∑
=

−×−=
n

k

kkn
kn

krtnrt crFPedtFre
0

1  

[( ) ( ) ]∑
=

−×−=
n

k

kn
kn

krt FPcre
0

,1  (10) 

where ( ) ( ) ,cattFF −==  ( ) ,!! knnPkn −=  ,0 nk ≤≤  is the permutation 

of n objects taken k at a time, and ( ) .11!0 =Γ=  Substituting equation (10) 

into (9) yields 

 ( ) [ ] [( ) ( ) ]∑∫ ∑ ∑
∞

=

∞

= =

−×−==
0 0 0

.1
n n

n

k

kn
kn

krtnrt FPcredtFretI  (11) 

Combining equations (11) and (8) results in 

( ) ( ) ( ) [( ) ( ) ] .1
0 0

0
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×−+×== ∑∑
∞

= =

−−

n

n

k

kn
kn

krtrt FPcreCtRetAtP  (12) 
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So far we have argued that ( ) 1≡tA  for ,0 at ≤≤  and ( )tA  is given by 

equation (12) only for ;bta <≤  so, what is the AVF for ?bt ≥  Recall that 
TTRTTFTBC +=  so that the support of TBC is ;0 ∞<≤ t  this is due to 

the fact that we are assuming a CFR with exponential repair distribution 

function ,1 rte−−  .0 ∞<≤ t  Before providing the overall AVF, we first 
obtain the value of the constant C in equation (12) by applying the boundary 
condition ( ) ( ) .10atat 00 ≡=== FPatP  In order to examine and evaluate 

( ) ( )tAtP =0  at ,δ=t  we rewrite the double-sum on the far RHS of 

equation (12) separating out the constant terms from those whose exponent 
of F exceeds zero, 

( ) [( ( )) ( ) ]∑∑
∞

= =

−×−=
0 0

1
n

n

k

kn
kn

krt FPcretI  

[( ( )) ( ) ] [( ( )) ( )]∑∑ ∑
∞

=

−

=

∞

=

− −+×−=
1

1

0 0
,11

n

n

k n
nn

nkn
kn

k PcrFPcr  (13) 

where !.nPnn =  Equation (13) clearly shows that 

( ) ( ) ( ) ( ) ( )32
0

6211limlim crcrcretIetI rt
at

rt
F

−+−==
→→

 

( ) [ ( ) ]∑
∞

=
−=++

0

4 ,!24
n

ncrncr  

which we denote by .0A  Unfortunately, this last alternating infinite-sum =0A  

[ ( ) ]∑
∞

=
−

0
!

n

ncrn  does not converge no matter how large cr is; the larger cr is, 

the more accurate value of C can be obtained. However, equation (12) will 
provide fairly accurate AVF if the summation over n can be terminated at 

.171<n  It should be highlighted that at 170>n  MATLAB will not compute 
( ) ,!! knnPkn −= ,0 nk ≤≤  and hence the infinite double sum in equation 

(12) has to termite at some reasonable value of n, say ;10060 ≤≤ n  this in 
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turn will resolve the divergence problem with 0A  when taken as a sum with 

the double-sum in equation (12). It should also be noted that the exact 

average (or expected) hazard rate for the uniform-density ∫ −
b
a c

dt
tb

1  does 

not exist, and the use of approximate value ( )ba += 2MTTF1  for ( )th  in 

equation (7a) reduces the process to the case of constant failure-rate during 
the interval [ ],, ba  which is not realistic. Finally, substituting at =  in 

equation (12) yields ;1 0ACe ra += −  hence, ( ),1 0AeC ra −=  and the 

corresponding AVF is given by 

 ( )
( ) ( ) ( ( ) )

( )

( )⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

∞<≤−

<≤
⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×⎟

⎠
⎞

⎜
⎝
⎛ −+

⎩
⎨
⎧

−+

≤≤

=

−−

∞

=

−

=

−

−−−−

∑∑
.,1

,,1

1

0,1

1

1

0

0

tbe

btaFPcr

eAetR

at

tA

btr

n

n

k

kn
kn

k

atratr

 (14) 

In equation (14), ( ) ( ) ctbtR −=  and ( ) .catF −=  As discussed in Section 

3, the widely-known long-term AVL for an APP is ( += MTTFMTTFinfA  

),MTTR  where the support for TBC is [ ).,0 ∞  Because the support for TTF 

in equation (14) is the finite interval [ ],, ba  taking the limit as ∞→t  is not 

warranted. Equation (14) shows that at ,bt =  the system fails with certainty 

and goes under repair and will be AVL with a Pr of ( ),1 btre −−−  ,∞<≤ tb  
at which point one cycle is completed. However, we can assert with certainty 
that the glb for average availability is ( ),1ave rbaA +=  while the lub is 

( ),1 rbb +  i.e., ( ) ( ),11 ave rbbArba +≤≤+  where aveA  gives the 

proportion of time that the system is operational. If we examine the AVL for 
the time intervals [ ),,0 a  [ ],, ba  and ( ],1, rbb +  then it follows that the 

system has an 1AVL =  with approximate Pr of ( );1 rba +  it has an ≅AVL  

( )[ ] ( )[ ]rbaba 122 +++  with approximate Pr of ( ) ( ),1 rbab +−  and 
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an AVL of zero with approximate Pr of ( ) ( ).11 rbr +  Hence, the weighted-

average (or expected) AVL is given by 

( )
( ) rb

r
rb

ab
rba

ba
rb

aA 1
10112

2
11ave +

×+
+
−×

++
+

+
+

×=  

( ) ( ) .12
2 2

+++
++= brrba

rbaabr  (15) 

For example, if minimum-life is 200=a  hours, maximum-life is 
1200=b  hours, i.e., ( ),1200,200~TTF U  and repair-rate is 0.02 per hour, 

then equation (14) gives ( ) .9156344.0hours700 =A  Further, equation (15) 

shows that ,90667.0ave =A  the lub on AVL is 0.96000, while =infA  

( ) .93333.0MTTRMTTFMTTF =+  

Case (c). Suppose TTF is distributed like gamma with minimum-life 
,0≥δ  shape 2=α  and scale ;1 λ=β  as before the repair-rate is a constant 

at r. It can easily be verified that 

( )
( ) ( )⎩
⎨
⎧

∞<≤δλ+
δ≤≤

= δ−λ− ,,1
,0for,1

tex
t

tR t  where 0≥δ−= tx   

and the HZF is ( ) ( ) ( ).1 xxth λ+λλ=  Clearly, the AVF for the interval [ ]δ,0  

is equal to 1. In order to obtain the exact expression for ( )tA  during [ )∞δ,  

given in equation (7b), again we have to obtain the antiderivative 

( ) [ ( )] [( ) ( ) ]∫ ∫ δ−λ−λ+== dtexredttRretI trtrt 1  

[ ( ) ]∫ −ξδ λ+= ,1 1 dxxere xr  (15a) 

where we have transformed δ−t  to x so that dxdt =  and .r+λ=ξ  

Expanding ( ) ,0,1 1 ≥δ−=λ+ − txx  geometrically in (15a) we obtain 

 ( ) ( ) [ ( ) ]∫ ∑∫∑
∞

=

ξδ
∞

=

ξδ λ−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λ−=

00
.

n

nxr

n

nxr dxxeredxxeretI  (15b) 
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Bearing in mind that the convergence-radius of ( )∑
∞

=
λ−

0n

nx  is ( )δ−λ≤ t0  

,1<  repeated integration by parts, and letting ,ξ=ω r  will reduce equation 

(15b) to 

 ( ) ( ) ( )∑∑
∞

= =

−ξδ λ−ω×ω=
0 0

,
n

n

k

knk
kn

xr xPeetI  (15c) 

where we remind the reader that .δ−= tx  Separating out the constant term 
from the double-sum on the RHS of (15c) yields 

 ( ) ( ) ( ) ( ) .!
1

1

0 0 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ω×+λ−ω×ω= ∑∑ ∑

∞

=

−

=

∞

=

−ξδ

n

n

k n

nknk
kn

xr nxPeetI  (15d) 

As a result the AVF for δ≥t  from equation (7b) is given by 

( ) ( ) ( ) ( ) ,
1

1

0
0
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+λ−ω×ω+×= ∑∑

∞

=

−

=

−ξδ−

n

n

k

knk
kn

xrrt CxPeeCtRetA  

 (16) 

where ( )∑
∞

=
ω×=

0
0 .!

n

nnC  In order to solve for constant C, we require the 

initial-condition that ( ) ;10 ≡=xA  this yields ( ),1 0CeC r ω−= δ  where <0  

.1ξλ=ω  Substituting for C into equation (16) and bearing in mind that 

,δ−= tx  we obtain 

 ( ) ( ) ( )

( ) ( )⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

∞<≤δ
⎪⎭

⎪
⎬
⎫

λ−ω×ω

⎪⎩

⎪
⎨
⎧

+ω+ω−×λ+

δ≤≤

=

∑∑
∞

=

−

=

−

ξ−

.,

11

,0,1

1

1

0

00

txP

CeCx

t

tA

n

n

k

knk
kn

x  (17) 
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Because the gamma mean at shape 2=α  is given by λ+δ= 2MTTF  

,μ=  it can be argued as in the previous case, where we now divide AVL 

intervals into [ ) [ )μδδ ,,,0  and [ ],1, r+μμ  that the expected proportion of 

time the above system is available is given by 

 
( )

.
1 2

2
ave

r
rA

+μ

δ+μ=  (18) 

For example, if the TTF ~ gamma 500( =δ  hours, ,2=α  scale λ=β 1  

12500=  hours) and repair-rate is a constant at ,02.0=r  then ==μ MTTF  

500,2500008.02500 =+  hours, and equation (18) gives =aveA 0.9961282, 

which is close to 

( ) .9980431.01MTTFMTTFinf =+= rA  

For ,8500=t  ,02.0=r  and ,00008.0=λ  our MATLAB program using 

equation (17) gives the point AVL of A(8500) = 0.99844741, while at =t  
,10000  ( ) .99828087.010000 =A  Note that equation (17) will not give 

meaningful answers for ( )tA  if ( ) 1≥δ−λ=λ tx  because ( )∑
∞

=
λ−

0n

nx  

diverges for .1≥λx  

Case (d). Suppose TTF is distributed like Weibull (W) with minimum-
life ,0≥δ  characteristic-life ,θ  and shape (or slope) ...,,5,4,3,2≡β  i.e., 

an exact positive integer; as before the repair-rate is a constant at r. The 
Rayleigh failure density is a special case of the ( ).2,,0 =βθ=δW  It has 

been widely known since the early 1950’s that the underlying failure 

distribution is given by ( ) ( ) ,1
βλ−−= xetF  ( ) ( )⎩

⎨
⎧

∞<≤δ

δ≤≤
= βλ− ,,

,0,1

te

t
tR x  

where ,0≥δ−= tx  the HZF is ( ) ( ) ,1−βλβλ= xth  the cumulative hazard is 

( ) ( ) ,βλ= xtH  and ( ).1 δ−θ=λ  Clearly, the AVF for the interval [ ]δ,0  is 

equal to 1. In order to obtain the exact expression for ( )tA  during [ )∞δ,  
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given in equation (7b), again we have to obtain the antiderivative 

( ) [ ( )] [ ( ) ]∫ ∫
βλ== dteredttRretI xrtrt  

( ) ( )∫ ∑∫∑
∞

=

β∞

=

ββ

⎥
⎦

⎤
⎢
⎣

⎡ λ=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ λ=
00

.!!
n

n
rt

n

n
rt dtn

xredtn
xre  (19a) 

Because we are restricting the shape only to positive integers ,3,2,1  

...,,4  repeated integration by parts will show that at a specific n the value of 

the indefinite-integral under the summation in equation (19a) is given by 

( ) [( ) ( ) ]∫ ∑
β

=

−β
β

ββ
−λ=⎥

⎦

⎤
⎢
⎣

⎡ λ
n

k

kn
kn

k
rtnn

rt xPrn
edtn

xre
0

1!!  

( ) [( ) ( )( ) ]∑
β

=
β

β
−×λ=

n

k

k
kn

rtn
rxPn

ex

0
.1!  

Substituting this last antiderivative into equation (19a) yields 

 ( ) ( ) [( ) ( )( ) ]∑ ∑
∞

=

β

=
β

β

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−×λ=
0 0

.1!
n

n

k

k
kn

rtn
rxPn

extI  (19b) 

As a result the AVF for δ≥t  from equation (7b) is given by 

( ) ( ) [( ) ( ) ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−×λ+×= ∑ ∑
∞

=

β

=

−β
β

β
λ−− β

0 0
1!

n

n

k

knk
kn

n
rtxrt xrPneCeetA  

( ) [( ) ( ) ]
⎪⎩

⎪
⎨
⎧

−×λ+×= ∑ ∑
∞

=

−β

=

−β
β

β
λ−− β

1

1

0
1!

n

n

k

knk
kn

n
rtxrt xrPneCee  

( ) ( ) .!
!

0 ⎪⎭

⎪
⎬
⎫βλ−+ ∑

∞

=

β

n

n
rt

n
nre  (20a) 

In order to solve for the constant C, we require that ( ) ;1≡δ=tA  this 



Dilcu B. Helvaci and Saeed Maghsoodloo 84 

yields ( ),1 0BeC r −= δ  where ( ) ( )∑
∞

=

β βω−
=

0
0 ,!

!

n

n

n
nB  .10 rλ=ω<  

Substituting for C into equation (20a), we obtain 

( ) ( ) ( )

( ) [( ) ( )( ) ]⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

∞<≤δ
⎪⎭

⎪
⎬
⎫

−×λ+

⎪⎩

⎪
⎨
⎧

−+×

δ≤≤

=

∑ ∑
∞

=

−β

=
β

β

−−λ− β

.,1!

1

,0,1

1

1

0

0

trxPn
x

eBee

t

tA

n

n

k

k
kn

n

rxrxx  

 (20b) 

For example, if the ( )2,2200,200~TTF W  and repair-rate is a constant 

at 04.0=r  per hour, then ( ) ( ) +==β+Γδ−θ+δ=μ 200MTTF11  

( ) 453851.19722112000 =+Γ  hours, and equation (18) gives =aveA  

0.976378, which is close to ( ) .9874841.01MTTFMTTFinf =+= rA  For 

,1500=t  ,04.0=r  and ,0005.0=λ  our MATLAB program using equation 

(20b) gives the point AVL of ( ) ,98430786.01500 =A  while at ,3000=t  

( ) .96646568.03000 =A  

It must be highlighted that there are computational problems with 
equation (20b) for larger values of t and slope β, as MATLAB will not do 
computations for factorials beyond ;170=n  thus we were unable to verify 
that for very large values of t that equation (20b) gives results that are close 
to ( ).1MTTFMTTF r+  However, we have proven that at shape ,1=β  

equation (20b) identically reduces to ( ) ( ) ( ),0
δ−ξ−

ξ
λ+

ξ
== tertAtP  λ=ξ  

;r+  MATLAB also verifies this claim computationally. 

Case (e). Suppose TTF is distributed like Weibull (W) with 0≥δ  
minimum-life, characteristic-life ,θ  and shape (or slope) β that is not an 
exact integer; as before the repair-rate is a constant at r. For example, 
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suppose ( );5.1,,~TTF =βθδW  then from equation (15a), ( ) =tI  

( )∑ ∫
∞

=
⎥
⎦

⎤
⎢
⎣

⎡ λ

0

5.1
.!n

n
rt dtn

xre  It should be clear that at ,1=n  the [ ( ) ]∫ λ dtxrert 5.1  

has no closed-form antiderivative and hence no exact solution for ( )tA  can 

be obtained. Further, approximating this last antiderivative by expanding 
rtre  in a Maclaurin series and using only the first 10 terms of the infinite 

series will not lead to an adequate approximation. Work will be in progress 
to develop a method to approximate ( )tA  for the general class of failure 

distributions. 

5. The Renewal and Availability Functions when TTF is Gamma and 
TTR is Exponential 

It is well known that the LT of an underlying gamma failure density with 

shape α and scale λ=β 1  is given by ( ) ( ) ;αα +λλ= ssf  note that only 

when α is a positive integer this last closed-form is valid. When α is not an 
exact positive integer, there is no closed-form solution for the LT of a gamma 
density because the integration-by-parts never terminates. Thus, in the case 
of shape being an exact positive integer, i.e., Erlang underlying failure 
density, we have the well-known LT of AVL: 

( ) ( )
[ ( ) ( )]

( )

( )
⎥
⎦

⎤
⎢
⎣

⎡
+

×
+λ

λ−

+λ

λ−

=
×−

−=

α

α

α

α

sr
r

s
s

s
srsfs

sfsA
1

1

1
1  

( ) ( ) ( )
[( ) ( ) ]

.
rsrss

rsrss
αα

αα

λ−++λ

+λ−++λ=  (21) 

At ,2=α  equation (21) reduces to 

( ) ( )
[ ( ) ]

,
22

22
2

3
1

21
22

2

rs
c

rs
c

s
c

rsrss
rsrssA

−
+

−
+=

λ+λ++λ+

λ++λ+
=  
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where 1r  and 2r  are the roots of the polynomial ( ) rsrs λ+λ++λ+ 22 22  

.0=  Thus, ( ) ( ) ,22 2
1 rrrr λ−−+λ−=  ( ) ( ) ,22 2

2 rrrr λ−++λ−=  

( ),221 λ+= rrc  ( )

( )
,

42

2
2

1
2

rrr

rrc
λ−+λ

++λλ−
=  and ( )

( )
.

42

2
2

2
3

rrr

rrc
λ−+λ

++λλ
=  

Inverting back to the t-space, we obtain ( ) ( ) .22 21 32
trtr ececrrtA ++λ+=  

This last AVF clearly shows that as ,∞→t  

( ) ( ) ( ) ( ),MTTRMTTFMTTF222 +=λ+=λ+→ rrrrtA  

and further, ( ) ,10 ≡A  as expected. 

Example 2. Suppose a system has an underlying gamma failure 
distribution with shape ,2=α  scale 10001 =λ=β  hours and TTR has a 

constant repair-rate ,05.0=r  then the availability at 500 hours is given by 

( ) =500A 0.99385551; while the same system with minimal-repair has an 

( ) ( ) ( ) ( )∫
∞ λ−λ− =λ+=λλ===
t

tx tedxexRtA .90979599.01500500  That 

is, repair will improve availability by 9.24%. We also used our equation (17) 
with n terminated at 130 and obtained ( ) =500A  0.99355668 for the same 

system of ,0=δ  ,2=α  scale 10001 =λ=β  hours and .05.0=r  The 

steady-state (or long-term) AVL of such a system as discussed by many other 
authors is ( ) =+= 0005.005.005.0A  0.99009901. 

At ,2=α  the LT of expected number of cycles reduces to 

( )
[ ( ) ]

,
22 2

7
1

6
2
54

222

2
1 rs

c
rs

c
s
c

s
c

rsrss
rsM

−
+

−
++=

λ+λ++λ+

λ=  

where 1r  and 2r  are the same roots, ( )
( )

,
2

2
24

r
rrc

+λ

+λ−
=  ( ),25 rrc +λλ=  

,
42

245
6

rr

rccc
λ−

−
=  and .

42
514

7
rr

crcc
λ−

−
=  Upon inversion, we obtain ( )tM1  

.21 7654
trtr ecectcc +++=  For the same parameters as the above example, 
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we obtain ( ) == hours000,101 tM  4.69561808 expected cycles. Similarly, it 
can be shown that the LT of the expected number of failures is given by 

( ) ( )
[ ( ) ]

,
22 2

11
1

10
2
98

222

2
2 rs

c
rs

c
s
c

s
c

rsrss
srsM

−
+

−
++=

λ+λ++λ+

+λ=  

where ( )
( )

,
2 2

22
8

r
rc

+λ

−λ
=  ( ),29 rrc +λλ=  ( ) ,

4

2
2

981
10

rr

ccrrc
λ−

+++λ
=  and 

( ) .
4

2
2

982
11

rr

ccrrc
λ−

−++λ−
=  Upon inversion to the t-space, we obtain 

( ) .21 1110982
trtr ecectcctM +++=  The value of expected number of 

failures during a mission of length 10,000 hours is ( ) == 100002 tM  

4.70551907, which exceeds ( ) =100001M  4.69561808, as expected. Further, 

( )100001M  – ( ) =+ 1100002M  0.99009901, which is identical to the value 

of AVF obtained from ( ) ( ) trtr ececrrtA 21 3222 ++λ+=  at .10000=t  

Unfortunately, when TTF is Erlang at =α 3, 4, 5, 6 and 7 and a constant 

repair-rate r, the corresponding LT denominators ( ) [ ( ) ( )]srsfssD ×−= 1  

have at least 2 complex roots, which have been well known to be complex 
conjugate pairs. Yet, after partial-fractioning, the LT’s can be inverted to 
yield real-valued ( )tM1  and ( ),2 tM  as demonstrated below. 

At ,3=α  

( ) ( ) ( )
[ ( ) ( )] ( ) ( ) ⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

×
+λ

λ−
+

×
+λ

λ=
×−

×= sr
r

s
ssr

r
ssrsfs

srsfsM 3

3

3

3
1 1

1
 

[( ) ( ) ]33

3

λ−++λ

λ=
rsrss

r  

[ ( ) ( ) ]232232

3

3333 λ+λ+λ+λ++λ+

λ=
rsrssss
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1

3
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21
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+
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where the root 1r  will be real, while 2r  and 3r  will be complex conjugates, 

i.e., both 32 rr +  and 32 rr ×  will for certain be real numbers. In order to 

maintain equality in the above partial fraction, it can be shown that 

;,
321

323121
21

321

3
2 rrr

rrrrrrccrrr
rc ++

×=
λ−

=  

further, letting the constants ( ) ( ),323121132121 rrrrrrcrrrca ++−++=  

( ),321122 rrrcca ++−=  then ,3c  ,4c  and 5c  are the unique solutions 

given by [ ] ,1
543 bAcccC ×=′= −  where C is the 13 ×  solution vector, b 

is a 13 ×  vector 
⎥
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=

1
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c
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b  and the 33 ×  matrix 
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213132

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+++= rrrrrr
rrrrrr

A  

A MATLAB program was devised to obtain the expected number of cycles 
( )tM1  as outlined above. The program also uses similar procedure to 

compute ( )tM2  and the resulting ( ).tA  The MATLAB program has the 

capability to compute the 3 renewal measures ( ),1 tM  ( ),2 tM  and ( )tA  for 

shapes =α 2, 3, 4, 5, 6 and 7. 

6. Conclusions 

This article provided the exact RNFs and AVF for the case of normal 
TTF and TTR. Then Markov analysis was used to obtain the AVL functions 
for the cases of 2-parameter exponential TTF, the uniform, the gamma at 
shape 2, and Weibull with positive integer shape TTF, while the repair-rate 
was held constant at r. Further, LTs were used to obtain both RNFs and the 
AVF of the gamma at shapes 7...,,4,3,2  at constant repair-rate. The 

gamma AVL obtained in Sections 4 and 5 were the same up to 4 decimal 
accuracies. 
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