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Abstract

The renewal and availability functions for some common failure and
repair underlying distributions are explored. Exact results for the
renewal functions and availability of normal time to failure and time to
repair, and gamma time to failure and exponential time to repair are
provided. Because obtaining the n-fold convolutions of time between
cycles for general classes of failure and repair distributions is
intractable, we obtained the availability functions for some commonly-
encountered failure distributions but at a constant repair-rate. A
MATLAB program was devised to perform all calculations.

1. Introduction

This article generalizes the work in [1] by the same authors, where we
now assume the MTTR (mean time to repair) is not negligible and that TTR
has a pdf (probability density function) denoted as r(t). Let the variates

X1, X9, X3, ... represent the ith time to failure (TTF ) be independently and

identically distributed (iid) with the same underlying failure density f(x)

having mean MTTF = p, and variance 0)2(; further, Y1, Yo, Y3, ... represent
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the ith time to restore (TTR;), i =1, 2, 3, 4, ... with the same pdf r(y)
having mean MTTR = p, and variance ci. Then T; = X; +Y; represents

the time between cycles (TBCs) which are also iid whose density is given by
the convolution g(t) = f(t) *r(t), and whose Laplace transform (LT) is

given by ls{g(t)} = g(s) = f(s)x F(s). Clearly, the mean and variance of
the cycle-times Ti’s are uy +py and ci + 0%,. As described by [2] there
will be two types of renewals:

(1) A transition from a Y-state (i.e., when system is under repair) to an
X-state (at which the system is operating reliably).

(2) A transition from an X-state (or operating-reliably state) to a Y-state
(where system will go under repair or restoration).

Let Mq(t) represent the expected number of cycles (or number of
renewals of type 1), and M,(t) represent the mean number of failures (or

renewals of type 2). Then, as proven by [3] and later by [2], the LTs of the
two renewal functions (RNFs), respectively, are given by

o a6 f(s)xF(s)
Ma(s) = slL—g(s)]  s[1— f(s)xF(s)]’ (1a)

SRS (- M (5
M28) = - 9~ s Flo) ) )

The corresponding LTs of RNIFs (renewal-intensity functions) are given
by

f(s)x F(s)

f(s)
1— f(s)x F(s) @

and 52(5) = m

pi(s) =
It is essential to note that authors in Stochastic Processes refer to inverse-
transforms of equations (2) as the renewal densities.

As an example, suppose TTF; ~ Exp(0, &), i.e., exponential with zero

minimum-life and constant hazard rate h(t) =2, and TTR; ~ Exp(0, r);
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then as has been documented both in Stochastic Processes and Reliability

Engineering literature, f(s) = f;OXe‘“e‘Stdt =A/(L+s) and T(s)=

Igo re e Stdt = r/(r +s). Such a process is refereed as an “alternating

Poisson Process” [2], which we acronym as APP. On substituting the above
2 LTs into equation (1a), we obtain the well-known

Ar —Ar Ar Al

R (S (E Ry Rl T Esey)

where & =X +r, and
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which gives the expected number of transitions from a repair-state to an
operational-state (or the mean number of cycles). Similarly,
f(s) W2ar %

S (OO B )

2 2
which upon inversion yields M, (t) = 7‘—2 + Ht _X e ¢t

e g

expected number of failures during the interval (0, t). For example, if A =

, representing the

0.0005/hour and the constant repair-rate = r = 0.05 per hour, then & = A +
r = 0.0505, M4(t =500 hours) = 0.237721792, while

M,(500) = 0.2476227821.

Note that the limit of both above RNFs M4(t) and M,(t) as repair-rate
r—- o (i.e,, MTTR — 0) is exactly equal to the exponential RNF M (t)

= M, as expected. Further, a comparison of M,(t) with M(t) reveals that
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M, (t) > Mq(t) for all t >0, which is intuitively meaningful because the

expected number of failures must exceed the expected number of cycles for
all t >0, as we are assuming that time zero is when a system starts in the

last renewed state X.
2. (a) Types 1 and 2 Renewal Functions Using Laplace Transforms

Elsayed [4] obtains the (point) availability function (AVF) for a system
comprising of 2 similar components A and B, using their RNFs M 4(t) and

Mg (t), where his Pa(t) represents the Pr that component A is in use at time
t. Using a similar argument, we first obtain M, (t) and M4(t) by inverting

equations (1), and we later use these 2 functions in order to obtain the
availability (AVL) function A(t). Equation (1a) shows that

V(o) - g6 = 88 5 wys) = 88 4 My(s)g(s)
My(0) = G() + [ Myt -~ )g(x)ex,
where G(t) is the cdf of TBCs. Equation (1b) now shows that
Vo)1~ 9] = 1 o W) = 1 i) 9() -
Ma(®) = F(O) + [ Ma(t - 0g(x)dx;
thus, in general the well-known expected number of cycles is given by

My(t) = G(t) + j; My(t - x)g(x)dx. (33)

While the corresponding well-known expected number of failures during
(0, t) is given by

My(t) = F(t)+I;M2(t _ X)g(x)dx (3b)
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(b) The Normal TTFand TTR

Suppose time between failures TBFs ~ N(uy, = MTBF, cﬁ) and TTRis
also N(uy, cs?,); then TBCs ~ N(uy + py, c§ + cs?,). We are making the

tacit assumption that both coefficient of variations are sufficiently small (say
CV < 15%) such that the normal distribution can qualify as a failure and
repair densities; further, the system initially starts in an X-state. As a result,

o0
equation (3a) shows that M4(t) = Zd)(t — n”), where p = py +py, 6=
n=1 G\/ﬁ

0)2( + 0?,, and Mq(t) gives the expected number of cycles. However,

because a system is under repair a small (but not negligible) fraction of the

o0
interval (0, t), then My(t) # Z@[wJ In order to obtain an
n=1 oxn

approximation for M,(t) and the resulting availability function (AVF),
A(t), defined later, we may argue that the expected duration of time a system
is under repair during the interval (0, t) is given by My(t) x MTTR; letting
t, =t — My(t)x MTTR, then equation (3b) shows that the expected number
of failures, assuming that the system starts in the X-state, is approximately

: t‘Hx) o o 12~ Ny
iven by M,(t) = @ + » O =—2 |,
g y 2() ( oy r; [ Gx\/ﬁj

3. Point Availability

Because we are assuming that a system can be either in an operational-
state (X), or under repair, then it has been well-known that the reliability

function, R(t), must be replaced by the instantaneous (or point) AVF at time
t, denoted A(t), which represents the probability (Pr) that a repairable
system (or unit) is functioning reliably at time t. Thus, if restoration-time is
negligible, the AVF is simply A(t) = R(t). However, if a system (or a
component of a system) is repairable, then there are two mutually exclusive
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possibilities [5]:
(1) The system is reliable at t, in which case A¢(t) = R(t).

(2) The system fails at time x, 0 < x <'t, gets renewed (or restored to
almost as-good-as-new) in the interval (X, x + Ax) with unconditional Pr

element p(x)dx, p(t) being the RNIF of TBCs, and then is reliable from time
x to time t. This second Pr is given by Ay(t) = j(t) p(x)dxR(t — x); because the

above two cases are mutually exclusive, then
t
At) = A(t) + Ap(t) = R(t) + j JR(t=x)p(0)d. @)

Taking Laplace transform of the above equation (4) (and observing that
the integral is the convolution of R(t) with p(t) [6]) yields the very well-

known LT of AVF
A(s) = R(s)+ R(s)p(s) = R(s)[L+ P(s)]

_5 f(s)xr(s) |_ R(s)
_R(s)[1+1_ f_(s)xF(s)}_l— f(s)xF(s)’ ®)

where T(s) is the LT of r(t), the density (or pdf) of repair-time. For the case
when the TTF (of a component or system) has a constant failure-rate A and
time to repair (TTR) is also exponential at the rate r (i.e., an APP), R(s) =

Igoe_me_“dt =2/(r +s), and hence the Laplace transform of AVL from

equation (5) is given by

As) = (L +s) r+s

1A/ (A +9)[r(r+s)]  s[s++r)]

L ME L Ay = YA = ke

& Ss+¢&

g
o] >

where & =X+ r, which is provided by many authors in Reliability
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Engineering such as [4, 7, 8] and many other notables. For example, given
that the failure-rate = A = 0.0005 and r = repair-rate = 0.05 per hour,
then £ = A +r =0.0505 and the Pr that a network is available (i.e., not

0.05

under restoration) at t =500 hours is given by A(500) = 00505+

%e—m"f’(wo) — 0.99009901, while R (at 500 hours with minimal-

repair) = e 020 = 0.7788007831 < A(500) = 0.9901. Thus, restoration has

improved AVL by 27.31%. As stated by numerous authors in Stochastic
Processes and Reliability Engineering, as t — o, R(t) — 0 for all failure

densities, while for an APP
At) > r/e =r/(h+ 1) = Aps = MTTF/(MTTF + MTTR)
= 2000/2020 = 0.9901,

where restoration includes administrative, logistic and active repair-times.

Note that in the APP case (i.e., both rate-parameters are constants), we
can also obtain the AVF, A(t), directly from equation (4) as follows:

A(t) = R(t) + I; R(t — X)py(x)dx = e + J; e_x(t_x)pl(x)dx,

where

_ G A AT LA e | AT AT
pl(x)_dMl(x)/dx_dX(gz + : x+§2e J_ : ée

is the RNIF of the number of cycles. Upon substitution of this RNIF into the
expression for A(t), we obtain

At)=e M+ I; e Mt=x) %(1 — e ¥)dx = é + %e_gt,

as before.
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As pointed out by [4], we also observe that

R(s) = Owe_StR(t)dt - | O°° e~ [(1 = F(t))]dt

= 2- I:e_StF(t)dt =2 - F(s).
Hi =\ T s 1—1(s).
ildebrand [6] proves that F(s)= f(s)/s so that R(s)= s on
substitution into equation (5), we obtain
A(s) - 1- f_(s)_ _ 1 . _f_(s) _
s[L— f(s)xr(s)] s[1- f(s)xF(s)] s[1— f(s)xTr(s)]
1, fexre) _ f)
s s[l- f(s)xF(s)] S[L— f(s)xF(s)]
Inverting these last 3 LTs from equations (1), we obtain
At) =1+ My(t) - Mp(t) (6)

for all underlying failure densities f(t) and TTR-density r(t). Equation (6)

is identical to that of Elsayed [4] atop his page 467, which he derived using a
system of 2 alternating components. Further, equations (3) imply that M, (t)

— M4(t) yields the unconditional Pr that a system is under repair at time t,
and hence equation (6) is intuitively appealing because A(t) =1-[M5(t)
— M4(t)]. For the above exponential example with A = 0.0005 and repair-
rate r = 0.05, equation (6) shows that A(t =500) =1+ 0.237721792 —
0.2476227821 = 0.99009901, as before.

Example 1. Our experience shows that in the case of normal TTF and
TTR the approximate value of t, =t — Mq(t) x MTTR is a bit too small.
If 0.005< MTTR/MTTF < 0.05, then t, =t —[M(t) — 0.475] x MTTR;
however, if 0.05< MTTR/MTTF < 0.10, then t, =t —[My(t) — 0.425] x
MTTR is a better approximation. These values were obtained such that the
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limiting AVL, given by Ajps = MTTF/(MTTF + MTTR), is approximately
equal to A(t) =1+ Mq(t) - M,(t) at t =120 x MTTF to 3 decimals. For
example, if TTF ~ N (5000 hours, 160000 hoursz) and also TTR ~ N(200

hours, 576 hoursz), then

M, (600000) = Z@(GOOOOOJPZOO”J = 114.8875850224902
ovnihn

n=1

expected cycles, where o = +/160000 + 576 = 400.7193531637822, M,(t)
=~ @(mj + Y ® 2 = MMy ) _ 114926696731 expected failures,
GX n=2 GX\/H

where

t, =t — [My(t) — 0.475]x MTTR = 577117.4829955020,
A(600,000 hours) = 1+ My(t) — M, (t) = 0.9608883,
which is close to Ajps = 5000/5200 = 0.96153846154.

Similar calculations will show if TTR ~ N(400 hours, 2304) so that
MTTR/MTTF = 0.080, then A(t) =1+ Mj(t) - M,(t) = 0.925806, t, =
t —[My(t) — 0.425]x MTTR = 555924.44217462, and Aps = 5000/5400 =
0.925925926. It should be noted that if 0 < MTTR/MTTF < 0.005, then

from a practical standpoint the renewal process approximately reduces to the
minimal-repair case (i.e., a nonhomogeneous Poisson process) for which
M (t) = M,(t). Further, the normal A(t) generally decreases on the interval

[0, MTTF) as t increases, seems to attain its worst value around the MTTF,

tends to increase with increasing time beyond MTTF, and then converges
toward Ajpt.

4. Markov Analysis When Only Repair-rate r is a Constant

The Markov analysis of AVF, A(t), for case of constant failure- and



74 Dilcu B. Helvaci and Saeed Maghsoodloo

repair-rates (i.e., the APP) has been reported by nearly all authors in
Stochastic Processes and Reliability Engineering. Our objective is to make a
slight generalization to when the hazard function (HZF) is time-dependent,
i.e.,, h(t) = A, where X is the CFR (constant failure-rate). We can obtain the

AVL of a simple on and off (or up-time and down-time) system from Figure
1, where state “0” represents a system in the reliable-state and “1” represents
the same system under repair. The transition-rate in Figure 1 shows that its
Kolmogorov equation is given by dPy(t)/dt = —h(t)Py(t) + rP(t), where
Py(t) = A(t) represents the unconditional Pr of finding the system in the
operational state “0” at time t, and similarly for Pj(t). Because Pi(t) =
1- Py(t) for all t, we obtain dPy(t)/dt = —h(t)Py(t) + r(1 — Py), and hence
dPy(t)/dt + [h(t) + r]Py(t) = r. This last is a simple differential equation

with the integrating factor ol MO _HWt \here H(t)=H is the
antiderivative of h(t); it should be noted that the antiderivative fh(t)dt
does not seem to match the definition of the cumulative HZF I; h(x)dx.

However, if the cumulative hazard at minimum-life is zero, which is
expected, then H(t) is also the cumulative HZF. It is widely known that the

general solution of the above differential equation is given by

Po(t) = e (H+10) J. re" O+ Mgt 4 co=(H+1), (7a)

where the constant of integration will be computed as usual from the

boundary condition Py(t = 8) =1, 8 being the minimum-life. Because eH(®

= 1/R(t), then (7a) is modified to

Po(t) = Alt) = e_(H”t){C + I[re”/R(t)]dt}

= e "R(t) x {c + j [re' /R(t)]dt}. (7b)



Renewal and Availability Functions 75

Unfortunately, there is no exact solution to (7b) for the general classes of
failure distributions, F(t) =1 - R(t), because the indefinite-integral 1(t) =

[[re™ /R(t)]dt = [re™/[1— F(t)]dt has no closed-form antiderivative for all

uncountably infinite number of failure distributions. However, we may
obtain an exact solution for a few failure distributions F(t), and then have to
approximate equation (7b) for others. We start with the simplest case of
2-parameter exponential F(t) =1- e Mt=8) and then solve (7b) case by
case as listed below, increasing solution difficulty. Further, merely for
writing simplicity we let F = F(t), R = R(t), and as stated above the
repair-rate stays constant at r.

Figure 1. The transition-rate diagram for an on and off system.

h(t)

r

Case (a). When the HZF is a CFR but minimume-life 8 is not necessarily
0<t<d

and applyin
0<t<w PPRIYING

11
zero, then the reliability function R(t) = { A(t-5)
€ ;
the boundary condition Py(t = 8) =1, equation (7b) after extensive algebra
yields By(t) = At) = é + %e_é(t_g’), E=A+r, t>35, whichat §=0 is

the same function given in Section 3 for an APP. Clearly, A(t) =1 for 0 <
t < 8. For example, suppose a network’s TTF ~ Exp(d = 400, A = 0.0005
hours) and constant repair-rate r = 0.05 per hour. Then, the characteristic-
life now improves to 1/A + & = 2400 hours, which is also equal to MTTF of
the Exp(400, 0.0005), and A is the rate-parameter. As before, £ =L +r1 =
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0.0505 and the Pr that the network is available (i.e., not under repair) at
t = 500 hours is given by

_ 0.05 | 0.0005 -0.0505(100) _
A(500) = 00505+ 0.0508 ¢ = 0.9901624687,

while the value of reliability function is R(500, minimal-repair) =
0.9512294245.

Case (b). Secondly, suppose TTF is uniformly distributed over the real-
interval [a, b], i.e., U(a, b), where a>0 is the minimum-life, b=
maximum-life > a and ¢ = b —a > 0 is the uniform-density base. Then the
cdf F(t) =(t-a)/c, R(t)=(b-t)/c,a<t<b R(t)=1forall 0<t<a,
and R(t) = 0 forall t > b, at which point the system will be transition to the
repair-state. For 0 <t <a, the substitution of R(t)=1 into (7b) and
applying the boundary condition Py(t = 0) =1 will not yield the value C
because the indefinite-integral on the far RHS of (7b) has to be evaluated
first. When t > b, R(t) = 0 results in an indeterminate form for the RHS of
(7b), e "'R(t) x j[re”/R(t)]dt. Thus, we will have to compute the value of

the constant C after obtaining the general solution for A(t). Next, for a <'t
<b, R=(b-t)/c, 0<F =(t-a)/c<l c=b-a>0 and substitution
into (7b) yields

Py(t) = A(t) = e "R(t) x {c + J'[re”/(l— F)]dt}

= e "R(t) x {C + J[rerti F”}dt}
n=0

= e "R(t) x {C + (1)},

where

I(t) = J‘{re”i F”]dt = ij.[re”F”]dt. (8)
n=0 n=0
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Note that the alternative procedure
I(t) = j [re" /R(t)]dt = j [re" /(b - t)/c]dt = j rce™ /[b(1 — t/b)]dt,

and using the geometric series for 1/(1—t/b), will lead to the same exact
result for A(t). We now obtain the antiderivative I(t) of equation (8) as

follows:

I(t) = ij[re”F”]dt = i[e”F” —J‘ne”F”_l(dF/dt)}dt
n=0 n=0

0

= Z[ertF” —J‘ne”F”_l(l/c)}dt, 9)

n=0

where F = (t —a)/c; the integral under the summation on the far RHS of

equation (9) is valid only for the uniform-TTF. Repeated integration by parts,
as shown above, will show that at a specific n,

Jre™F ™yt - Y (o) < F o]
k=0

= e [(-1/en)f (nR) x F" ¥, (10)

k=0
where F = F(t) = (t—a)/c, Px = nY/(n—k), 0 < k < n, is the permutation
of n objects taken k at a time, and O!'= I'(1) = 1. Substituting equation (10)
into (9) yields

o0 00 n
1(t) = ZJ[re”F”]dt =" (/e (R x FMFL (1)
n=0 n=0 k=0
Combining equations (11) and (8) results in

Py(t) = A(t) = e "R(t) x {c + e”i Zn:[(—l/cr)k( AP x F”—k]} (12)

n=0k=0
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So far we have argued that A(t) =1 for 0 <t <a, and A(t) is given by
equation (12) only for a <t < b; so, what is the AVF for t > b? Recall that
TBC = TTF + TTR so that the support of TBC is 0 <t < oo; this is due to

the fact that we are assuming a CFR with exponential repair distribution

function 1—e "

, 0<t < . Before providing the overall AVF, we first
obtain the value of the constant C in equation (12) by applying the boundary
condition Py(at t = a) = Py(at F = 0) = 1. In order to examine and evaluate
Pp(t) = A(t) at t =23, we rewrite the double-sum on the far RHS of

equation (12) separating out the constant terms from those whose exponent
of F exceeds zero,

10)/e"™ = > > 11/ (RO x F"¥]
n=0k=0
o n-1 ©
- [(1/er) (P x F" K]+ D [-1/n)" (hPy)] (13)
n=1k=0 n=0

where , B, = nl. Equation (13) clearly shows that

Jim I(t)/e™ = lim I(t)/e™ =1-1/(cr) + 2/(cr)? - 6/(cr)®

F2uf(en)’ = 3 )],
n=0

which we denote by A,. Unfortunately, this last alternating infinite-sum Ay =

o0
Z[n!/(—cr)”] does not converge no matter how large cr is; the larger cr is,
n=0

the more accurate value of C can be obtained. However, equation (12) will
provide fairly accurate AVF if the summation over n can be terminated at
n < 171. It should be highlighted that at n > 170 MATLAB will not compute

nP =nY(n—k)!, 0 <k <n, and hence the infinite double sum in equation
(12) has to termite at some reasonable value of n, say 60 < n <100; this in
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turn will resolve the divergence problem with A, when taken as a sum with

the double-sum in equation (12). It should also be noted that the exact

average (or expected) hazard rate for the uniform-density I :ﬁ% does

not exist, and the use of approximate value I/MTTF = 2/(a + b) for h(t) in

equation (7a) reduces the process to the case of constant failure-rate during
the interval [a, b], which is not realistic. Finally, substituting t =a in

equation (12) yields 1= Ce "™ + Ay; hence, C =e"?(1-Ay), and the
corresponding AVF is given by

1,0<t<a
R(t){e_r(t_a) + Ag(l—e ")

o n-1 k
a3 20{(;—3) (nPk)xF”_k}},ast<b,

At) = (14)

n=1k

1- e—r(t—b)’ b<t<oo

In equation (14), R(t) = (b —t)/c and F = (t — a)/c. As discussed in Section
3, the widely-known long-term AVL for an APP is Ay, = MTTF/(MTTF +
MTTR), where the support for TBC is [0, «). Because the support for TTF
in equation (14) is the finite interval [a, b], taking the limit as t — oo is not
warranted. Equation (14) shows that at t = b, the system fails with certainty
and goes under repair and will be AVL with a Pr of 1— e_r(t_b), b<t< o,

at which point one cycle is completed. However, we can assert with certainty
that the glb for average availability is A = a/(b +1/r), while the lub is

b/(b+1/r), ie, a/(b+1/r)< Aye <b/(b+1/r), where Ay, gives the
proportion of time that the system is operational. If we examine the AVL for
the time intervals [0, a), [a, b], and (b, b +1/r], then it follows that the

system has an AVL = 1 with approximate Pr of a/(b + 1/r); it has an AVL =
[(a +b)/2]/[(a + b)/2 +1/r] with approximate Pr of (b —a)/(b+1/r), and
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an AVL of zero with approximate Pr of (1/r)/(b + 1/r). Hence, the weighted-
average (or expected) AVL is given by

_ a (a+h)/2 b-a yr
Aa"e_1Xb+1/rJr(a+b)/2+1/rxb+1/r+0Xb+1/r

_abr+2a+ rb?
~(@a+b+2/r)(br+1)°

(15)

For example, if minimum-life is a =200 hours, maximum-life is
b =1200 hours, i.e., TTF ~ U(200, 1200), and repair-rate is 0.02 per hour,

then equation (14) gives A(700 hours) = 0.9156344. Further, equation (15)
shows that A, = 0.90667, the lub on AVL is 0.96000, while Ay =
MTTF/(MTTF + MTTR) = 0.93333.

Case (c). Suppose TTF is distributed like gamma with minimum-life
8 > 0, shape a = 2 and scale B = 1/A; as before the repair-rate is a constant
at r. It can easily be verified that

for0<t <3,

1
R(t)=<" where x =t—-8>0
® {(1+ e M) 5 <t < oo,

and the HZF is h(t) = A(Ax)/(1 + Ax). Clearly, the AVF for the interval [0, 3]
is equal to 1. In order to obtain the exact expression for A(t) during [3, )

given in equation (7b), again we have to obtain the antiderivative

1) = j [re" /R(t)]dt = j re™ /[ + ax)e M0t

= rersj. [e%(1 + ax)1]dx, (15a)

where we have transformed t -3 to x so that dt =dx and E=A+r.
Expanding (1 + kx)_l, X =t -8 >0, geometrically in (15a) we obtain

0

I(t) = rersjle@(Z(—M)”}dx = rergij.[egx(—kx)”]dx. (15b)
n=0

n=0
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Bearing in mind that the convergence-radius of Z(—kx)” is 0 < A(t-9)
n=0

<1, repeated integration by parts, and letting o = r/&, will reduce equation
(15b) to

1(t) = mefaeﬁxi Zn:(n P ) x of (=)7K, (15¢)

n=0k=0

where we remind the reader that x =t — 8. Separating out the constant term
from the double-sum on the RHS of (15¢) yields

o n-1 0
1(t) = mefﬁei{z > (P x 0 ()" + Y (% m“)}. (15d)
n=1k=0 n=0
As a result the AVF for t > 6 from equation (7b) is given by

A(t) = e "R(t) x {c + we"Pe™ E“

n=1k

-1

S

(nP)x o (=) + co},

0

(16)

o0
where Co = ) (n!x ®"). In order to solve for constant C, we require the
n=0

initial-condition that A(x = 0) = 1; this yields C = e"™(1 - ®Cq), where 0 <
o = /& < 1. Substituting for C into equation (16) and bearing in mind that
X =t —d, we obtain

,0<t<3s,
A(t) = {(1+2x)x {(1 - ©Cq)e™ + oCyq + (17)
o n-1
SIDNCLAE mk(—xx)“—k}, §<t <o
n=1k=0
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Because the gamma mean at shape o = 2 is given by MTTF = & + 2/A
= u, it can be argued as in the previous case, where we now divide AVL
intervals into [0, 8), [8, u) and [u, u+ 1/r], that the expected proportion of
time the above system is available is given by

(18)

For example, if the TTF ~ gamma (8 = 500 hours, o = 2, scale B = 1/A
= 12500 hours) and repair-rate is a constant at r = 0.02, then p = MTTF =
500 + 2/0.00008 = 25,500 hours, and equation (18) gives Ay, = 0.9961282,

which is close to

Aing = MTTF/(MTTF +1/r) = 0.9980431.

For t =8500, r =0.02, and A = 0.00008, our MATLAB program using
equation (17) gives the point AVL of A(8500) = 0.99844741, while at t =
10000, A(10000) = 0.99828087. Note that equation (17) will not give

meaningful answers for A(t) if Ax =Ai(t-8) =1 because » (-Ax)"
n=0

diverges for Ax > 1.

Case (d). Suppose TTF is distributed like Weibull (W) with minimum-
life 8 > 0, characteristic-life 6, and shape (or slope) =2, 3, 4,5, ..., ie,
an exact positive integer; as before the repair-rate is a constant at r. The
Rayleigh failure density is a special case of the W(8 =0, 6, B = 2). It has

been widely known since the early 1950’s that the underlying failure
distribution is given by F(t)=1- e R(t) = {1'_00()3 O=t=s

e , 0<t<om,
where x =t -3 > 0, the HZF is h(t) = BL(Ax)P~L, the cumulative hazard is
H(t) = )P, and & = 1/(6 — 8). Clearly, the AVF for the interval [0, 8] is

equal to 1. In order to obtain the exact expression for A(t) during [, o)
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given in equation (7b), again we have to obtain the antiderivative

1(t) = I[re”/R(t)]dt = J.[re”e(xx)ﬁ]dt

_ J[re”i(kﬁnﬂ}dt _ iﬂre” W:]—%m}dt. (199)
n=0 ' n=0 |

Because we are restricting the shape only to positive integers 1, 2, 3,
4, ..., repeated integration by parts will show that at a specific n the value of
the indefinite-integral under the summation in equation (19a) is given by

Bn
t (kX)Bn ~ kﬁnert
J‘{re n! dt = n 4

Bn rt
MZ[(M) ENCEIN!

k=0

Substituting this last antiderivative into equation (19a) yields

Bn r
I(t) = Z{LZKM) (-1/(rx))¥ } (19b)

= "

As a result the AVF for t > 6 from equation (7b) is given by

© .pn B
A<t>=e—”e—<“>ﬁ{ Z Z(Bnmx(—l/r)kxﬁ”—k]}

n Bn-1
_ e—rte—(kx) {C +ertz Z (Bnpk) ( 1/r)kx[3n k]

n=1 k=0
. enz( Lyl Bn)'} 203

In order to solve for the constant C, we require that A(t = 8) =1; this
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o0 _ Bn 1
yields C =e"®(1-Bgy), where By = 2% O<w=2Ar<L1l
n=0 ;

Substituting for C into equation (20a), we obtain

1,0<t <y,

Mﬂze*mfx%4x+%a—f”)

pn-1

0 BN
+ Z (b;])| Z[( BnPk)>< (—1/(|’X))k]} §<t<om.
ol " ko

(20b)

For example, if the TTF ~ W (200, 2200, 2) and repair-rate is a constant
at r=0.04 per hour, then p=38+(6-38)I'(1+1/B)=MTTF =200+
2000T°(1 + 1/2) = 1972.453851 hours, and equation (18) gives Aye =
0.976378, which is close to A = MTTF/(MTTF +1/r) = 0.9874841. For
t =1500, r = 0.04, and A = 0.0005, our MATLAB program using equation
(20b) gives the point AVL of A(1500) = 0.98430786, while at t = 3000,
A(3000) = 0.96646568.

It must be highlighted that there are computational problems with
equation (20b) for larger values of t and slope B, as MATLAB will not do
computations for factorials beyond n = 170; thus we were unable to verify
that for very large values of t that equation (20b) gives results that are close

to MTTF/(MTTF +1/r). However, we have proven that at shape B =1,
equation (20b) identically reduces to Py(t) = A(t) = £+%

+ r; MATLARB also verifies this claim computationally.

e—é(P—S)' £ =

Case (e). Suppose TTF is distributed like Weibull (W) with 6 >0
minimum-life, characteristic-life 6, and shape (or slope) B that is not an
exact integer; as before the repair-rate is a constant at r. For example,
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suppose TTF ~W(3, 6, B =1.5); then from equation (15a), I(t)=
© " (Kx)l.Sn : 15
Zj re’ "0 |dt. It should be clear that at n =1, the j[rer (Ax)~>]dt
n=0 :

has no closed-form antiderivative and hence no exact solution for A(t) can

be obtained. Further, approximating this last antiderivative by expanding

re™ in a Maclaurin series and using only the first 10 terms of the infinite

series will not lead to an adequate approximation. Work will be in progress
to develop a method to approximate A(t) for the general class of failure

distributions.

5. The Renewal and Availability Functions when TTF is Gamma and
TTR is Exponential

It is well known that the LT of an underlying gamma failure density with
shape o and scale B = 1/A is given by f(s) = A*/(A + s)*; note that only
when a is a positive integer this last closed-form is valid. When a is not an
exact positive integer, there is no closed-form solution for the LT of a gamma
density because the integration-by-parts never terminates. Thus, in the case

of shape being an exact positive integer, i.e., Erlang underlying failure
density, we have the well-known LT of AVL.:

oM
1-f(s)  _ (A +s)*
sfL— f(s)x F(s)] { Moo }

s|1—

A(s) =

_ (v ) *(s+r)—2%(s+r)
S[(A + 8)*(r +s)—A%]

(21)

At o = 2, equation (21) reduces to

_ 2
As) = 2s +(2n+7r)s +22kr _a, ¢ . G ,
s[s*+ (A +r)s+A"+2xar] S S—h S-hn
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where r; and r, are the roots of the polynomial s? + 2r+r1)s+ A2+ 20r

=0. Thus, B =—(A + r/2)—\/(r/2)2 -Ar, np=—(A+ r/2)+\/(r/2)2 —Ar,
-M2h+r1+1) M2h+T1+1y) _
(v +2rWr2 — 4or (v +2rWr2 — dor

Inverting back to the t-space, we obtain A(t) = 2r/(2r + &) + et + cge't,

cL =2r/(2r+ L), Cp =

, and c3 =

This last AVF clearly shows that as t — oo,
A(t) = 2r/(2r + &) = r/(r + 1/2) = MTTF/(MTTF + MTTR),
and further, A(0) =1, as expected.
Example 2. Suppose a system has an underlying gamma failure
distribution with shape o = 2, scale B =1/A =1000 hours and TTR has a

constant repair-rate r = 0.05, then the availability at 500 hours is given by
A(500) = 0.99385551; while the same system with minimal-repair has an

A(t = 500) = R(500) = [ t°° A(x)eMdx = e M(1+ At) = 0.90979599. That
is, repair will improve availability by 9.24%. We also used our equation (17)
with n terminated at 130 and obtained A(500) = 0.99355668 for the same

system of =0, a =2, scale B =1/A =1000 hours and r = 0.05. The

steady-state (or long-term) AVL of such a system as discussed by many other
authors is A = 0.05/(0.05 + 0.0005) = 0.99009901.

At o = 2, the LT of expected number of cycles reduces to
2
rx Cs C c c
1(8)= 55— 5 =22 0T
s[s+(2r+r)s+A"+2x] S s S—h S—0h
where r, and r, are the same roots, ¢, = —I’(L—‘r;) c5 = Ar/(A + 2r),
(A +2r)

Cs = Cg — Cylp Cq — Cg
Vr? —aar Vré —anr

=C4 + Cgt + cg,er1t + c7er2t. For the same parameters as the above example,

and c; = . Upon inversion, we obtain My(t)
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we obtain M (t = 10,000 hours) = 4.69561808 expected cycles. Similarly, it
can be shown that the LT of the expected number of failures is given by

B 2
s +(2r+r)s+A°+2ar] S s¢ S-h S5-I
22
where cg _ 2) , Cg = Ar/(A+2r), ¢ = (20 +1+ rl)CB % and
(A +2r) — 4r
Cq = “r T+ )G = Co Upon inversion to the t-space, we obtain
\/rz — 4hr

M,(t) = cg + Cgt + Cpe™ + ce™. The value of expected number of
failures during a mission of length 10,000 hours is M, (t = 10000) =
4.70551907, which exceeds M;(10000) = 4.69561808, as expected. Further,

M(10000) — M,(10000) +1 = 0.99009901, which is identical to the value
of AVF obtained from A(t) = 2r/(2r + &) + cpe™ + cge'! at t = 10000.
Unfortunately, when TTF is Erlang at a. = 3, 4, 5, 6 and 7 and a constant
repair-rate r, the corresponding LT denominators D(s) = s[1— f(s)x F(s)]
have at least 2 complex roots, which have been well known to be complex

conjugate pairs. Yet, after partial-fractioning, the LT’s can be inverted to
yield real-valued M4(t) and M,(t), as demonstrated below.

At a = 3,

— . fs)xF(s) A LT S LT
)= e o (1 e )

23r
s[(A + 5)3(r +5)— r?c°’]

23r
s2[s + (3% + 5)s% + (BAr +332)s + 23 + 3rA?]

Gq C c c c
1 3 3 , G G
S 2 S-K S-Ip S-I3
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where the root r, will be real, while r, and r3 will be complex conjugates,
i.e.,, both r, + 3 and r, x r3 will for certain be real numbers. In order to
maintain equality in the above partial fraction, it can be shown that

3
-X°r nry + [rg + .
c C><12 1'3 2'3.

27 1 nrr

further, letting the constants a; = Co(r + I + 13) — ¢ (R + [I3 + HR),

a, =Cy —¢(n + 1, +13), then c3, ¢4, and cg are the unique solutions

given by C =[c3 ¢4 c5] = A1 x b, where C is the 3 x 1 solution vector, b
a
isa 3x1 vector b =| a, | and the 3 x 3 matrix

nr3 nr3 nr
A=+ n+ R+
1 1 1

A MATLAB program was devised to obtain the expected number of cycles
M(t) as outlined above. The program also uses similar procedure to

compute M,(t) and the resulting A(t). The MATLAB program has the
capability to compute the 3 renewal measures Mq(t), M»(t), and A(t) for
shapes o = 2, 3,4,5,6and 7.

6. Conclusions

This article provided the exact RNFs and AVF for the case of normal
TTF and TTR. Then Markov analysis was used to obtain the AVL functions
for the cases of 2-parameter exponential TTF, the uniform, the gamma at
shape 2, and Weibull with positive integer shape TTF, while the repair-rate
was held constant at r. Further, LTs were used to obtain both RNFs and the
AVF of the gamma at shapes 2, 3, 4, ..., 7 at constant repair-rate. The

gamma AVL obtained in Sections 4 and 5 were the same up to 4 decimal
accuracies.
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