
Hindawi Publishing Corporation
fournal of Quality and Reliability Engineering
Volume 2014, ArticlelD 857437,10 pages

http: //dx.doi.org I 10.1155 I 2014 I 857 437

Research Article

Renewal and Renewal-Intensity Functions urith Minimal Repair

Saeed Maghsoodloo and Dilcu Helvaci

Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA

Correspondence should be addressed to Saeed Maghsoodloo; maghsood@eng.auburn.edu

Received 27 October 2013; Revised 2 lanuarry 2014; Accepted 16 January 2014

Academic Editor: Elio Chiodo

Copyright o 2014 S, Maghsoodloo and D. Helvaci. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The renewal and renewal-intensity functions with minimal repair are explored for the Normal, Gamma, Uniform, and Weibull
underlying lifetime distributions. The Normal, Gamma, and Uniform renewal, and renewal-intensity functions are derived by
the convolution method. Unlike these last three failure distributions, the Weibull except at shape B = I does not have a closed-
form function for the zr-fold convolution. Since the Weibull is the most important failure distribution in reliability analyses, the
approximate renewal and renewal-intensity functions of Weibull were obtained by the time-discretiztng method uingthe Mean-
Value Theorem for Integrak. A Matlab program outputs all reliability and renewal measures.

l. Introduction

Renewal (RNL) functions give the expected number of fail-
ures of a system (or a component) during a time interval and
this is used to deterrhine the optimal preventive maintenance
schedule of a system [l]. Renewal functions (RNFs) have
particular importance in analysis of warranty [2-6]. They
have wide variety of applications in decision making such as

inventory theory [7], supply chain planning [8, 9] , continuous
sampling plans [10, 11], insurance application, and sequential
analysis 12,8,12,131.

Since RNFs play an important role in many applications,
it is important to obtain them analytically, if possible. Based
on analytical approach, the RNF M(f) is the inverse of
its Laplace transform M(s), *h.r. Laplace transforms will
be defined later. Blischke and Murthy [6] state that "the
advantage of analytical method is that one can carry out
parametric studies of the RNF, that is, the behavior of M(t) as

a function of the parameters of the distributionl'However, for
most distribution functions, obtaining the RNF analytically is
complicated and even impossible [8]. Therefore, development
of computational techniques and approximations for RNFs
has attracted researchers [14].

One of the well-known approximations given by Tiicklind
[15] is M(f) = tlUl + plrlZUlr2 - 1, where p', and plare the
first and second raw moments, which is generally known as

the asymptotic approximation and is also cited in numerous
papers such as Smith [16]. The asymptotic approximation
has a closed-form expression and thus it is easy to apply
to optimization problems that involve a RNL process [8].
However since the asymptotic approximation is not accurate
for small values of f, Parsa and iin [8] propose better
approximation by keeping the positive features of asymptotic
approximations such as simplicity, closed-form expression,
and independence from higher moments of an underlying
distribution. )iang [17] proposes an approximation for the
RNF with an increasing lailure rate ( IFR ) which is also

useful in areas such as optimization where a RNF needs to
be evaluated.

There are series methods available in the literature to
approximate RNFs such as Smith and Leadbetter [18] who
developed a method to compute the RNF for the Weibull

by using power series expansion of tF where p is the shape
parameter of the Weibull. On the other hand, instead of using
power series expansion, Lomnicki [19] proposes another
method by using the infinite series of appropriate Poissonian

functions of ,P. There are also many other approximations
available such as Xie [20], Smeitink and Dekker [21], Baxter
etal.1221, Garg and Kalagnanam [23], and From [24], There
are usually three criteria: model simplicity, applicability,
and accuracy to evaluate the value of RNF approximation

[17]. Increasing the complexity may lead to more accurate
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approximation but may make the process complicated and
difficult to implement in practice [25].

Furthermore, in the literature, lower and upper bounds
on RNFs have been discussed, which can be used to obtain
upper and lower bounds on warranty costs such as Blischke
and Murthy [6]. Marshall [26] provides lower and upper
linear bounds on the RNF of an ordinary RNL process. Ayhan
et al.127) provide tight lower and upper bounds for the RNF
which are based on Riemann-Stieljes integration. There are
also many other studies conducted about bounds on RNF
such as Barlow [28], Leadbetter [29), Ozbaykal [30], Xie [31],
Ran et al. [32], and Politis and Koutras [33].

Finally, simulation can be considered as an alternate
approach to estimate the value of a RNF. Brown et al. [34] use
the Monte Carlo simulation to estimate the RNF for a RNL
process with known interarrival time distribution.

This paper proposes a convolution method to obtain
the Gamma and Normal renewal and renewal-intensity
functions; throughout, we are assuming that repair time is
negligible (or minimal) relative to Time to Failure (TTF).
As a result of this assumption, the replacement time of a
failed component in a system is minimal. A further objective
is to obtain the renewal and RNl-intensity functions of the
uniform distribution by using n = 2 to n = 12 convolutions
and applying the normal approximation for convolutions
beyond 12. Because the Weibull distribution, except at shape

P = I, does not have a closed-form function for its zl-fold
convolution, the last objective is to approximate its renewal
and RNl-intensity functions by discretizing time using the
Mean-Value Theorem for Integrak. We will also highlight the
differences between the renewal-intensity function p(f) and
the hazard function h(r).

2. Preliminaries

Suppose that component (or system) failures occur at times
Tr(n = 1,2,3,4,...) measured from zero and assuming
that replacement (or restoration time) is negligible relative
to operational time, then T, represents the operating time
(measured from zero) until the nth failure. Because the
probability density function (pdf) of 7r (o. X,) may be
different from the intervening times X, = (7, - 71), X3 =
(\-T), X4 = (74-\),. . ., we consider only the simpler case
of pdf of time to first failure/,(r) being identical to those of
intervening times X2, X3, X4,. , .. That is, all X;'s are assumed
iid (independently and identically distributed). Therefore,
T" = Li=rX; = r.r- of the times to the first failure from zero
plus the intervening times of 2nd failure until the nth failure.
If n .> 60, then the central limit theorem (CLT) states that
the distribution of 7,, approaches normality with mean np,
where p (the expected time between successive renewals) =
E(X), i = 1,2,3,4,... and with variance of 7r, denoted by
V(Tr), equal to no2. However, if the pdf of X;, /(x), with
X being the parent variable, is highly skewed and/or n is
not sumciently large, then the exact pdf of [ = [i, X, is
given by the zr-fold convolution of f (x) with itself denoted
by fr,,@ = f6y\). Thus, by renewal we mean either the
replacement of a failed component with a brand-new one,
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or the case when the failed component can be repaired in a
negligibly short time to an almost brand-new condition, It
has been proven by many authors both in stochastic processes
and reliability engineering that the RNF for the duration [0, f]
is given by

M(t)= EIN(r)l = fr,,,{r), (1a)
n=l

lM U\2, (1b)

where the random variable N(f) represents the number (or
count) of renewals that occur during the time interval [0, /]
and F1";(f) is the cumulative distribution function (cdf ) of
the n-fold convolution of f (t) with itself; that is, F61$) =

ilfr,rk)ar, whered,l(f) is the r-fold convolution density
of f (t).It is also very well known that the RNI (renewal
intensity) of a distribution function F(r) by definition is given
by p(t) = dM(t)ldt.

Authors in stochastic processes refer to p(f) as the renewal
density because pU) x Af describes the (unconditional)
probability element of a renewal during the interval (t,t + Lt)
[35]; further explanation is forthcoming in Section 5.2, while
a few authors in reliability engineering, such as Ebeling [36]
and Leemis 137), refer to p(t) as intensity function. Because
p(f) is never a pdf over the support set of f(t) for all failure
distributions, throughout this paper we will refer to it as the
renewal intensity function (RNIF).

The simplest and most common renewal process
is the homogeneous Poisson process (HPP), where the
intervening times are exponentially distributed at the
constant interrenewal (or failure) rate .1. Because ,I is a
constant and intervening times are iid, a Poisson process
is also referred to as a homogeneous renewal process. It is
also very well known that for a HPB the pdf of interarrivals
X,'s is given by /(f) ' Le-lt, and that of the time to
nth failure (or renewal), measured from zero, is given

by fr,(t) = f61G) = (),lf @))(Lt1n-t r-xt (the Gamma
density with shape n and scale F = llA.). As a result, the
use of (1a) for the interval [0, t] leads to the RNF: M(t) =
EtN(f)l = IL F1n1(t) = 22, il=ootr@D(lx)"-te-t*d* =

I',=rtr-^.IE,tt,t*pi'-6 # #,r#.l-,.#* *
fi-,nn.,,mifl**lmffidm{&wd,uffirfiimffi#r.' * {kffi ffi ffirir-ffi
that has been known for well more than a century. Further,
the RNIF for a HPP is also a constant and is given by
p(t) = dM(t)ldt = d(lt)ldt = .1.. Further, it is also widely
known that for a HPP the YIN(r)l = if.

3. The Renewal and RNl-Intensity Functions
for a Normal Baseline Failure Distribution

Suppose that the time between failures, Xi, i = 1,2,3,4,...,
are NID (U, o"), that is, normally and independently dis-
tributed with mean time between failures (MTBF ) = y., and
process variance o2. Then, statistical theory indicates that
time to the nth failure (measured from zero) is the n-fold

y tN (r)l = irrn- t) F<,r (r) -
n=l
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convolution of N(pr, o2; *ith itsell that is, time-to-the-nth-
failure T, - TTF, - N(ny,noz). Hence, in the case of
minimal repair, from (1a), the RNF is given by

M(t) =iq,,,,= i. (:#), (2)
n=L

where @ universally stands for the cumulative distribution
function (cdf ) of the standardized normal deviate N(0, i),
and F1,;(f) gives the probability of at least n renewals by
time t. Cui and Xie [38] gave the same exact expression for
the Normal RNF as in the above equation (2), which they
used as an approximation for the Weibull renewal with shape

P > 3.It should be kept in mind that the normal failure
law is approximately applicable in reliability analyses only if
the coefficient of variation CVz < 15% because the support
for the normal density is (-oo, oo), while TTF can never be
negative (this assures that the size ofleft-tail below zero is less
than 1 x 10-10;. If the CV1 is not sufficiently small, then the
truncated Normal can quali{, as a failure distribution. [24]
discussed the RNF for the truncated Normal. From a practical
standpoint, the restriction on CV. can be relaxed to less than
20o/o.

As an example, suppose that a cutting toolt TTF has the
lifetime distribution N (# = MTBF = 15 operating hours,
oz = 2.25 hours2) (extracted from Example 9.5 of [36, page
225]) with minimal repair (or replacement time), where
CVr - 0.10. Then, (2) shows that the expected number of
renewals (or replacements) during 42 hours of use is given by
M(42) = Zf40((42-tsn)lt.st/i) = 2.r24t07.Further, for
a Laplace-Gaussian nonhomogeneous process, letting z, =
(t -ny) I o t/i,the RNIF by direct differentiation of (2) is given
by

ero = fiiok,) =f.**@)*
(3)

3

2 e-M(t), and we may add that equalities can occur only at
,=0.

4. The Renewal Function for a Gamma
Baseline Failure Distribution

In order to obtain the RNF and RNIF of a Gamma non-
homogeneous Poisson process (NHPP), we first resort to
Laplace transformation because it is the common procedure
in stochastic processes. It has been proven (see [40, pages
277-280)) in theory of stochastic processes that the Laplace
transforms (UIs) of p(f) and M(t) are, respectively, given by

slp@l=F(s) = IJ,-" o(t)dt =*% s ) o,

(sa)

e-"M1t1or=,7 
(! 

.-P(s).
s[r -/1'1] s

(sb)

pt'l = i* '-t(t-nv)t"til1'z12, $)
T=t\/2nnoz

where the symbol g stands for the standard normal density
N(0,1). The value of RNIF at 42 hours for the N(15,2.25)
baseline distribution, from (4), is p (at t = 42 hours) =
0.07883674 failures/hour. Note that the value of the hazard
rate at 42 hours is given by h (42) = f (42) lR(42) = 10.358 I 38
failures/hour, where R(f) is the reliability function at time /.
Because the Normal failure probability (Pr) law always has
an increasing failure rate (IFR), p(r) < /r(r). Ross [39, pages
426-427)proves thattllt = the glb (greatest lower bound) <
M(t) < f/p + 0.50(CVl - t) = the lub (least upper bound)
only if the hazard-function (HZF), ft(r), is a decreasing
failure-rate (i.e., "the item is improving" 137, page 1651), and
Ross further proves when h(f) is a decreasing failure rate
(DFR), then p(f) > h(t) for all / > 0, and as a result R(t)

Further, it is also widely known that the LT of the Gamma

density /(f) = Qt ll (0il(lt)d-l e- 
rt is given by /( s) = l" I (), +

s)o, F(s) = 91p(t)| = L" l(0 + s)" - ,1"), and the Gamma
M1r1 = 9IM(t)l = l" ls[(l + s)" - .1"]. However these last
closed-form expressions for LTs are valid only ifthe shape a is
an exact positive integer because the integration by parts does
not terminate for noninteger values of a. As a result, when
the shape parameter w is not a positive integer, there exists no
closed-form inverse-Laplace transform for the Gamma M(s);
however, when the underlying failure distribution is Erlang
(i.e., Gamma with positive integer shape), then there exists a

closed-form inverse Laplace-transform for d = 2,3,4, . , ,. ln
fact, for the specific Erlang density with shape a = 2 and scale

F = ll)", it is very well known that M(s) = [i ,-" u1t1at =
12ls2(s +2h) = -ll4s + )"l2sz + ll4(s + 2zI). Upon inversion
to the t-space, we obtain the well-known M(t) = E[N(f)] =
grlu(s)j = g-1{-U4s + ),12s2 + tl4(s + 2l)l
-Ll4 + (),12)t + (Ll4)e-2^t. Hence, at d = 2, the RNIF is
given by p@ = dM(t)ldt = ll2 - (),12)e-21t, which is
quite different from the corresponding Gamma (at a = 2) IFR
h(t) = t(tt)e-^, lLr_j(lt)k lkt) e-^' = L(tt)l(.r+it) > p(t)
for f > 0. We used Matlabs ilaplace function as an aid in order
to obtain the RNF and RNIF for the Erlang at shapes a = 3
and 4 which are, respectively, given below

=tqk.)#=Z#u"'''h,

M(t;a=U)=9-l i3

'[tr+s)3-r,]

= + . e-o^tz)t [*' (^',/1)

I-;
sin(tt{Y+) I ^_,* ^6 l"



M(t;q,=q=+.+

e-ir [cos (,Ir) + sin (,lr)] _ 3

4 8'

.( in IP(t;q, = 4) = 9-' I -[(i+s)a-l+J
).,

= Zlt - e-z^t - 2e-^' sin (,lr)] .

(6)

The Gamma HZF at ot = 3 is given by h(r)
&( il2 EG\IQ + tt + l2t21z1 = i1t)zlQ + zlt + tzt2),
which exceeds the above p(t) at a = 3 for all f > 0.

We now use the cdf F61G) = Pr(Tn < f) = Pr[N(r) > n)],
see the excellent text by Ebeling [36, page 226, Equation 9.10],
directly in order to obtain the Gamma RNF from (1a):

M(t) fr,,y r0 =; [ fir *r* 1"-tx4,

6 r)Lt -.ne-t oo 0)

= I I Y-e-"du=\t(Lt,nq),
?=rJo f@ot)" h"'"""*"

where l(lt,na) = Matlabt gammainc (lt,na)
(llf@a)) lt u""-rr-udu represents the incomplete-Gamma
function at point ,lf and shape na. In fact, l()tt,nor) gives the
cdf of the standard Gamma density at point if and shape na.

4.1. The Gamma Renewal Intensity Function. Next, we
directly diferentiate (7) in order to obtain the Gamma RNIF.
That is,

P@=ry

= *EI,h*..na,'-tx6*

= i {' - e-G^ z)'i 

[*'("i?)

Journal of Quality and Reliability Engineering

However, the function under the summation in (8) is simply
the Gamma density with shape na and scale p = l/1. Then,
we used our Matlab program to obtain the value of (8) at
t = \2 years, at shape a = 1.5 and scale p = 3.5 years,
which yielded p(t = 12) = 9.199348 renewalslyear.The
value of the HZF at 12 years is h(12) = f (12)lR(12) =
0.0 1 936 1 3/0. 07 65932 = 0.2527 81 failures/year. In order to
check the validity of p(t = 12) = 9,199148, we resort to the
Iimiting form limr--p(t) = Llp = I/MTBF. Because the
expected TTF of the Gamma density is y = s, x p, then for,
this example, I = MTBF = 1.5 x 3.5 = 5.25 years, which
yields p (12 years) = 115.25 = 0.l90476lyear.

Because the Gamma density is an IFR model if and only if
theshapea > l,then pG) <h(t) forf > 0andalla > l.Only
at q = L, the Gamma baseline failure density reduces to the
exponential with CFR, the only case for which p(f) = h(t) =
,tr. Note that since the well-known renewal-qpe equation for

the RNIF p(f) is given byp(t) = f (il * I: pG - x)f (x)dx,this
last equation clearly shows that p(0) = /(0); further h(f) =
f (t)lR(t) for certain yields h(0) = /(Ol, and hence p(0) =

"f(O) = h(0) for all baseline failure distributions. Moreover, if
the minimum life 6 > 0, then for certain p(6) = /(d) = lx(d).

4.2. Examining Results of the Convolution Method. |in and
Gonigunta [25] propose the use of generalized exponen-
tial functions to approximate the underlying Weibull and
Gamma distributions and solve RNFs using Laplace trans-
forms. Table I shows a comparison of the RNF from (7) with
their results. They refer to H(f) as the actual RNF [obtained
from Xie's [20] numerical integration) and H"(t) is their
approximated RNF. Table 1 shows that their H(f) becomes
more accurate as compared to M(t) from (7) for larger values
of t.

Further, it is well known from statistical theory that the
skewness of Gamma density is given by F, = zlt/a and
its kurtosis is Bn = 6lot,both of these clearly showing that
their limiting values, in terms of shape ot, is zero, which are

those of the corresponding Laplace-Gaussian N(a/,l, a/,12).
We compared our results, using our Matlab program, for
the Gamma at o( = 70, P = 15, and f = 5000 which
yielded M(5000) = 4.186155 (Matlab gives 15 decimal accu-
racy), while the corresponding Normal yielded M(5000) =
4.1857 93 expected renewals.

5. The Renewal and RNI Functions When the
Underlying TTF Distribution Is Uniform

5.1. Renewal Function When TTF k Unifurm. Suppose that
the TTF of a component or system (such as a network) is
uniformly distributed over the real interval [4, b weeks]; then,

f(t) = Llc,a >- 0,b > a,c = b-a > 0,andthecdf
isF(r) = (t-a)lc,a < t < bweeks.Further,succeeding
failures have identical failure distributions asU(a,b). From
a practical standpoint, the common value of minimum life
a = 0. Then, the fundamental renewal equation is given by

M(t) = r, (r) + [: MG - r) f (r)dr [40, pages 277-280). since
we are considering the simplercase of time to first failure

p(t;or = 3) = 9-l J^'I
[ [tr * sy3 -,u] J

+V5sin (^,,8)]l ,

oo

= Lf<oo)
n=L

=,i*u |,fr'^*'*'
=,1#t^11nu-t'-tt

-)tx ,e clx

(8)
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Tenre l: Comparison of H^(t) with M(f) for the Gamma renewal function

F =L.s
H"(t)

p =3 p =s
H(t) M(t) H(t) H_(t) M(t) H(t) H"(t) M(t)

0

1

2

3

4

5

0.000

0,5t7

1.t70

1.834

2.500

3.167

0.000

0.508

1.t67

1.833

2.500

3J67

0.000

0.s17

t,170

1.834

2.500

3.t67

0.000

0.081

0.340

0.665

0.999

1.333

0.000

0.065

0.331

0.664

1.000

1.333

0.000

0.081

0,340

0.665

0.999

t.333

0.000

0.004

0.053

0.186

0.379

0.592

0.000

0.001

0.042

0.179

0.383

0,597

0.000

0.004

0.053

0.186

0.379

0.s92

Terr.n 2: Normal approximation to the l2-fold convolution of U(0, 1).

t.5

Furt k)
Normal approx.

Rel. error

0,689422

0.691462

0.002960

0.839273

0.841345

0.002469

0.932s53

0.933193

0.000686

0.977724

0.97725

-0.00049

0.994421

0.99379

-0.00063

0.998993

0.99865

-0.00034

0.999879 0.999991

0.999767 0.999968

-0.00011 -2.38 - 05

distribution being identical to those of succeeding times to
failure, then

(ea)

whereas F(t) represents the cdf of T = TTF. However,

Hildebrand [41] proves that M(s) , 7(r) = gl[: MG -
x)f(x)dxl = zltitt<t - x)dF(x)\, the integral inside
brackets representing the convolution of M(t) wrth f(t).
Conversely we conclude that 7(s) x M(s) = z1J'or1t -
x)dM(x)\. Upon inversion of this last LT, we obtain the

widely known g -t 17(;il x M(s)) = li rt, - x)dM(x) =

l:F$ - x)p(x)d(x).Hence, (9a) can also be represented as

The renewal equation of the type (9b) has been given by
many well-known authors such as Xie [20 ] , Murthy e t al. 1421,
Leemis [37], and other notables,

In order to obtain the RNF for the Uniform density, we
substitute into (9a), for the specific Uniform U(0, b) baseline
distribution, for which minimum life a = 0, in order to obtain
M(t) = tfu + liMU - x)dxlb; letting t - x = r in this last
equation yields

M(t) =

The above equation (10) shows that the RNIF is given by
p(t) = dM(t)ldt = Llb + M(t)lb. Solving this last differential
equation and applying the boundary condition M(f = 0) = 0,

we obtain M(t) = e'lb - l, where time must start atzero
(or the last RNL); that is, this last expression is valid only for

0 < , < b,b > 0. Note that Ross [39, Problem 3.7,pagel54)
gives the same identical M(f) only for the standard U(0, 1)

underlying failure density, whose base is equal to l. (It is worth
mentioning the fact that Ross 139, page 7] uses the common
notation in stochastic processes of F(x) = L - F(x) for the
reliability function at lifetime x; the authors of this paper are
indebted to Ross's text that has provided so much help and
guidance in writing this paper ).

Next in order to obtain the RNF for the U(a,b), we
transform the origin from zero to minimum life - a > 0 by
lettingz = a+(b-a)tlb = a+ctlbinthe RNFM(f ) = ,'lb -1.
This yields M(r) = ,(t-a)lc - 1, and henc e M(t) = ,(t-a)lc - ,,
0 < a < t < b,andc = b- a > 0istheUniform-density
base. The corresponding RNIF is given by p(t) = 1"$-o)1"11s,
0<a<t<b.

Because the Uniform renewal function M(t) = ,(t-a)lc - 1

is valid only for the interval la,bl, we will obtain the r-fold
convolution of theU(a,b)-density which in turn will enable

us to obtain M(t) for t > b by making use of (1a) that uses

the infinite-sum of convolution cdfs, Flny(f). As stated by Olds

[43], the convolutions of Uniform density of equal bases, c,

have been known since Laplace. However there are other
articles on this topic since 1950. The specific convolutions of
the Uniform density with itself over the interval l-l12,l12)
were obtained by Maghsoodloo and Hool [44] only for zr =
2-fold, 3, 4, 5,6, and 8-folds. There are other articles on
the Uniform convolutions such as Shiu [45], Killmann and
Collani [a6] and Kang et al.la7). We used the procedure in
Maghsoodloo and Hool [44] but re-developed each of the
n = 2 through n = 8 convolutions of U(a, b) by ageometrical
mathematical statistics method (the (1983) article is available
from the authors, although the Sth convolution has some
typos). Further, we programmed this last geometric method
in Matlab in order to obtain the exact 9 through l2-fold
convolutions of the U(a,b) with itself. For example, our 7-

fold convolution-density of U(a,b) with itself is given below,
wherec--b-a>0.

M (t) =F(4 * f M G - x) f (x) dx,

M (t) =rr,l * | F g - x) dM (x)

= F (f) * fr, U - x) p (x) dx. 
(eb)

i.; t M G) ?dr) = ,. !,lo, Gt 0,. (10)
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Terre 3: Time-discretizing approximation method results.

M(t) Approximate M(f) Relative error Elapsed time (seconds)

l0

25

50

100

200

250

10.0000000000

10.0000000000

10.0000000000

10.0000000000

10.0000000000

10.0000000000

9.9501662508319

9.8760351886669

9.754150998572

9st62581964040

9.0634623461009

8.8479686771438

-0.49834o/o

-1.239650/o

-2.458850/o

-4.83742o/o

-9.365380/o

-11.52031o/n

40238,61714

2018.7076t4

82.738732

65J12829

32.320588

21.066944

f(n(t) =

5.2. The Renewal-Intensity Function Approximation When
TTF k Uniform. The Uniform RNIF is given by p(f) =
p(t-a)111 c only for the interval 0 < a < f < b. Bartholomew
[35] describes p(r) x Af as the (unconditional) probability
element of a renewal during the interval (t,t + Lt), and in
the case of negligible repair-time, p(t) also represents the
instantaneous failure intensity function at ,. However, as

described by nearly every author in reliability engineering,
the HZF h(f) gives the conditional hazard-rate at time f only
amongst survivors of age t; that is, h(t) x Lt = Pr(f < T <
f + Af)/R(f). The hazard function for the U(a,b) baseline
distribution is given by h(t) = |l(b - t), a < t < b,b > 0,
which is infinite at the end of life interval &, as expected.
Because the uniform HZF is an IFR, then, for the uniform
density, it can be proven, using the infinite geometric series

for h(t) = (llb)10 - tlb) and the Maclaurin series for e'lb;
that p(r) < h(t) for all a < t < b.

In order to compute the RNIF p(t) for t > b, we
used two diferent approximate procedures, First, by directly
differentiating (la) as follows: p@ = @ld0zf4F1,1(f) =

lf,=rf6U), where the exact fl11(f) = f (t), and uniform
convolutions f61(t), for n = 2,3,...,12 can be calculated
by our Matlab program. For m > 12, the program uses the
ordinate of N(ny,noz) approximation, where y = (a + b)12

and oz = (b - a)2 ltz. And the second method which uses

(7a - t)6

OnT'
-le1z"- r)6 + 42c(7a- r)t + t05c2(za- t)a + t+oc3(za- t)3

+Lo5c4 (7 a - t)2 +42cs (7 a - t) + 7c6) x (tzor')-',
Itslt a - t)6 + 2t0c(7 a - t)5 + ttsscz (i a - t)n + lzzlc3 (z a - t)3

+4g35c4(7a - t)2 + 3990c5 (7a - t) + L337c6f * (tzor')-' ,

- ltolz " - t)6 + 2t0c(7 a- r)s + 17 B5c2 (7 a - t)a + Z B+oc3 (7 a - t)3

+t8795c4(za - t)2 + 23520cs (7a - t) + 12089c6] x (:eoc7)-1,

Itslt a - t)u + 420c(7 a - t)t + 4l3ocz (T a - t)4 + zO tzorc3 1z a - t13

+ 968toc4 (7 a - t)' + I 68000cs (7 a - t) + tt9t82c6), (zzOr' )-',
-le1z"- t)6 + 2t0c(7a- r)'+ 3l45cz(7a-t)a +zZltOc3lza-t)3

+ 100065c4(7 a - ilz + 225750c5 (7a - t) + 2089$c6), (ZZOr',)-t ,

(7b - t)6

Q2o4'

7a<t<6a+b

6a+b<t<5a+2b

5a+2b<t<4a+3b

4a+3b3t33a+4b

3a+4b<t<2a+5b

2a+5b<t<a+6b

a+6b<t<7b.

i

the right hand and left hand derivatives will be explained in
Section 6.3.

5.i. The Uniforrn Approximation Results. The method we

propose uses the exact n = 2 through 12 convolutions Flry(t)
and then applies the Normal approximation for convolutions
beyond 12. 'Ihe question now arises how accurate is the
normal approximation for n = 13, 14,L5,...? We used
our l2-fold convolution of the standard Uniform U(0, 1)

to determine the accuracy. Clearly, the partial sum 7r, -
Lllrxu each Xi - U(0,1) and mutually independent, has

a mean of 6 and variance l2(b - a)z ll2 = 1, where a = 0,

and maximum lifeb = 1. The summary in Table 2 shows the
normal approximation to Flrz;(f) for intervals oflength 0.50-
o. Table 2 clearly shows that the worst relative error occurs at
o 12 andthat the normal approximation improves as Z moves

toward the right tail. The accuracy is within 2 decimals up to
one-o and 3 decimals beyond l.49o.Therefore, we conclude
that the normal approximation to each of Uniform Flry(f),
n = 13,14, 15,.. ., due to the CLT, should not have a relative
error at Z -- 0.50 exceeding 0.002960.

It should also be noted that the normal approximation
to the Uniform F61$), n = 13, 14, 15,... must be very
accurate from the standpoint of the first 4 moments. Because

the skewness of n-fold convolution of U(a,b) with itself is

(11)
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identically zero, which is identical to the Laplace-Gaussian
N(n(a + b)12,n(b-a121t21, and hence a perfect match
between the first 3 moments of fr,(t) = f @(t) with those
of the corresponding Normal. It can be proven (the proof
is available on request) that the skewness of the partial sum
T, = Li- X,, X,'s being iid like X, is given by

7

such as Xie [20], with the aid of Matlab to obtain another
approximatio n for M (t).

6.2. Discretizing Time in order to Approximate the Renewal

Equation. Because M(t) = F(il + l:MG - t)f(r)dr and,

the underling failure distributions are herein specified, the
first term on the right-hand side (RHS) of M(t), F(f), can
be easily computed. However, the convolution integral on

the RHS, firutt - r)f (r)dr, except for rare cases, cannot
in general be computed and has to be approximated. The

discretization method was first applied by Xie [20], where he

called his procedure "THE RS-METHODj' RS for Riemann-
Stieltjes. However, Xie [20] used the renewal type (9b) in his
RS-METHOD, while we are discretizing (9a).

The first step in the discretization is to divide the specified
interval (0, f) into equal-length subintervals, and only for the
sake of illustration, we consider the interval (0, , = 5 weeks)

and divide it into 10 subintervals (0, 0,50 week), (0.50, 1),...,
(4.5,5). Note that Xie's method does not require equal-length
subintervals. Thus, the length of each subinterval in this

example is Af = 0.50 weeks. As a result, [] ruts - t) f (r)dt =

Li:,ll:r),rM(s - r)f (r)dr,where the index I = 1 pertains

to the subinterval (0, 0.50) and i = 10 pertains to the last
subinterval (4.5, 5). We now make use of the Mean-Value
Theoremfor Integrals,which states the following: if a function

,f(x) is continuous over the real closed interval [a, b], then for

certain, there exists a real number xo such that [b f (x)dx =
f (x) x (b - a), a 1 xo < b, f (xi being the ordinate of the
integrand at xs. Because both M(f - r) and the density/(f)
are continuous, then, for example, applylng the above Mean-
Value Theorem for Integrak to the 4th subinterval, there exists

for certain a real number r, such that !l,rM(5 - t)f (r)dt =

M(5 - rn)f (rn)Q - 312),312 < rn < 2. As a result, !', *tt -
r)f (r)dr = Iijr M$ - r)f (r,)(tl2), where 0 < r, < 0.50,

M(5 - r,),1 = l, . .. , 10 cannot in general be determined, and

becauseinthisexample/(21)O12) = fflr,rf tiO, = Pr[(,-

t)12 < TTF < il2),itfollows that jj M$ - r)f (r)dr =
f,tl, u(s-r,) J't,n f k)at As proposedbyElsayed [1], who

used the end ofeach subinterval and a conditional probability
approach to arrive at his equation (7.10), we will approximate
this last function in the same manner by M(5 - 0,50i) which
results in

M(s-r)f(r)dr

F.(r,)=##=ffi
(rza)

_ h6) _ Fr(.x)
@rrfi) ,,q.

Further, the kurtosis ofT, is given by

B^ff-\=on(X) *3(n-l) -,nn

- Fn(r,)- 
[an (x) - 3] - F+6) , 

(12b)

nn
where y, (i = 2,3,4) are the universal notation for the
ith central moments. Equation (12b) clearly shows that the
kurtosis of the uniform f61(t), for n = 13,14,and 15,
respectively, is pn = -1.20113 = -0.09231,-1.20114 =
-0.08571, and - l.20l15 = -0.08000, with the amount -1.20
being the kurtosis of a U(a,b) underlying failure density,
Thus, an n = 120 is needed in order for the kurtosis
of f61U) to be within 0.01 of Laplace-Gaussian N(n(a +
b)12,n(b - a)2ltZ). Fortunately, summary in Table 1 clearly
indicates that the Normal approximation is superior at the
tails, where kurtosis mayplay a more important role than the
middle of f 6y(t) density [48, page 86].

6. Approximating the Renewal Function for
Unknown Convolutions

6.1. The Three-Parameter Weibull Renewal Function. Unlike
the Gamma, Normal, and Uniform underlying failure densi-
ties, the Weibull baseline distribution (except when the shape
parameter F = l) does not have a closed-form expression
for its n-fold cdf convolution F1,;(f), and hence (1a) cannot
directly be used to obtain the renewal function M(t) for all
p > 0. When minimum life = 0 and shape F = Z,the Weibull
specifically is called the Rayleigh pdf,' we do have a closed-

form function for the Rayleigtr M(s) but it cannot be inverted
to yield a closed-form expression for its M(f).

It must be highlighted that there have been several
articles on approximating the RNF such as Deligonul [49],
and also on numerical solutions of M(t) by Tortorella [50],
From [24], and other notables. The online supplement by
Tortorella provides extensive references on renewal theory
and applications. Note that Murthy et al. l42l provide an
extensive treatise on Weibull Models, referring to the Weibull
with zero minimum life as the standard model. Murthy et
al. la2) state, at the bottom of their page 37, the confusion
and misconception that had resulted from the plethora of
terminologies for intensity and hazard functions. We will use
the time-discretizing method used by Elsayed [1], and others

= F(5) .i*(s - o.soi) l,'l'.. ^t nro,
T*t,lr,,,f=* Lri';rc:-+

=fl f(r)dr
,1 J(i-rllz

M (s) =F (s) * I;



(13)

The above equation (13) is similar to that of (7.10) of Elsayed

[1], where his subintervals are of length A, = 1. It should
be highlighted that using the interval midpoints (instead of
endpoints) inorder to attain more accuracy leads to more
computational complexity. We first used the information
M(0) = 0 at i = 10 to calculate the last term of (13);

further ati = 9,(13) yields [1 + M(s - 4.t)] [t';"" f (r)d, =

[1 + M(0.s0) I llt 7<rlar.However, M(0.50) represents the
expected number of renewals during an interval of length
Af = 0.50. Assuming that Af is sufficiently small relative to
t such that N(f) is approximately Bernoulli, then M(Ar =
0.50) = I x F(0.50) + 0 x R(0,50). Hence, at I = 9, the
value of the term before last in (13) reduces approximately

to [1 + F(0.50) ] , Innt f (t)dr. At i = 8, rhe value of (13)

is given by [1 + u(\] t.s f G)dr,where M(1) = Il,{tr *
M(r - 0.50i)l x Ilir,rfOVr|, where M(0.s0) has been

approximated. Continuing in this manner, we solved (13)

backward-recursively in order to approximate M(f). The
smaller At always leads to a better approximation of M(t).

6. j. Renewal-Intensity Function Approximation for the Weibull
Distribution. Next, after approximating the Weibull RNF,
how do we use its approximate M(t) to obtain a fairlyaccurate
value of Weibull RNIF p(t)? Because p(t) z dM(t)ldt =
Lim6,-e(M(t + Lt) - M(t))lLt, then, for sufficiently small
Af > 0 the approximxe p(t) = (M(t + Ar) - M(t))l\t,
which uses the right-hand derivative, and p(f) = (M(t) -
M(t - Lt))lLf, using the left-hand derivatiye. Because the
RNF is not linear but strictly increasing, our Matlab program
computes both the left- and right-hand expressions and
approximates p(t) by averaging the two, where f and Af are
inputted by the user. It is recommended that the user inputs
0 < Af < 0.01f such that the probability of 2 or more failures
during an interval of length At is almost zero. Further, our
programshowsthat p(t) <h(t) ifandonlyiftheshapep > 1.

6.4. Time-Discretization Accuracy. The accuracy of above
discretization method was checked in two different ways.

First, we verified that at p = 3.439541, the Weibull
mean, median, and mode become almost identical at which
the Weibull skewness is p, = 0.04052595 and Weibull
kurtosis is pn = -0.28875L, with these last 2 standardized-
moments being very close to those of Laplace-Gaussian
of identically equal to zero. Our Matlab program at p =
3.439541,6 = 0, 0 = q = 2000, and Af = 50 yielded
the Weibull M(4000) = 1.753638831 (with CPU-time =
240.4183 sec), while the corresponding Normal (with MTBF
= 1797.84459964 and o = 577.9338342) resulted in M(4000) =
L.77439715 (CPU = 48.6). Secondly, we ran our program
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for the exponential (which is the Weibull with minimum-life
6 = 0,0 = ot = llland p = l),at,l = 0.001 andf = 10000for
varying values of Af. Table 3 depicts the comparisons against
the exact M(t) = trf = 0.001 x 10000 = 10 expected RNLs.

The above time-discretization-method, using the Mean-
Value Theorem for Integrals, can similarly be applied to any
lifetime distribution and should give fairly accurate results for
sufficiently small subintervals. However, Table 3 clearly shows
that even at At = 0.01f, the computational time exceeds one
minute and the corresponding error may not be acceptable;
further, it is not a closed-form approximation.

7. Conclusions

This paper provided the exact RNF and RNIF for the Normal,
Gamma, and Uniform underlying failure densities. We have

devised a Matlab program that outputs nearly all the renewal
and reliability measures of a 3-parameter Weibull, Normal,
Gamma, and Uniform. We have quantified the differences
between p(t) and h(t) for , > 0, except in the only case of
CFR for which p(f) : h(t) = 21. Further, when h(r) is an IFR,

then p(r) < h(r) so that R(r) < e-M(l't), / > 0, for the four
baseline failure distributions that we have studied. However,
this is not quite consistent with R(t) = e-M(o't) given by some
authors in reliability engineering, such as Ebeling [36], for
a NHPP. Further, some authors such as Leemis [37] use the
same notation .l(r) for the Weibull RNIF and also use l(t) for
the Weibull HZF (see his Example 6.5, page 165).

Similar works for other underlying failure densities are

in the immediate future. Work is also in progress that incor-
porates nonnegligible repair-time requiring some knowledge
ofconvolution of TTF distribution with that of time-to-
restore (TTR). Such a stochastic process is referred to as an

alternating renewal proce.ss [51, page 350].
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