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contributions and present examples to illustrate the
applications of Dr. Taguchi’s methodology to prod-
uct and process engineering.

2. Taguchi’s Contributions to Quality
Engineering and Design of Experiments

1. Taguchi quantified the definition of Quality us-
ing Karl Gauss’s quadratic loss function.

2. He introduced orthogonal arrays (OAs), al-
though almost half of them are the classical frac-
tional (or factorial) designs developed by Sir
Ronald A. Fisher, G.E.P. Box and J.S. Hunter,
F. Yates, O. Kempthorne, S.R. Searle, N.R.
Draper, R.L. Plackett and J.P. Burman, J.W.
Tukey, H. Scheffé, and countless others.
Taguchi’s OAs, however, are already in devel-
oped format so that the engineer does not have
to design the experiment from scratch, even
though the engineer should have some knowl-
edge of their development to make proper use
of Taguchi’s OAs. In other words, the contri-
bution Dr. Taguchi has made in this area is sim-
ply making it easier for an engineer to use design
of experiments (DOE).

3. Taguchi introduced robust (i.e., parameter and
tolerance) designs.

4. He defined a set of measures called signal-to-
noise (S/N) ratios that combine the mean and
standard deviation into one measure in analyz-
ing data from a robust design.

The following sections will discuss these topics
in the same order as they were introduced above
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1. Introduction
Dr. Genichi Taguchi is a Japanese engineer whose

contributions to the field of quality engineering were
not publicized in the Western Hemisphere until the
early 1980s. There have been at least 100 articles
written on Taguchi methods (a term that was coined
by the American Supplier Institute (ASI), Inc., and
one that Taguchi did not greatly admire) in western
journals in the past 20 years, some very supportive
of his methodology and others critical of his quality
engineering methods. On the other hand, some ar-
ticles have fairly and justly evaluated his significant
contributions without any bias. Further, there have
been many papers on the extension of his method-
ology and its applications. The objective in this pa-
per is to present an analytical review of his
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and highlight a few strengths and minor limita-
tions of Taguchi’s contributions that have been
debated by the statistical and engineering com-
munity. The emphasis will be to illustrate to the
process engineer how to apply Taguchi methods
and, in general, DOE. Further, for the readers’ con-
venience, a comprehensive list of symbols and
acronyms is provided under Nomenclature before
the References section.

3. Taguchi’s Definition of Quality
According to Taguchi, quality is the amount of

losses a product imparts to society from the mo-
ment of shipment. Let X and Y be measurable,
static, continuous quality characteristics (QCHs);
then a QCH can be of two types: (1) magnitude or
(2) nominal. If a QCH is of magnitude type, then Y
may be smaller-the-better (STB), or the QCH Y may
be larger-the-better (LTB), in which case X = 1/Y
must be an STB-type QCH. Thus, when the QCH
(such as Y = yield, efficiency, or breaking strength)
is LTB, a simple transformation, X = 1/Y, is made
so that X is now STB.

Examples of directly STB QCHs are lateral force
harmonic or eccentricity of a tire, loudness of com-
pressors or engines, warpage, and braking distance
of an automobile. All STB static QCHs have two as-
pects in common: (1) their ideal target is zero, (2)
they all have only a single consumer’s upper speci-
fication limit (USL), denoted by yu. In real-life engi-
neering applications, when y is an STB QCH its
values can never be negative (for example, braking
distance cannot be negative). Similarly, if the response
y is LTB, then the ideal target is ∞, y > 0, and y has
only a single lower specification limit, LSL = yL.

Several notable quality gurus (such as W. Edwards
Deming) have alluded to the fact that when a prod-
uct barely meets specification, its quality level can-
not much differ from one that does not barely meet
specifications. For example, if the design tolerance
for a resistor is 5 ± 0.10 ohm, then there can hardly
be any difference between the quality levels of two
resistors with resistances of 5.099 and 5.101 ohms.
However, to the best of our knowledge, Genichi
Taguchi was the first quality engineer who recom-
mended the use of this very concept (through
Gauss’s quadratic loss function) to quantify quality.
Accordingly, the quality loss of an item according
to Taguchi is defined as in Eq. (1).

When y is a nominal dimension, the design (or
consumer’s) specifications are given by m ± �, where
m stands for the midpoint of tolerance range starting
from LSL = m – � to USL = m + �, and the constant k
is always positive. Some authors use � and a few oth-
ers use T for the ideal target, but m was used to repre-
sent midpoint by Taguchi. Further, Taguchi refers to
� as the allowance on either side of the midpoint, m,
of tolerance range, while in manufacturing engineer-
ing, � is usually referred to as the tolerance (or per-
haps the semi-tolerance). Note that we are considering
only the case of symmetric tolerances, but asymmet-
ric tolerances often occur in manufacturing processes
and are treated by several authors (see Taguchi,
Elsayed, and Hsiang 1989, pp. 30-39; Maghsoodloo
and Li 2000; Li 2000). The quality loss functions
(QLFs) in Eq. (1) measure how far the dimension of a
unit is from its ideal target value m. The farther y de-
parts from its ideal target, the larger the QLF becomes
exponentially (in powers of 2). The constant k can be
computed immediately once the amount of quality
loss (QL) at a specification limit is known. There is
generally more information about quality losses at a
specification limit than at any other point in the y-
space (due to customer complaints). For example, if
the 5-ohm resistor with specs 5 ± 0.10 imparts a mon-
etary loss of $0.30 at the LSL = 4.90, or USL =
5.10 ohms, then 0.30 = k(5 ± 0.10 – 5)2 → k = 30.00
$/ohm2. Thus, the QLF for one resistor takes the form
L(y) = $30(y – 5)2, and the constant k has converted
the units of (y – 5)2, which is ohms2, to dollars.
Taguchi’s QLF can take into account not only the QL
due to deviation from the ideal target but also all losses
to society (such as repair cost, time loss to the con-
sumer, damage to the environment, warranty cost, and
all other side effects from the use of the product). Ac-
cordingly, depending on what kind of societal losses
L(y) represents, the positive constant k should be com-
puted in such a manner that all pertinent societal losses
at a specification limit are taken into account.

Before illustrating an application of the quadratic
loss function, suppose that we take a random sample
of size n from a process or from a supplier’s lot. The
loss due to the i-th unit in the sample for a nominal
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dimension will equal Li = k(yi – m)2. If the measur-
able QCH is STB, then Li = k 2

iy , and if y is an LTB

type QCH, then Li = k/ 2
iy  = k 2

ix , where xi = 1/yi. It
seems that without loss of generality the total QLs
(quality losses) from the n items in the sample is
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the average QL per unit for a sample of size n is
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that L  = k × (MSD).
Note that sample MSD measures variation around

the ideal target m, while sample variance measures
variation from the sample mean y . It can be shown
(see Maghsoodloo 1992, p. 19) that the expectation
of sample average QL is given by

E L  = k  + ( m)2 2( ) −⎡⎣ ⎤⎦σ µ                                (2)
where µ is the process mean and �2 is the process
variance. It now follows that
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The above developments leading to Eq. (3) make

use of the fact that the sum of deviations of n data
points from their own sample mean y  is identically
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able story, and that is, if we wish to reduce quality
losses, then we must reduce process variance �2 es-
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and then get the process mean on target. That is to say,
at the second step, we must reduce (µ – m)2, which is
estimated by y m−( )2

. Note that the estimator
y m−( )2  of the off-center parameter (µ – m)2 is also

biased because E y m E y m−( )⎡
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2σ
. In this last devel-

opment, E stands for the expected value, which is a
linear operator, and V stands for the variance opera-
tor, which is nonlinear.

One major application of Taguchi’s QLF is the com-
parison of two (or more) suppliers. Suppose we wish
to compare the breaking strength of cables from two
suppliers for which the consumer’s LSL is 1400 psi =
1.40 ksi. Although direct measurement of breaking
strength may be very difficult because it would in-
volve destructive testing, as in example 3.3 of
Taguchi, Elsayed, and Hsiang (1989), we may be able
to use the fact that the cable’s breaking strength is
directly proportional to its cross-sectional area. Be-
cause this example is developed just to illustrate the
application of the quadratic loss to quantify quality in
dollars, we assume that we will be able to determine
breaking strength directly and that the manufacturing
cost of the two cables is almost the same. Further, we
assume that field failure is very expensive and results
in a societal loss of $5000.00 per unit. That is, when
y = 1.40 ksi for a single cable, then L(y) = $5000.00.
Because L(y) = k/y2, this yields 5000 = k/(1.42) Æ k =
9800 $(ksi)2 Æ L(y) = $9800/y2 = $9800x2 per cable.
Suppose we randomly measure n1 = 10 cables’(3)
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strength from supplied 1 and n2 = 13 from supplier
2. In practice, one should allocate more observa-
tions to the process that has larger variability. For
example, if we have total resources of N = 42 items
to be sampled and we know that �2 = 2�1, then pro-
cess 2 must be allocated a sample of size n2 =

σ
σ σ

2

1 2+
⎛

⎝
⎜

⎞

⎠
⎟ N  = 

2

3
 × 42 = 28, while n1 = 14. Of course,

the experimenter may not have any knowledge of
the variability of the two processes, in which case
the sampling must be done in (at least) two stages to
assess variation at the first stage, followed by com-
pleting the sample allocations at the second stage.
The two data sets are given below.

y1j : 1.5, 1.4, 1.7, 1.5, 1.6, 1.5, 1.8, 1.8, 1.7, 1.6
y2j : 1.9, 1.9, 2.2, 2.5, 1.6, 2.1, 2.0, 1.8, 1.7, 2.5, 2.1, 1.8, 1.5 ksi

It seems that from a traditional view of quality there
are no differences in the quality of the two suppliers
because neither sample contains a nonconforming
unit (that is, all y values � 1.4 ksi). However, based
on the modern view of quality using Taguchi’s QLF,
there is much difference between the quality levels
of the two types of cables. Converting to the vari-
able x = 1/y, we obtain

x1j : 0.6667, 0.7143, 0.5882, 0.6667, 0.6250, 0.6667, 0.5556,
0.5556, 0.5882, 0.6250

x2j : 0.5263, 0.5263, 0.4545, 0.4000, 0.6250, 0.4762, 0.5000,
0.5556, 0.5882, 0.4000, 0.4762, 0.5556, 0.6667

Note that x is an STB type QCH with ideal target m = 0.

Then, MSD1 = 
1

10 1

10
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. Then the average quality loss

of supplier 1 is L1  = 9800 × 0.3934113 = $3855.431
per cable. Similarly, for the supplier 2, x2 = 0.5193
and σ̂2

2  = 0.005932 → MSD2 = 0.005932 + (0.5193)2

= 0.27558 → L2  = 9800 × 0.27558 = $2700.66673
per cable, and hence the quality difference of sup-
plier 2 over supplier 1 is QD21 = $1154.7639 per
cable. This is in complete contrast to zero QD be-
tween the two suppliers from the traditional (or con-
ventional) quality viewpoint.

The quality engineer should observe that when y is
a magnitude type QCH then—unless the coefficient
of variation cv xx= ˆ /σ  (or variation coefficient, which
is the reciprocal of S/N ratio and is equal to 8.0817%
for the sample of supplier 1, and 14.83% for supplier

2) exceeds 30% for an STB QCH and 17% for an
LTB QCH—the mean (or the signal) will play a much
more important role in improving quality than reduc-
ing variability (Maghsoodloo 1990). Further, if the
QCH values are far above the LSL (for LTB) and far
below USL (for an STB type QCH), then we can with-
stand quite a bit of variation compared with when the
output values are close to a specification limit. For the
above example on breaking strength, given that the
breaking strength’s LSL = 1.40 ksi, the sample 3.1,
5.6, 1.9, 2.8, 7.9 ksi (with variance σ̂1

2  = 4.81840)
implies far superior quality over the sample 1.6, 1.7,
1.5, 1.6, 1.7 ksi (with variance σ̂2

2  = 0.00560). In fact,
the QD of the former sample over the latter is equal to
QD12 = 3758.7624952 – 1090.795726 =
$2667.96677 per cable, but the y-variance of the
former sample is 860.4286 times the y-variance of
the latter sample, and the x-variance of the former
sample is 23.5551 times larger than the latter. (Note
that for x > 1 the transformation x = 1/y is of the vari-
ance-reduction type, causing the x-variance of the first
sample to reduce substantially more than that of the
second sample.)

However, the above assertion cannot be made for
a nominal dimension because the process mean µ
may be below the ideal target m (in which case the
signal must be increased), or µ may be above the
midpoint of tolerances, m, in which case the amount
of off-center (µ − m) exceeds 0, and the signal must
be reduced to improve quality. Further, the process
variance �2 will almost always play an important role
for a nominal dimension in quality improvement
(QI) because the standardized amount of off-cen-
ter (µ – m)/� is a truer measure of lack of quality
than is the off-center distance µ − m .

Relationship Between Natural Tolerances
and Taguchi’s Expected Quality Loss for a
Nominal Dimension

By definition, if a process is six-sigma capable
(that is, process capability ratio PCR = Cp =
USL LSL−

6σ  = 1), then in the symmetric case the dis-

tance between USL and LSL is exactly six sigma,
that is, six-sigma process capability implies that USL
– LSL = 6�, which in turn implies that 2� = 6�, or �
= �/3. Note that six-sigma capability is different from
Motorola’s definition of Six-Sigma Quality, where
both the LSL and USL are at six sigma below and
above the process mean µ, respectively.

maghssa
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However, as Montgomery (2001b, p. 24) points
out, and we concur, there is a slight inconsistency in
this definition when the process becomes off-centered
or is out of control only with respect to its mean. In
fact, we think that there is a slight misconception with
this definition when the process is out of control only
with respect to its mean. The problem arises due to
the fact that the values of LSL = m − � and USL = m
+ � are fixed and set by the manufacturing designer
or consumer, and consequently, a machining process
is either capable of meeting specifications (i.e., p < �)
or not capable (i.e., p > �), where p is the process
fraction nonconforming (FNC) and � is the company-
wide tolerable FNC set in such a manner that the com-
pany will prosper in global competition. If the process
is centered such that µ = m, the point that we are rais-
ing is moot; however, when µ shifts, say by one sigma
to the right of m, then it will be impossible for both
LSL and USL to be six sigma away from µ because
LSL and USL are fixed and do not change as µ shifts.
In fact, with an upward shift in µ of one sigma to the
right of m, the LSL will be seven sigma to the left of
µ, while the USL will be five sigma to the right of µ.

It would be more prudent to incorporate Taguchi’s
view of quality with Motorola’s definition of six-
sigma quality and slightly modify Motorola’s six-
sigma quality as LSL and USL at six sigma from the
ideal target m (not µ). Notwithstanding, this modifi-
cation will not alter the amount of FNC that a pro-
cess produces when only the mean is out of control.
For example, when a process is Gaussian and cen-
tered (i.e., µ is in control at m) and operating at
Motorola’s six-sigma quality, then its FNC is
0.00197317540085 parts per million (ppm), or
roughly 2 parts per billion. However,

if the mean of a Gaussian process is out of control by 1
2

sigma (i.e., µ = m ± �/2), its FNC is increased to
0.0190297223534586 ppm;

if the mean of a Gaussian process is out of control by 1
sigma (i.e., µ = m ± �), its FNC increases to
0.28665285167762 ppm;

if the process is off-centered by 1 1
2  sigma (i.e., µ = m ±

1.5�), then the Gaussian process FNC increases to
3.3976731564911 ppm;

if µ = m ± 2�, the FNC increases to 31.671241833786
ppm;

if µ = m ± 2.5�, the FNC increases to 232.62907903554
ppm;

if µ = m ± 3�, the FNC increases to 1349.898031630096
ppm;

if µ = m ± 3.5�, the FNC increases to 6209.66532578 ppm;
if µ = m ± 4�, the process FNC increases to

22750.13194818 ppm;
if µ = m ± 4.5�, the process FNC increases to

66807.20126886 ppm;
and finally, when the mean is way out of control by 5�,

the Gaussian FNC increases to 158655.253931457 ppm
(or roughly 0.158655254).

In general, if µ = m ± r � (r � 0), the Motorola
Gaussian FNC is given by pM = 2 – �(6 – r) – �(6 +
r), where � represents the cdf (cumulative distribu-
tion function) of a unit normal distribution.

In practice, the values of process mean and stan-
dard deviation, µ and �, are generally unknown and
have to be estimated by the sample statistics y  and
S, respectively. To ascertain whether a process (pro-
ducing a nominal dimension y) is operating at
Motorola’s six-sigma quality, one must compute the
tolerance interval y  ± K S and determine if this tol-
erance interval is contained in the tolerance range
(LSL, USL). Unfortunately, the values of the toler-
ance factor, K, for a tolerable FNC of � = 2 parts per
billion at any confidence probability of � has not
been reported, as far as we know, in statistical litera-
ture. Ms. Hsin-Cheng Chiu (1995) developed a soft-
ware that computes the values of K for nearly any
situation, but her program does not allow an � value
less than 0.000001 (= 1 ppm, which pertains to
Motorola’s 4.892-sigma quality not 6). For example,
for a random sample of size n = 20 from a N(µ, �2),
� = 0.000001, � = 0.99, and a nominal dimension y,
her program reports K = 7.88, while for n = 30 her
program gives K = 7.01. Further, the Tolerance Lim-
its software reports that a random sample of size at
least n = 83 is needed to obtain a tolerance factor of K
� 6 at � = 0.000001 and � = 0.99. Since obtaining the
exact tolerance factor to attain Motorola’s six-sigma
quality is not an easy task, it is best to estimate the
sample FNC assuming that the process is Gaussian.
Thus, the recommendation is first to compute
Ẑ LSL y SL = −( ) , ˆ ˆp ZL L= ( )Φ , Ẑ USL y SU = −( ) ,
ˆ ˆp ZU U= −( )Φ , and ˆ ˆ ˆp p pL U= + . If ˆ ˆ ˆp p pL U= +  is less
than two parts per billion, then conclude that the ma-
chining process is practically operating at six-sigma
quality; otherwise, the process is not operating at six-
sigma quality. Further, the experimenter must be cogni-
zant that the statistic ˆ ˆp pL U+  is subject to sampling
error and/or fluctuations and the fact that p̂  is less
than two parts per billion does not guarantee that the
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machining process is operating at Motorola’s six-
sigma quality.

To relate the natural tolerances of a normal process
to Taguchi’s QLF, the four most common possibilities
(out of infinite) are considered, as outlined below:

(i)  µ = m and a Six-Sigma Process Capability
Ratio (Cp = 1) Æ USL – LSL = 6�����

E(QL) = k �
2 = 

Ac

∆2  [(USL – LSL) / 6]2 =
Ac

∆2 (2�/6)2 = Ac/9; note that in this case � =

�/3, where Ac is the amount of QL (quality
loss) at either the LSL, or USL. This is in con-
trast to the evaluation of quality from a con-
ventional viewpoint because if a process is
six-sigma capable and is also normally dis-
tributed with µ = m, then the amount of tradi-
tional QL (based on either meeting or not
meeting specs) is simply 0.0027 × Ac because
the traditional QL function is given by QLTrad(y)

= 
0,

,

if LSL y USL

A otherwisec

≤ ≤⎧
⎨
⎩

. This implies that the

conventional (or traditional) method of quality
evaluation underestimates quality losses by
97.57%.

(ii)  µ = m and an Eight-Sigma Process
Capability Æ USL – LSL = 8�����

→ PCR = 1 33333.  and E(QL) = Ac

∆2
 [(USL –

LSL) / 8]2 = Ac/16, but E(QLTrad) = 0.0000633425
Ac. In this case, the conventional method of
quality evaluation underestimates quality losses
by 99.8986520%.

(iii)  µ = m + 0.50����� and a Six-Sigma Process
Capability Æ USL – LSL = 6�����

E(QL) = k [�2 + (µ – m)2] = 
Ac

∆2  [(�/3)2 + 0.25

(�/3)2] = Ac (1/9 + 0.25/9) = 1.25 Ac/9, while
E(QLTrad) = 0.0064423 Ac, underestimating QLs
by 95.361544%.

(iv)  µ = m + 0.50����� and an Eight-Sigma Process
Capability Æ USL – LSL = 8�����

PCR = 1 33333.  → � = �/4 → E(QL) = 
Ac

∆2  [(�/

4)2 + 0.25 (�/4)2] = 1.25 Ac/16, and E(QLTrad) =

0.00023603 Ac, underestimating QLs by
99.6978816%.

In general, if a process is off-centered such that µ
– m = r � (r � 0) and PCR stands at t × �, that is, t ×
� = 2�, then it can be verified that the E(QL) = 4(1 +
r2)Ac/t

2. Further, if a process is Gaussian (that is, nor-
mal) and off-centered by r � and operating at a PCR
= t �, then the amount of traditional QL is equal to
E(QLTrad) = Ac[�(–r – t/2) + �(r – t/2)], where

( ) 2
z

–u 2

-

1
z e du

2 ∞

Φ =
π ∫  is the cumulative distribution

of the standardized (or unit) normal random variable.

As an example, suppose that QI (quality improve-
ment) efforts on a machine have improved the pro-
cess mean from the off-target value of m + 0.75� to
µ = m (i.e., the process has been centered) and the
existing six-sigma process capability (that is, PCR =
1) has been improved to seven-sigma process capa-
bility, that is, PCR = 7/6. We wish to compute the
percent reduction in Taguchi’s expected societal QLs
and also the amount of conventional QI. Before QI,
the amount of expected Taguchi’s QL is given by
E(QLb) = 4(1 + 0.752)Ac/6

2 = 0.173611 Ac; after QI,
E(QLa) = 4Ac/7

2 = 0.081633 × Ac, so that the amount
of QI is given by 0.09198 Ac. The conventional
expected QL before improvement is given by
Ac[�(–0.75 – 6/2) + �(0.75 – 6/2)] = Ac[�(–3.75)
+ �(–2.25)] = Ac[0.00008842 + 0.0122245] =
0.012313Ac. After QI, the traditional QL is given
by Ac[�(–0 – 7/2) + �(0 – 7/2)] = 2Ac�(–3.5) =
2Ac × 0.000233 = 0.0004653Ac. This yields a con-
ventional QI equal to 0.01185Ac, which underes-
timates the expected QI by 87.12%.

We have not found articles that are critical of Dr.
Taguchi’s use of Karl Gauss’s quadratic loss func-
tion to quantify product quality. In fact, Pignatiello
and Ramberg (1991) list this contribution as number
four among Taguchi’s top-10 triumphs. The quadratic
loss function discovered by Karl Gauss has been in
existence well over 200 years, but Dr. Taguchi was
the first who formalized its use to quantify quality,
and hence he fully deserves credit for this particular
application of Gauss’s quadratic loss function.

4. Literature Review
Taguchi methods have been discussed extensively

in different platforms, such as panel discussions,
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books, articles, and so on, especially since the early
1980s, when applications to different industries be-
gan in the Western Hemisphere. Below is a brief (yet
incomplete) summary of these discussions. We will
not discuss every article published in this area in the
past 24 years, but will provide numerous references
for the interested reader in the Bibliography section.

Taguchi’s two most important contributions to
quality engineering are the use of Gauss’s quadratic
loss function to quantify quality and the develop-
ment of robust designs (parameter and tolerance
design). Taguchi’s robust designs have widespread
applications upstream in manufacturing to fine-tune
a process in such a manner that the output is insensi-
tive to noise factors. Nearly half of this article deals
with Taguchi’s parameter and tolerance designs.

Several papers about Taguchi methods originated
from the Center for Quality and Productivity Im-
provement (CQPI) at the University of Wisconsin. A
number of reports evaluated Taguchi methods from
a statistical standpoint. The primary ones are by Box
and Fung (1986); Box, Bisgaard, and Fung (1988);
Box and Jones (1992); Bisgaard (1990, 1991, 1992);
Czitrom (1990); Bisgaard and Diamond (1990);
Bisgaard and Ankenman (1993); and Steinberg and
Burnsztyn (1993). In these reports, the parameter
design received the most attention. These authors
confirm that Dr. Taguchi has made important contri-
butions to quality engineering; however, it may not
be easy to apply his techniques to real-life problems
without some statistical knowledge. Specifically, the
use of signal-to-noise ratios in identifying the nearly
best factor levels in order to minimize quality losses
may not be efficient.

Three important discussions on Taguchi methods
have been published in Technometrics by Leon, Shoe-
maker, and Kackar (1987); Box (1988); and Nair
(1992). Some other performance measures are given
and discussed as alternatives to signal-to-noise ra-
tios by Leon, Shoemaker, and Kackar (1987) and
Box (1988). Taguchi’s parameter design is discussed
extensively by a group of scientists in a discussion
panel chaired by Nair (1992). The scientists’ major
point is that Taguchi methods do not have a statisti-
cal basis and signal-to-noise ratios pose some com-
putational problems.

Shoemaker and Tsui (1991) studied Taguchi’s
parameter design from the standpoint of cost. They
claimed that putting controllable and uncontrollable

factors in two separate arrays, inner and outer, will
result in more experimental runs. Montgomery
(1997, pp. 622-641) highlights the same difficulty
in a Taguchi parameter design. We tend to agree with
these authors that more cost may be involved in a
Taguchi crossed-array design than in a combined
single-array classical design as long as the output is
either an STB or LTB type QCH. When the output is
of magnitude type (i.e., QI requires either decreas-
ing the signal or increasing the signal), we illustrated
above that unless the CV is larger than 17%, the tra-
ditional classical DOE will identify factors that sig-
nificantly impact the mean of the output, and this
will in turn pave the way to improve quality. How-
ever, when the output is of nominal dimension, it is
best to invest the extra capital to identify the con-
trols (these are the factors that control process varia-
tion) and signals (these are factors that impact the
mean but have negligible effect on variability) and
go through the Taguchi two-step procedure of first
reducing variability followed by getting the mean
on target. Thus, our recommendation to any engi-
neer is to use DOE by all means as an upstream QI
tool. If the engineer does not have sufficient re-
courses and the QCH is either STB or LTB and the
CV < 20%, then use a single-array classical FFD
maximizing design resolution (defined later). If the
QCH is of nominal-the-best type, then by all means
use Taguchi’s parameter design even if more experi-
mentation is required. Further, if the noise factors
are environmental variables, it is generally best to
place such variables in an outer array and treat them
as uncontrollable. Box and Jones (1992) discuss an
alternative to a Taguchi crossed-array design when
the noise factors are environmental.

Tsui (1996) reviews and gives probable problems
with Taguchi methods. He compares Taguchi meth-
ods with other alternative approaches in the litera-
ture. According to Kim and Cho (2000), it is expensive
to arrive at a process having on-target mean and mini-
mum variance with Taguchi methods. They suggest
an alternative model based on an asymmetric quality
loss to obtain the most economical process mean.
Robinson, Borror, and Myers (2004) in a recent ar-
ticle gather previous arguments and alternative ap-
proaches to Taguchi methods. Alternative performance
measures are discussed and are compared with sig-
nal-to-noise ratios. Also Taguchi’s parameter design
is reviewed from different perspectives.
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It is nearly impossible to discuss all of the works
related to Taguchi methods. We have tried to men-
tion the main articles that discuss the pros and cons
of Taguchi’s contributions. There are several other
papers that are listed in the Bibliography but are not
specifically discussed here.

5. Factorial Designs and Taguchi’s
Orthogonal Arrays

Because roughly half of Taguchi’s orthogonal ar-
rays (OAs) are related to classical (fractional) facto-
rial designs, this section is a short summary of
factorial designs that were developed mainly by Sir
Ronald A. Fisher (1966), Kempthorne (1952), Yates
(1937), Graybill (1961), Tukey (1949), Cochran and
Cox (1957), Scheffé (1953, 1956, 1959), Searle
(1971a), and other notables. The factorial bk means
that the design matrix, X, contains k � 2 different
factors (or process parameters, or k inputs) each at b
levels (b = 2, 3, 4, …), contains bk factor level com-
binations (FLCs, or treatment combinations), and
possesses exactly k arbitrary columns. The factorial
design bk, k � 2, is complete (or a full factorial)
only if at least one response is obtained at each of
the bk FLCs. Further, if the number of responses at
each FLC is the same, namely n, then the design
matrix X is also said to be balanced and orthogonal.
A matrix X is orthogonal if and only if (XTX) = (X
X)
is diagonal or can be diagonalized through a linear
transformation, where T and “
” stand for transpose.
The number “b” is called the design base, and the
total number of columns of a design matrix will be
given in the following subsection. Before relating
Taguchi’s OA to classical factorial (or fractional fac-
torial) designs, general rules will be listed that will
apply to all balanced orthogonal fractional factorial
designs (FFDs) to facilitate the understanding of OAs
and how to put them to use in practice.

Review of Fractional Factorial Designs
Fractional (or incomplete) factorial designs, or

fractional replicates, were developed mainly by Box
and Hunter (1961a,b), John (1961, 1962, 1964), Fries
and Hunter (1980), Kempthorne (1952), Montgom-
ery and Runger (1996), and other notables. We now
summarize the rules that will apply to all balanced
and orthogonal FFDs.

1. The notation bk–p means that the design matrix,
X, contains k � 3 different factors (or process

parameters, or k inputs) each at b levels (b = 2,

3, 5, etc.), but only the p

1

b
th fraction of all pos-

sible bk FLCs (or treatment combinations) are
experimentally tested. For example, the FFD
25–2 implies that our design matrix has five fac-
tors (A, B, C, D, and E) each at two levels, but
only Nflc = 25–2 = 23 = 8 distinct FLCs out of the
possible 25 = 32 are studied. (Note that Nflc

stands for the number of distinct FLCs that com-
prise the design matrix X, and just to simplify
notation, we let Nf = Nflc.) Further, in any de-
sign of experiments the grand total number of
observations in the entire experiment, assum-
ing a balanced and orthogonal design, can be
written as N = n × Nf. Similarly, a 34–1 is a 3–1 =
1/3rd fraction of a full 34 factorial design, and
hence its design matrix will have Nf = 34–1 = 33

= 27 distinct FLCs (or experimental runs). By a
36–2 FFD we mean a 3–2 = 1/9th fraction of a
complete 36 factorial, and only Nf = 81 = 36–2 =
34 FLCs out of the possible 729 = 36 FLCs are
tested experimentally. The reader should note
that for the case of FFDs the values of the de-
sign base “b” have been intentionally restricted
to prime numbers 2, 3, 5, 7, etc., because of
the fact that direct meaningful fractionalization
in nonprime bases (such as 4 and 6) is impos-
sible, at least to the knowledge of the authors.
Indirect fractionalization in nonprime bases will
require the use of pseudo-factors and hence is
much more laborious to carry out. Further, the
FFD bk–p will have exactly (bk–p – 1)/(b – 1) col-
umns, only k – p of which can be written arbi-
trarily and will have exactly Nf = bk–p distinct
number of rows (or FLCs, or treatments). For
example, the design matrix of a 26–2 FFD has
(26–2 – 1)/(2 – 1) = 15 distinct columns, four of
which are arbitrary, and 26–2 = 24 = 16 distinct
rows (or distinct FLCs). While a 36–2 FFD has
(36–2 – 1)/(3 – 1) = 40 columns, only 4 (= 6 –
2) of which are arbitrary, and its design ma-
trix X has Nf = 36–2 = 34 = 81 rows, or distinct
FLCs. The complete factorial bk can be frac-
tionalized into bp, (p < k – 1, k � 3 ), distinct
blocks each containing bk–p runs (or distinct
FLCs) for b = 2, 3, and 5.

2. The elements (or factor levels) for a base-b de-
sign are simply 0, 1, 2, 3, …, b – 1. Taguchi
adds 1 to the elements 0, 1, 2, …, b – 1 to ob-
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tain his factor levels as 1, 2, 3, …, b. Thus, in
the classical FFD notation the elements of base
2 are 0, 1; the levels of base-3 designs are 0, 1,
2; and the elements of base-5 designs are 0, 1,
2, 3, 4, while in Taguchi’s designs the levels
are (1, 2), (1, 2, 3), and (1, 2, 3, 4, 5), respec-
tively. In base 2 algebra, 2 will equal to 0
(modulus 2) and 3 will be referred to as 1 (mod
2). Similarly, in base 3 algebra, 3 = 0 (modulus
3, or mod 3), 4 = 1 (mod 3), and 5 = 2 (mod 3),
etc. For example, a 33 factorial design has 27 =
33 distinct FLCs starting with 000 (all three fac-
tors at their low levels), 001 (factors A and B at
their low levels while factor C at its medium
level), 002 (factors A and B at their low levels
while factor C at its high level), 010, 011, …,
221, and ending with 222 (where all three fac-
tors are at their high levels).

3. The degree(s) of freedom of a column (or an
effect) in a bk complete factorial or bk–p FFD is
simply b – 1.

4. A generator of a FFD is a high-order effect
whose contrast function values (defined below)
are the same for all the FLCs in the same frac-
tion (or block) so that the generator’s effect is
sacrificed (or lost) and thus cannot be studied.
The FFD bk–p has exactly p independent gen-
erators, which divide the bk distinct FLCs into
bp different fractions (or blocks). Each block
has bk–p distinct FLCs. The principal block (PB)
is the one for which all the design generators
have the value of 0 for all their contrast func-
tions. Only the PB has the group property that
can more easily generate the other bp – 1 blocks.

5. An effect is defined in a bk

 
factorial design in

such a manner that it can occupy only one col-
umn and hence it will carry exactly (b – 1) de-
grees of freedom (df). As an example, in a 23

factorial design, there are seven effects, A, B,
C, AB, AC, BC, and ABC, each carrying 1 df
and each occupying exactly one column, while
in a 32 full factorial design has four effects, A,
B, AB, and AB2, each with 2 df, and hence a 32

factorial design must have (bk – 1)/(b – 1) = 4
distinct columns that are occupied by the or-
thogonal effects A, B, AB, and AB2. Note that
AB and AB2 represent the two orthogonal com-
ponents of the first-order interaction A × B,
which carries 2 × 2 = 4 df. Some authors con-

veniently use AB to denote interaction in any
base b, but it should be clear by now that only
in base-2 designs can the notation AB be used
to denote the 1-df interaction A × B. Using AB
to denote the interaction A × B in base 3 is some-
what misleading because the AB effect has 2
df, while the A × B interaction has 4 df. In gen-

eral, the bk factorial design has 
k 1

j

j 0

b
−

=
∑  = (bk – 1)/

(b – 1) orthogonal effects (or columns), each
with (b – 1) df. For example, a 25 factorial has
(25 – 1)/(2 – 1) = 31 effects, A, B, …, E, AB,
…, DE, ABC, …, CDE, ABCD, …, BCDE, and
ABCDE, each with 1 df. The 33 factorial design
has (33 – 1)/(3 – 1) = 13 orthogonal effects,
which are A, B, C, AB, AB2, AC, AC2, BC, BC2,
ABC, AB2C, ABC2, and AB2C2, each with b – 1
= 2 df. Thus, the 33 complete factorial will have
27 = 33 distinct FLCs but only (33 – 1)/(3 – 1) =
13 distinct effects (or orthogonal columns).
Similarly, the 52 factorial has (52 – 1)/(5 – 1) =
6 orthogonal effects, A, B, AB, AB2, AB3, and
AB4, each with 4 df. The design 52 has 25 dis-
tinct FLCs, 00, 01, 02, 03, 04, 10, 11, … 34,
40, …, and 44, and six orthogonal columns,
which are occupied by the 4-df orthogonal ef-
fects A, B, AB, AB2, AB3, and AB4. Again the
interaction A × B in base 5 has 4 × 4 = 16 df and
can be orthogonally decomposed into the 4-df
components AB, AB2, AB3, and AB4 because 5
is a prime number. We have emphasized that to
fractionalize directly in a bk factorial design, the
design base, b, must be a prime number because
it can be shown that in a base-4 design the or-
thogonal decomposition of the 9-df interaction
A × B into the 3-df effects AB, AB2, and AB3 (or
AB, AB3, and A2B3) is impossible. In other
words, the effects AB, AB2, and AB3 (or AB,
AB3, and A2B3) are meaningless in base 4 be-
cause they do not form an orthogonal (i.e., ad-
ditive) decomposition of A × B (with 9 df).

6. The contrast function in base 2 for the effect
AB is �(AB) = x1 + x2, where x1 represents the
levels of factor A (0 for low or 1 for high) and
x2 represents the levels of factor B (0 or 1); the
contrast function for the effect AB2C in base-3
design is �(AB2C) = x1 + 2x2 + x3, where x3

represents the levels of factor C (0 for low, 1
for medium, and 2 for the high level); the con-

maghssa
Sticky Note
molulus 3 not 2 because design-base is 3
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trast function for the effect AB3 in a base-5 de-
sign is �(AB3) = x1 + 3x2 (where x1 and x2 = 0,
1, 2, 3, or 4). Note that a contrast function in
base 2 can take on only the values of 0, or 1; a
contrast function in base 3 can have only the
values 0, 1, or 2, while in base 5 a contrast func-
tion can have only the values 0, 1, 2, 3, or 4.

7. The FFD bk–p has p independent generators and
a total of (bp – 1)/(b – 1) generators, which com-
prise its defining identity I, and each of the (bp

– 1)/(b – 1) generators in I is called a “word.”
For example, the 28–3 FFD has p = 3 indepen-
dent generators and a total of (23 – 1)/(2 – 1) =
7 generators, each of which produces one alias
for each effect. The 35–2 FFD has two indepen-
dent generators and a total of (32 – 1)/(3 – 1) =
4 generators, each of which produces 3 – 1 = 2
aliases for each effect so that each effect has 32

– 1 = 8 aliases. While, the 54–2 FFD has a total
of (52 – 1)/(5 – 1) = 6 generators, each of which
produces b – 1 = 4 aliases for each effect so
that each effect has 52 – 1 = 24 aliases. Note the
precise pattern that for each block that is not
studied in a bk–p FFD, exactly one alias is gen-
erated for each effect. This pattern of (bp – 1)
aliases for each effect will prevail for all or-
thogonal FFDs in the universe (b = 2, 3, 5) be-
cause bp – 1 blocks are left out of the
experimentation. Again, for each block of FLCs
that is not studied, exactly one alias is gener-
ated for each effect.

8. The resolution of a bk–p FFD, as defined by Box
and Hunter (1961a,b), is the length of the short-
est word in the defining relation I. For example,
the 25–2 FFD with generators g1 = ABC, g2 =
CDE, and g3 = ABC2DE = ABC0DE = ABDE
has a resolution R = III because the length of
shortest words ABC and CDE is three letters.
While, the FFD 36–2 with generators g1 =
ABC2D, g2 = CDE2F2, g3 = g1 × g2 =
ABD2E2F2, and g4 = 2

1 2g g×  = ABCEF has a
resolution R = IV.

9. Statistical literature dictates that in designing a
fractional (or incomplete) factorial, the experi-
menter must always strive to maximize design
resolution. A resolution of R < III practically
renders the design useless because at least two
main factors will be aliased (i.e., at least two
main factors will occupy the same column of

an OA). However, to attain a resolution R = III,
the design matrix must have k � 3 factors and
sufficient number of columns to assign all main
factors separately from each other to different
columns. To attain a resolution R = IV (for k �
4 factors), the design matrix must have suffi-
cient number of columns to assign all main fac-
tors (i.e., first-order effects) separate from all
components of two-way interactions (or sec-
ond-order effects). To attain a resolution V for
k � 5 factors, the design matrix X must have
sufficient number of columns to assign all main
factors and all second-order effects (or compo-
nents of two-way interactions) to separate col-
umns. This begs the question “Given k > 2 , b,
and p, how many columns or rows (or distinct
experimental FLCs) are needed or sufficient to
attain at least a resolution III, IV, V, or VI de-
sign?” This question has been treated exten-
sively in statistical literature by Webb (1968)
and Margolin (1969), although resolution VI
designs are not as important and as practical as
those with R = IV and V because resolution VI
designs require substantially more runs. In a
resolution III design, main factors are separate
from each other, and thus the bk–p FFD needs at
least k orthogonal columns, and because each
column has (b – 1) df, the necessary and suffi-
cient required minimum number of distinct
FLCs (or rows), Nmin, to attain R = III is given
by 1 + (b – 1)k, where the one extra run is
needed for the estimation of process mean µ.
The experimenter should be aware of the fact
that for base-2 FFDs, it is unwise to generate a
resolution III design for the 24–1 FFD because
an R = IV is always possible (by simply select-
ing g = ABCD as the design generator). Simi-
larly, while it is possible to generate a resolution
R = III design with k = 8 factors, it is again
unwise to do so because the minimal FFD 28–4

has a resolution R = IV with the choice of p = 4
independent generators, ABCE, ABDF, BCDG,
and ACDH (the 28–5 FFD is a resolution R = II
design because the eight main factors require 8
df but the design matrix provides only 7 df for
studying effects, and thus two main factors will
have to be aliased, or inseparable from each
other occupying the same column). In summary,
for base-b designs a resolution III is guaran-
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Table 1a
All Minimal Resolution V Designs in Base 2 Through k = 20 Factors

Design Nf (k2 + k + 2)/2 A Set of p Independent Generators 

5 1
V2 −  16 16 ABCDE 

8 2
V2 −  64 37 ABCDG, ABEFH 

10 3
V2 −  128 56 ABCEF, BCDGH, ABDIJ 

11 4
V2 −  128 67 ABCEH, ACDFI, BCDGJ, ABCDEFGK 

13 5
V2 −  256 92 ABCDEI, ABCFGJ, ABDFHK, BCEGHL, ACDFM 

14 6
V2 −  256 106 ABCDHI, BCEHJ, BDFHK, ACEFHL, CDGHM, ADEGHN 

15 7
V2 −  256 121 ABCDHI, BCEHJ, BDFHK, ACEFHL, CDGHM, ADEGHN, 

AFGHO 

16 8
V2 −  256 137 ABCDHI, BCEHJ, BDFHK, ACEFHL, CDGHM, ADEGHN, 

AFGHO, BEFGHP 

17 9
V2 −  256 154 ABCDHI, BCEHJ, BDFHK, ACEFHL, CDGHM, ADEGHN, 

ABCFGHO, CEFGP, ABCDEFGQ 

19 10
V2 −  512 191 ABCDEJ, ABCFGK, ABCHIL, ABDFHM, ABDGN, ABEGIO, 

ABEHP, ABFIQ, ACDIR, ACEFS 

20 11
V2 −  512 211 ABCDEK, ABCFGL, ABCHIM, ABDFJN, ABEHJO, ABGIJP, 

ACDIJQ, ACEGJR, ACFHJS, ADGHJT, ABCEFIJ 

 

teed (assuming that a resolution III design ex-
ists) if bk–p � 1 + (b – 1)k. For some values of k
such as k = 8 and k = 16, no minimal resolution
III design exists in base 2.

In a resolution V design (k � 5), both the main
factors and two-way interactions are completely
separate from each other (i.e., they occupy separate
columns of an OA). That is to say, main factors and
two-way interactions can be estimated unbiased from
each other, assuming effects of order three or higher
are negligible. The main factors need (b – 1)k df,
and because each two-way interaction in a base-b
design has (b – 1)2 df, the necessary minimum num-
ber of distinct FLCs (or rows) for the design matrix is

Nmin(V) � 1 + (b – 1)k + (b – 1)2 × 
k

2

⎛

⎝
⎜

⎞

⎠
⎟  = 1 + (b – 1)[k

+ (b – 1) × kC2], where kC2 = 
k

2

⎛

⎝
⎜

⎞

⎠
⎟  = 

k k −( )1

2
  repre-

sents the combinations of k items taken two at a time.
Note that for base-2 designs, this last requirement, 1
+ (b – 1)[k + (b – 1) × kC2], reduces to 1

2 (k2 + k + 2),
which is precisely the minimum distinct run require-
ments given by Margolin (1969, p. 435). However,
Margolin is not emphatic in his statement because
this last necessary value of Nmin(V) is not always
sufficient to generate a resolution V design. Further,
if the number of distinct runs Nf < 1 + (b – 1)[k + (b
– 1) × kC2], then a resolution V design cannot be
generated. Table 1a shows that for certain values of
k (= 6, 7, 9, 12, 18) a minimal resolution V design is
probably impossible to generate. After an exhaus-
tive search, the 11 minimal resolution V designs listed
in Table 1a were all that could be found through k =
20 factors (except for the fact that for each 2V

k p−  FFD,
k > 5, there are many sets of p independent genera-
tors). For example, Table 1a shows that for k = 14 if
Nf = 128 runs > (k2 + k + 2)/2, the FFD 214 7

V
−  cannot
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be generated and that 256 runs are needed to gener-
ate the FFD 214 6

V
− . Thus, the (k2 + k + 2)/2 runs are

needed but are not generally sufficient to attain the
resolution R = V in base 2. This is similar to Webb’s
(1968) necessary condition of at least 2k runs for a
resolution IV design but the 2k runs are not generally
sufficient to yield a resolution IV design in base 2.
The resolution V designs in Table 1a are consistent
with the maximum number of factors that can be ac-
commodated with a 256-run design reported by
Draper and Mitchell (1970) to be k = 17.

The minimum required number of runs for a reso-
lution IV design, k � 4 factors, is not as easily ob-
tained because in such a design some of the
second-order effects are aliased with each other and
the rest are free from effects through the second or-
der. (A first-order effect is a main factor, and a sec-
ond-order effect is either a two-way interaction or a
component of a first-order interaction.) Clearly, from
the requirements for resolution III and V designs, it
can be inferred that to attain a resolution R = IV, the
necessary number of distinct experimental runs must
satisfy 1 + (b – 1)k < Nmin(IV) < 1 + (b – 1) × [k + (b –
1) × kC2]. Margolin (1969, p. 437) gives the mini-
mum run requirements for the 2n3m resolution IV de-
sign as 3(n + 2m – 1) for n � 0 and m > 0, where n
and m are the number of two-level and three-level
factors, respectively. Further, Webb (1968) proved
that a resolution IV 2k–p FFD needs at least 2k dis-
tinct experimental runs. Note that the value 2k does
lie within the interval 1 + (b – 1)k < Nmin(IV) < 1 + (b
– 1)[k + (b – 1) × kC2] for b = 2 and k � 4. Further,
Margolin’s Theorem 2 requires that m > 0 so that the
minimum run requirements for base-2 resolution IV
designs cannot be ascertained from his Theorem 2.
From the above discussions, for base-2 designs, the
sufficient number of runs to attain a resolution IV
design, if it is possible to generate R = IV, is Nmin(IV)

> 1 + k + 1
2 (kC2) = 1 + k + [k (k – 1)/4] = 1 + k(k 3)

4

+ .

The multiplier of 1
2  in front of kC2 originates from

the fact that in a resolution IV design at least two
second-order effects (or components of two-way in-
teractions) can occupy the same column of an OA.
Because in larger resolution IV FFDs, more than two
second-order effects can occupy the same column
of an OA, the 1

2  multiplier leads to very conserva-
tive sufficient run requirements for k > 10 factors.
Thus, if k is such that a resolution IV design can be

generated and the value of Nf = 2k–p > 1 + 
k k +( )3

4
,

then the FFD 2R
k p−  always has a resolution R = IV for

(k = 4, 6, 7, 8, …). But the converse of this stringent
requirement is not always true, that is, if Nf < 1 +
k k +( )3

4
, it is sometimes possible to generate a reso-

lution IV design if the value of 2k–p is close to 1 +
k k +( )3

4
, such as the case of the FFD 27 3

IV
−  for which

2k–p = 16 and 1 + 
k k +( )3

4
 = 18.5. This is due to the

fact that in a base-2 resolution IV design, as k (> 4)
and p � k – 3 increase, the number of two-way
interactions that occupy the same column of an OA
increases (i.e., the number of two-way interactions
that are aliased together increases). Table 1b gives
a summary of minimal resolution IV designs for
base 2.

In summary, if an R = IV is attainable in base 2, the

requirement Nf > 1 + 
k k +( )3

4
 � 2k will guarantee an R

= IV (for k � 4), but this is not a necessity like Webb’s
needed 2k runs, but merely a sufficient condition to
attain a minimal resolution IV in base-2 designs. Note
that a minimal resolution IV design does not exist
for k = 5 factors; further, Table 1b shows that no
minimal resolution III design exists for k = 8 and 16
(what is meant by nonexistence is the fact that the
design 216–12 with 16 runs has a resolution II and it
would be inefficient to select the independent gen-
erators in such a manner as to obtain the FFD 216 11

III
−

because, as Table 1b shows, a resolution R = IV ex-
ists with 216–11 = 32 runs).

In base 2, a minimal resolution VI design is guar-
anteed if Nf > 1 + k + kC2 + (kC3)/2 = (k3 + 3k2 + 8k +
12)/12 and k � 9 because the main factors need k
columns, the two-way interactions need kC2 sepa-
rate columns, and the three-way interactions need
roughly (kC3)/2 columns because in a resolution VI
design the main factors and all two-way interactions
can be estimated unbiased from each other, but three-
way interactions are aliased with other three-way
interactions. Table 1c gives the minimum resolution
VI base-2 designs through k = 20 factors, where (k3

+ 3k2 + 8k + 12)/12 is sufficient but not the neces-
sary number of runs to attain R = VI. Draper and
Mitchell (1970) also report that the maximum num-
ber of factors that can be accommodated with a 512-
run design of resolution VI is k = 18.



Journal of Manufacturing Systems
Vol. 23/No. 2

2004

85

For base-3 designs, the sufficient number of runs
for a resolution III design is Nmin = 1 + 2k, but the 1 +
2k distinct rows are generally smaller than Nf = 3k–p

rows of an orthogonal array and hence 1 + 2k must
be rounded up to the next higher integer in powers
of 3 (although the experimenter can leave some col-
umns of a 3k–p OA empty and use them as residuals
or simply unused). The minimum required number
of runs for a resolution V design in base 3 is given
by Nmin = 1 + 2k + 4(kC2) = 1 + 2k2 (only for k � 5),
and again the value of 1 + 2k2 (if not already in pow-

ers of 3) has to be rounded up to the next higher inte-
ger that can be expressed in powers of 3. Table 2a
summarizes minimal resolution V designs through k
= 12 factors in base 3. Note that Margolin (1969) does
not provide sufficient run requirements for a base-3
resolution R = V designs, but Conner and Zelen (1959)
provide the independent generators for a few of the
3R

k p−  FFDs through k = 10, which are 37 2
V

− , 39 4
V

− , 310 5
V

− ,
36 2

IV
− , 37 3

IV
− , 38 4

IV
− , 36 1

VI
− , 39 3

VI
− , and 39 5

IV
− .

For base-3 designs, the sufficient required num-
ber of runs for a minimal resolution IV design is Nf

Table 1b
Minimal Resolution IV Designs in Base 2 Through k = 20 Factors

Design Nf k(k 3)
1

4

++  
A Set of p Independent Generators 

6 2
IV2 −  16 14.5 ABCE, BCDF 

7 3
IV2 −  16 18.5 ABCE, BCDF, ACDG 

8 4
IV2 −  16 23 ABCE, ABDF, BCDG, ACDH 

9 4
IV2 −  32 28 ABCF, BCDG, CDEH, ABDI 

10 5
IV2 −  32 33.5 ABCF, ABDG, ABEH, BCDI, BCEJ 

11 6
IV2 −  32 39.5 ABCF, ABDG, ABEH, BCDI, BCEJ, CDEK 

12 7
IV2 −  32 46 ABCF, ABDG, ABEH, BCDI, BCEJ, CDEK, ABCDEL 

13 8
IV2 −  32 53 ABCF, ABDG, ABEH, ACDI, ACEJ, ADEK, BCDL, BCEM 

14 9
IV2 −  32 60.5 ABCF, ABDG, ABEH, ACDI, ACEJ, ADEK, BCDL, BCEM, 

CDEN 

15 10
IV2 −  32 68.5 ABCF, ABDG, ABEH, ACDI, ACEJ, ADEK, BCDL, BCEM, 

BDEN, CDEO 

16 11
IV2 −  32 77 ABCF, ABDG, ABEH, ACDI, ACEJ, ADEK, BCDL, BCEM, 

BDEN, CDEO, ABCDEP 

17 11
IV2 −  64 86 ABCFG, ABDFH, ABEFI, ACDFJ, ACEFK, ADEFL, BCDFM, 

BCEFN, BDEFO, CDEP, ABCDEQ 

18 12
IV2 −  64 95.5 ABFG, ACFH, ADFI, AEFJ, BCFK, BDFL, BEFM, CDFN, 

CEFO, DEFP, ABCQ, CDER 

19 13
IV2 −  64 105.5 ABFG, ACFH, ADFI, AEFJ, BCFK, BDFL, BEFM, CDFN, 

CDEO, DEFP, ABCQ, ABDR, ABES 

20 14
IV2 −  64 116 ABHT, ABGS, ABFR, ABEQ, ABDP, ABCO, BFLM, CJKN, 

DJLN, EKLN, FJKL, GJMN, HKMN, ILMN 
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> 1 + 2k + 1

2
 [4 × kC2] = 1 + k + k2 for k � 4. Table 2b

summarizes resolution IV designs for base 3. The
reader should observe that our sufficient run require-
ments for base-3 resolution IV designs (k � 4) are
consistent with that of Margolin’s (1969) Theorem 2
requirement for minimum needed number of runs,
which he lists as 3(2k – 1) because k2 + k + 1 > 3(2k
– 1) for all k > 4. In a similar manner, the minimum
and sufficient number of runs for a resolution VI
design in base 3 is 1 + 2k + 4(kC2) + 

1

2
 [4(kC3)] = (k3

+ 3k2 + 2k + 3)/3. Table 2c summarizes resolution VI
designs for base 3.

The above summary completes our review of clas-
sical FFDs. Before relating some of Taguchi’s OAs
to the classical FFDs, an example will be presented
to illustrate how to compute the sum of squares (SS)
of any effect for balanced orthogonal factorial de-
signs in base b (most commonly b = 2, 3, and 5).
The concept of orthogonality and balance will be-
come clearer at the end of the example.

Consider a 33 factorial with n = 2 observations
per FLC, where all the N = n × Nf = 2 × 27 = 54
observations are taken in a completely random or-
der. The qualitative factor A represents a type of drum
(type 0, 1, 2), factor B represents the speed differen-
tial between the conveyer belts for the liner/ply and
the drum (B0 = 5%, B1 = 7.5%, and B2 = 10%), and
factor C represents the concentricity of the bead with
respect to the drum (0 = not concentric, 1 = fairly
concentric, and 2 = very concentric). The response
variable, y, is the radial force harmonic (RFH) of a
passenger tire coded by subtracting 20 pounds from
all 54 observations. The coding was done just to sim-
plify computations and will not affect any of the
corrected SS in the analysis of variance (ANOVA)
table. Table 3 lists the data.

The arbitrary columns of the OA for Table 3 are
obtained by writing three (the exponent of b) col-
umns of 0’s, 1’s, and 2’s arbitrarily, i.e., the first col-
umn will be nine 0’s, nine 1’s, followed by nine 2’s.

Table 1c
Minimal Resolution VI Designs in Base 2 Through k = 20 Factors

Design Nf (k3 + 3k2 + 8k + 12)/12 A Set of p Independent Generators 

9 2
VI2 −  128 88 ABCDFH, BCEFGI 

10 2
VI2 −  256 116 ABCFGH, CDEHIJ 

11 3
VI2 −  256 149.5 ABCDFI, BCDEGJ, ACDEHK 

12 4
VI2 −  256 189 ABCDEI, ABCFGJ, ABDFHK, ACEGHL 

14 5
VI2 −  512 288 ABCDEJ, ABCFGK, ABCHIL, ABDFHM, ABEGIN 

15 6
VI2 −  512 348.5 ABCDEJ, ABCFGK, ABCHIL, ABDFHM, ABEGIN, 

ADEFIO 

16 7
VI2 −  512 417 ABCDEJ, ABCFGK, ABDFHL, ABEGIM, ADEFIN, 

AEFGHO, ABCEFHIP 

17 8
VI2 −  512 494 ABCDEJ, ABCFGK, ABCHIL, ABDFHM, ABEGIN, 

ADEFIO, BDGHIP, ACDEFGHQ 

18 9
VI2 −  512 580 ABCDEJ, ABCFGK, ABCHIL, ABDFHM, ABEGIN, 

ADEFIO, BDGHIP, ACDEFGHQ, BCEFGHIR 

19 9
VI2 −  1024 675.5 ABCGHK, ABDGIL, ABEGJM, BEFHIN, ACDHJO, 

ACEIJP, CFGHIQ, DEGHJR, DFHIJS 

20 10
VI2 −  1024 781 ABCDEK, ABCFGL, ABDFHM, ACDFIN, AEGHIO, 

ABEFJP, BCGIJQ, BCDFGHJR, BEFGHS, CDEGIT 
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Table 2a
Minimal Resolution V Designs in Base 3 Through k = 12 Factors

Table 2b
Minimal Resolution IV Designs in Base 3

Table 2c
Minimal Resolution VI Designs in Base 3

Design Nf 
2

minN = 1+ 2k  A Set of p Independent Generators 

5 1
V3 −  81 51 ABCDE 

7 2
V3 −  243 99 ABCDE, CD2EF2G2 

8 3
V3 −  243 129 BCDFG, CDE2F2H, ABD2E2F 

9 4
V3 −  243 163 BCDEFG, CDE2F2H, BD2E2FI, ABC2EF2  

10 5
V3 −  243 201 BCDEFG, ACDE2F2H, ABD2E2FI, ABC2EF2J, AB2C2DF 

11 6
V3 −  243 243 BCDEFG, ACDE2F2H, ABD2E2FI, ABC2EF2J, AB2C2DFK, 

BE2FG2J 

 

Design Nf Nmin = 1 + k + k2 A Set of p Independent Generators 

4 1
IV3 −  27 21 AB2CD 

6 2
IV3 −  81 43 ACDE, BC2DE2F 

7 3
IV3 −  81 57 CDEF, BE2F2G2, ACE2G2  

8 4
IV3 −  81 73 ADEG, BC2EF, ABCG2, BC2D2H 

9 5
IV3 −  81 91 BCDEFG, ACDE2F2H, ABD2E2FI, ABC2EF2, AB2C2DF 

10 6
IV3 −  81 111 ABC2D, CDEF2, ACF2G, AEFH, ADFI, AD2H2J 

12 7
IV3 −  243 157 BCDE2F, ACE2GH, AB2E2FI, AC2EF2J, BCD2F2K, BD2FGL, 

CDF2GH2  

 

Design Nf (k3 + 3k2 + 2k + 3)/3 A Set of p Independent Generators 

6 1
VI3 −  243 113 AB2CDE2F 

8 2
VI3 −  729 241 ABCDEH2, CD2EF2G2H 

9 3
VI3 −  729 331 BCDEFG, ACDE2F2H, ABD2E2FI 

10 4
VI3 −  729 441 BCDEFG, ACDE2F2H, ABD2E2FI, ABC2EF2J 

11 5
VI3 −  729 573 BCDEFG, ACDE2F2H, ABD2E2FI, ABC2EF2J, 

AB2C2DFK 

12 6
VI3 −  729 729 BCDEFG, ACDE2F2H2, ABD2E2FI, ABC2EF2J, 

AB2C2DFK, BC2D2FJ2L 
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The second column will consist of three 0’s, three
1’s, three 2’s, and repeated twice more. The third
column will consist of 0, 1, and 2, but repeated eight
times more to yield 27 rows. The total SS is obtained
by summing the square of all 54 observations (which
is called the uncorrected SS denoted by USS) and
then subtracting the correction factor CF = (y….)

2/54,

where 
3 3 3 2

.... ijkr
i 1 j 1 k 1 r 1

y y
= = = =

= ∑∑ ∑ ∑ , and Taguchi uses the un-

common notation Sm for the correction factor; note
that the index i extends over the factor A levels, j
refers to factor B levels, k extends over factor C lev-
els, and r = 1, 2 implies that there are two repeat
observations (or replications) within each cell. For
example, the cell (or FLC) 201 contains the responses
y3121 = 3.2 and y3122 = 5.5 so that y312. = 8.7, etc. The
uncorrected SS for Table 3 data is given by USS =

3 3 3 2
2
ijkr

i 1 j 1 k 1 r 1
y

= = = =
∑∑ ∑ ∑  = 4.82 + 6.92 + … + 5.82 = 1850.40. The

reader should be cognizant of the fact that in devel-
oping an ANOVA, each time that a real number is
squared one degree of freedom is generated. Fur-
ther, because degrees of freedom are additive (the
origin of these concepts lies in the assumption of
normality for yijkr and the resulting noncentral chi-
square distribution), then the USS for Table 3 will
have N = 2 × 33 = 54 df because there are n = 54
normally distributed random numbers that are being

squared and added. The CF = 
2139.2

358.82666
54

= ,

which has only one degree of freedom because only
one Gaussian number is being squared. Thus, the
corrected SS is given by CSS = SS(Total) = USS –

CF = 1850.40 – 358.82667 = 1491.57333 , which
has 54 – 1 = 53 df.

Another reason that the CSS = ( )
3 3 3 2 2

ijkr ....
i 1 j 1 k 1 r 1

y y
= = = =
∑∑ ∑ ∑ −

has 53 df (instead of 54) is the fact that the 54
squared terms in this last CSS have one constraint

among them, namely ( )
3 3 3 2

ijkr ....
i 1 j 1 k 1 r 1

y y 0
= = = =
∑∑ ∑ ∑ − ≡ . In all

factorial (or FF) designs, the Total SS decomposes into
two orthogonal components, namely Model SS and
Residual SS, i.e., SS(Total) = SS(Model) +
SS(Residuals). For the data of Table 3, the source of
Residuals is from pure experimental error that is gen-
erated from the variation within each of the 27 cells.
If repeat observations are not made in at least one
FLC, then pure experimental error cannot be retrieved,
and unless the design provides leftover degrees of
freedom for residuals, no exact statistical test of sig-
nificance can be made. For example, the FLC 000
has two responses, 4.8 and 6.9, which contribute 4.82

+ 6.92 – 
( )2
4.8 6.9

2

+
 = 4.82 + 6.92 – 11.72/2 = 2.2050

to the overall pure error SS [denoted as SSPE or
SS(PE)], and recalling the premise that every real
number squared generates one degree of freedom,
then the SSPE from the cell 000 carries a net of 1 + 1
– 1 = 1 degree of freedom.

Similarly, the cell 202 has two responses, –2.1

and 3.1, which contribute (–2.1)2 + 3.12 – ( )2
–2.1 3.1

2

+

= 13.52 (with one degree of freedom) to the overall
SSPE. Because the above factorial design has 3 × 3 ×
3 = 27 distinct FLCs and each cell contributes one

Table 3
Data for the 33 Complete Factorial Example

Factor B B at level “0” → 
B at 5% 

 

B1 → B at 7.5% B2 → B at 10%  

         C 

     A 

 C0 C1 C2  C0 C1 C2  C0 C1 C2 yi… 

Type 0  4.8 1.0 –9.1 

 6.9 –2.1 –6.8 

 2.2 –1.1 –3.4 

 4.7 –5.6 2.1 

 10.3 6.8 3.5 

  9.2 4.2 7.2 

34.8 

Type 1  3.2 1.3 1.5 

 5.7 0.0 –3.2 

 2.7 –2.1 –10.1 

 6.9 –3.5 –7.7 

 8.3 3.4 1.3 

 9.2 5.2 2.9 

25.0 

Type 2  8.6 3.2 –2.1 

 7.7 5.5 3.1 

 8.6 4.1 –6.8 

 5.8 2.3 –4.2 

 11.2 7.6 6.6 

 10.7 1.7 5.8 

79.4 

y.jk.  36.9 8.9 –16.6  30.9 –5.9 –30.1  58.9 28.9 27.3 y…. = 139.2 
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degree of freedom to the overall pure error, SSPE must
have 27 df. Adding the 27 one-degree-of-freedom
SS yields SS(PE) = 2.2050 + 4.8050 + 2.6450 +
3.1250 + 10.1250 + 15.1250 + 0.6050 + 3.3800 +
6.8450 + 3.1250 + 0.8450 + 11.0450 + 8.8200 +
0.9800 + 2.8800 + 0.4050 + 1.6200 + 1.2800 +
0.4050 + 2.6450 + 13.5200 + 3.9200 + 1.6200 +
3.3800 + 0.1250 + 17.4050 + 0.3200 = 123.2000.

Because the above factorial design has a total of
53 df, due to orthogonality the Model SS must have
53 – 27 = 26 df. Clearly, one way to obtain the
SS(Model) is by subtracting SS(PE) from SS(Total),
i.e., SS(Model) = SS(Total, with 53 df) – SS(PE, with
27 df ) = 1491.57333  – 123.20 = 1368.37333  (with
26 df). The above method of computing the SS(PE)
and SS(Model) is at best time-consuming and cum-
bersome. Because pure experimental error originates
from the internal variation within the same cell, varia-
tion due to the model must originate from the fact
that cell averages are different. In short, the Model SS
must come from variability among distinct FLCs. Fur-
ther, because n = 2 for all 27 cells, then we may as
well compare cell subtotals directly (instead of their
averages) to assess the contribution of model terms to
the SS(Total). If we remove the internal variation
within all cells from Table 3, the resulting Table 4 will
depict the variations among (or between) the 27 cells.

Another pattern that will prevail in computing
any SS in all orthogonally balanced factorial de-
signs is the fact that every squared term has a spe-
cific divisor. The divisor is always the number of
individual observations that comprise the squared
term. The formula for the correction factor is CF =
(grand sum of all observations)2/divisor. To determine

what the value of the divisor is, the question to ask is
how many individual observations have to be added
to obtain y…. = “grand sum of all observations.” The
answer is N = 54, and hence this divisor has to be 54,
i.e., CF = (y….)

2/54. As yet another example, if we
wish to square the subtotal for level zero of A, de-
noted by A0, then the required divisor for 2

0A  = (34.8)2

(see Table 3) has to be 18 because 18 individual ob-
servations have to be added to obtain A0 = 34.8.

Having established some rules for SS computa-
tions, we are now in a position to compute the over-
all Model SS as follows. Recall that the model
describes the variation among different distinct FLCs,
of which there are 27. Thus, we have to square the
27 terms in Table 4 but divide by 2 because every
term in Table 4 was obtained from adding two indi-
vidual responses. However, such an USS will have
27 df (this is due to the fact that a single Gaussian
term squared generates exactly 1 df, the origin of
which lies in the noncentral chi-squared (�2) distri-
bution) and we have already argued that the model
for the above experiment must have 26 df because
the 27 squared terms in SS(Model) =

( )
3 3 3 2

ijk. ....
i 1 j 1 k 1

2 y y
= = =
∑∑ ∑ −  have one constraint

( )
3 3 3 2

ijk. ....
i 1 j 1 k 1 r 1

y y 0
= = = =
∑∑ ∑ ∑ − ≡  among them; thus, we have to

correct by subtracting the CF, i.e.,

( )
( ) ( )

( )

2 22 2 2

2

SS Model

11.7 1.1 15.9 ... 9.3 12.4

2

345.4 139.20
CF 1368.37333 with 26 df

2 54

=

+ − + − + + +
−

= − =

Table 4
Depicting Variability Among (or Between) the 27 Cells

Factor B B at level “0” → 
B at 5% 

 

B at 1 → 7.5% B at 2 →10%  

       C  

   A 

 C0 1 2  0 C at 1 2  0 1 C at 2 yi… 

Type 0  11.7 –1.1 –15.9  6.9 –6.7 –1.3  19.5 11.0 10.7 34.8 

Type 1  8.9 1.3 –1.7  9.6 –5.6 –17.8  17.5 8.6 4.2 25.0 

Type 2  16.3 8.7 1.0  14.4 6.4 –11.0  21.9 9.3 12.4 79.4 

y.jk.  36.9 8.9 –16.6  30.9 –5.9 –30.1  58.9 28.9 27.3 y…. = 139.2 
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which is in complete agreement with the previously
computed value from SS(Model) = SS(Total) –
SS(PE). The reader should be cognizant of the fact
that the breakdown of SS(Model) that is to follow is
possible only if (1) the design is orthogonal and bal-
anced, and (2) the quantitative factor levels are equally
spaced (or at least some transformation, such as loga-
rithm, of the factor levels is equally spaced.) Clearly,
in our example, the levels of factor B have equal spac-
ing of 2.5%, and we have to assume that factor C
levels are also equally spaced. Further, because we
are in base 3, each effect will have 2 df and thus there
must be 13 orthogonal effects, i.e., the Model SS
should break down into thirteen 2-df orthogonal (first,
second, and third-order) effects listed below:

A, B, C, AB, AB2, AC, AC2, BC, BC2, ABC, ABC2,
AB2C, AB2C2

Recall that we have defined an effect in base b as
one that has (b – 1) df and occupies one column of
an OA. We will now compute the SS of the above 13
effects term by term, which is essential in develop-
ing Taguchi’s L27 OA, and will also provide each
contrast function �.

Factor A:
�(A) = x1; A0 = 34.8, A1 = 25.0, A2 = 79.4 Æ SS(A)

= 
2 2 2 234.8 25 79.4 139.20

93.41777
18 54

+ + − =  (with 2 df)

Factor B:
�(B) = x2; B0 = 29.2, B1 = –5.1, B2 = 115.1 Æ

SS(B) = ( )22 2 229.2 5.1 111.5 139.20
425.98777

18 54

+ − +
− =

Factor C:
�(C) = x3; C0 = 126.7, C1 = 31.9, C2 = –19.4 Æ

SS(C) = ( )22 2 2126.7 31.9 19.4 139.20

18 54

+ + −
− =

( )22 2126.7 31.9 19.4

18

+ + −
−  CF = 610.44333

The experimenter should note that it can be ascer-
tained from the above three SS’s that factor C has
the strongest impact on the mean of the response
variable y = RFH.

The Effect AB:
�(AB) = x1 + x2; to compute the value of (AB)0,

we have to add all cell subtotals whose �(AB) = 0
(mod 3). The FLCs that make �(AB) = 0 (mod 3) are

000, 001, 002, 120, 121, 122, 210, 211, 212 Æ (AB)0

= 11.7 – 1.1 – 15.9 + 17.5 + 8.6 + 4.2 + 14.4 + 6.4 –
11.0 = 34.80 (see Table 4). To compute the value of
(AB)1, all cell subtotals whose �(AB) = 1 (mod 3)
are added. The FLCs that make �(AB) = 1 (mod 3)
are 010, 011, 012, 100, 101, 102, 220, 221, 222 Æ
(AB)1 = 6.9 – 6.7 – 1.3 + 8.9 + 1.3 – 1.7 + 21.9 + 9.3
+ 12.4 = 51.0. To compute (AB)2, all cell subtotals
whose �(AB) = 2 (mod 3) are added. The FLCs that
make x1 + x2 = 2 (mod 3) are 020, 021, 022, 110,
111, 112, 200, 201, 202 Æ (AB)2 = 19.5 + 11.0 +
10.7 + 9.6 – 5.6 – 17.8 + 16.3 + 8.7 + 1.0 = 53.40

Æ SS(AB) = 
2 2 2 234.8 51.0 53.4 139.20

11.3733
18 54

+ + − =

(with 2 df).

The Effect AB2

�(AB2) = x1 + 2x2; to compute the value of
(AB2)0, all cell subtotals whose �(AB2) = 0 (mod 3)
are added. The FLCs that make �(AB2) = 0 (mod 3)
are 000, 001, 002, 110, 111, 112, 220, 221, 222 →
(AB2)0 = 11.7 – 1.1 – 15.9 + 9.6 – 5.6 – 17.8 + 21.9
+ 9.3 + 12.4 = 24.50. The FLCs that make �(AB2) =
x1 + 2x2 = 1 (mod 3) are 020, 021, 022, 100, 101,
102, 210, 211, 212 → (AB2)1 = 19.5 + 11.0 + 10.7 +
8.9 + 1.3 – 1.7 + 14.4 + 6.4 – 11.0 = 59.50. The
FLCs that make �(AB2) = x1 + 2x2 = 2 (mod 3) are
010, 011, 012, 120, 121, 122, 200, 201, 202 →
(AB2)2 = 6.9 – 6.7 – 1.3 + 17.5 + 8.6 + 4.2 + 16.3 +
8.7 + 1.0 = 55.20 → SS(AB2) =

2 2 2 224.5 59.5 55.2 139.20
40.48111

18 54

+ + − =  (with 2 df).

To illustrate the meaning of the above two sum of
squares, SS(AB) and SS(AB2), we will compute the
SS(A×B), having 4 df, by crossing factors A and B,
as depicted in Table 5. The A×B interaction in Table
5 has 3 × 3 = 9 cells (or FLCs), and thus Table 5 has
9 – 1 = 8 df, two of which are absorbed by factor A,
two by factor B, and the remaining 4 df belong to
the A×B interaction, i.e., SS(A) + SS(B) + SS(A×B) =

( ) ( ) ( )2 2 22 2 2 2 2 2

2

5.3 1.1 41.2 8.5 13.8 30.3 26.0 9.8 43.6

6

139.20

54

− + − + + + − + + + +
−

=

571.2600 Æ SS(A×B) = 571.2600 – SS(A) – SS(B)
Æ SS(A×B) = 571.2600 – 93.41777  – 425.98777  =
51.85444  (with 4 df).

Recall that SS(AB) = 11.37333  (with 2 df) and
SS(AB2) = 40.48111  (with 2 df), and hence SS(AB)
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+ SS(AB2) = 11.37333  + 40.48111  = 51.85444  =
SS(A×B). Thus, we have established that SS(A×B)
with 4 df decomposes into two orthogonal (i.e., ad-
ditive) components, SS(AB) and SS(AB2), each with
2 df because the design base is a prime number. The
above algebraic procedure of decomposing
SS(A×B) into SS(AB) and SS(AB2) is easier and less
confusing than the tabular procedure used in most
DOE books [such as Davies et al. (1967), Hicks
and Turner (1999), and Montgomery (2001a)]. Yates
(1937) referred to AB2 as the I(AB) component of
A×B and to AB as the J(AB) component of A×B.
Such classifications in statistical literature seem
somewhat arbitrary because from I(AB) one can-
not discern what its contrast function is, while us-
ing AB2 identifies the contrast function �(AB2) = x1

+ 2x2 immediately. The reader may wonder if a
component such as A2B exists. The answer is yes,
but �(A2B) = 2x1 + x2 Æ 2�(A2B) = 2(2x1 + x2) =
4x1 + 2x2 = x1 + 2x2 (modulus 3) = �(AB2) Æ �(A2B)
= 2 �(AB2) mod 3. Thus, the two components AB2

and A2B are identical. For this reason, when work-
ing in bases 3 and 5, we can always, without loss
of generality, keep the exponent of the first letter
of any effect as 1. Further, because A×B has 4 df
and each effect in base 3 has 2 df, A×B cannot
have more than two orthogonal 2-df components.
Thus, we have established that a two-way interac-
tion A×B in base-3 designs with 4 df decomposes
into two additive (or orthogonal) components, each
with 2 df, and as a result, to compute SS(AC) and
SS(AC2), it will be helpful to cross factors A and
C, just like Table 5 for factors A and B, and then
use the resulting A×C table (not shown herein) to
compute the nine subtotals needed to compute
SS(AC) and SS(AC2).

The Effect AC:
ξ(AC) = x1 + x3 → (AC)0 = 38.1 – 15.3 + 24.4 =

47.20; (AC)1 = 3.2 + 36.0 + 2.4 = 41.60; (AC)2 = –6.5

+ 4.3 + 52.6 = 50.40 → SS(AC) = 
2 2 247.2 41.6 50.4

18

+ +

– 
2139.20

54
 = 2.204444 (with 2 df).

The Effect AC2:
�(AC2) = x1 + 2x3 Æ (AC2)0 = 38.1 + 4.3 + 2.40 =

44.80; (AC2)1 = –6.5 + 36.0 + 24.4 = 53.90; (AC2)2 =
3.2 – 15.3 + 52.6 = 40.50 Æ SS(AC2) = 5.201111
(with 2 df) Æ SS(A×C) = 7.405555 . One can easily
verify from the A×C table that SS(A×C) = 711.266666
– SS(A) – SS(C) = 7.4055555  = SS(AC) + SS(AC2).

The Effect BC:
�(BC) = x2 + x3 Æ (BC)0 = 36.9 – 30.1 + 28.9 =

35.70; (BC)1 = 8.9 + 30.9 + 27.3 = 67.10; (BC)2 =
–16.6 – 5.9 + 58.9 = 36.40 Æ SS(BC) = 35.72111
(with 2 df).

The Effect BC2:
�(BC2) = x2 + 2x3 Æ (BC2)0 = 36.9 – 5.9 + 27.3 =

58.300; (BC2)1 = –16.6 + 30.9 + 28.9 = 43.20; (BC2)2

= 8.9 – 30.1 + 58.9 = 37.70 Æ SS(BC2) =
2 2 2 258.3 43.2 37.7 139.20

18 54

+ + −  = 12.64111  (with 2 df) Æ
SS(B×C) = 48.36222 . One can easily verify from the
B×C interaction table that SS(B×C) =

( ) ( ) ( )2 2 22 2 2 2 2 236.9 8.9 16.6 30.9 5.9 30.1 58.9 28.9 27.3

6

+ + − + + − + − + + +

– 
2139.20

54
 – SS(B) – SS(C) = 1084.79333  – 425.98777

– 610.44333  = 48.36222  Æ (B×C) = 48.36222  (with
4 df) = 35.72111  + 12.64111  = SS(BC) + SS(BC2).

Table 5
A×B Interaction Table

 B0 B1 B2 yi… 

A0 –5.30 –1.10 41.20 34.8 

A1 8.500 –13.80 30.30 = y23.. 25.0 

A2 26 9.80 43.60 79.4 

y.j.. 29.2 −5.1 115.1 y…. = 139.2 
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The Effect ABC:
�(ABC) = x1 + x2 + x3 Æ From Table 4, the value

of (ABC)0 is computed using the nine FLCs (000,
012, 021, 102, 120, 111, 201, 210, 222) that make
the contrast function �(ABC) = x1 + x2 + x3 = 0 (mod
3). Thus, (ABC)0 = 11.7 – 1.3 + 11.0 – 1.7 + 17.5 –
5.6 + 8.7 + 14.4 + 12.4 = 67.10; (ABC)1 = –1.1 + 6.9
+ 10.7 + 8.9 – 17.8 + 8.6 + 1.0 + 6.4 + 21.9 = 45.50;
(ABC)2 = –15.9 – 6.7 + 19.5 + 1.3 + 9.6 + 4.2 + 16.3

– 11.0 + 9.3 = 26.60 Æ SS(ABC) = 
2 2 267.1 45.5 26.6

18

+ +

–  
2139.20

54
 = 45.630 (with 2 df).

The Effect ABC2:
�(ABC2) = x1 + x2 + 2x3 → From Table 4, the value

of (ABC2)0 is computed using the nine FLCs that
make the contrast function �(ABC2) = x1 + x2 + 2x3 =
0 (mod 3). The nine FLCs that make the contrast
function �(ABC2) = x1 + x2 + 2x3 = 1 are 002, 021,
010, 100, 111, 122, 220, 212, 201. Thus, (ABC2)0 =
11.7 – 6.7 + 10.7 + 1.3 – 17.8 + 17.5 + 1.0 + 14.4 +
9.3 = 41.40; (ABC2)1 = –15.9 + 11.0 + 6.9 + 8.9 –
5.6 + 4.2 + 21.9 – 11 + 8.7 = 29.10; similarly, (ABC2)2

= –1.1 – 1.3 + 19.5 – 1.7 + 9.6 + 8.6 + 16.3 + 6.4 +

12.4 = 68.70 Æ SS(ABC2) = 
2 2 241.4 29.1 68.7

18

+ +
 –

2139.20

54
 = 45.64333  (with 2 df).

The Effect AB2C:
�(AB2C) = x1 + 2x2 + x3 → From Table 4, the value

of (AB2C)0 is computed using the nine FLCs that
make the contrast function �(AB2C) = x1 + 2x2 + x3 =
0 (mod 3). Thus, (AB2C)0 = 11.7 – 6.7 + 10.7 – 1.7
+ 9.6 + 8.6 + 8.7 – 11.0 + 21.9 = 51.80; (AB2C)1 =
–1.1 – 1.3 + 19.5 + 8.9 – 5.6 + 4.2 + 1.0 + 14.4 +
9.3 = 49.30; (AB2C)2 = –15.9 + 6.9 + 11.0 + 1.3 –
17.8 + 17.5 + 16.3 + 6.4 + 12.4 = 38.10 → SS(AB2C)

= 
2 2 251.8 49.3 38.1

18

+ +
 – 

2139.20

54
 = 5.91444  (with 2 df).

The Effect AB2C2:
�(AB2C2) = x1 + 2x2 + 2x3 → From Table 4, the

value of (AB2C2)0 is computed using the nine FLCs
that make the contrast function �(AB2C2) = x1 + 2x2

+ 2x3 = 0 (mod 3). Thus, (AB2C2)0 = 11.7 – 1.3 +
11.0 + 1.3 + 9.6 + 4.2 + 1.0 + 6.4 + 21.9 = 65.80;
(AB2C2)1 = –15.9 – 6.7 + 19.5 + 8.9 – 17.8 + 8.6 +
8.7 + 14.4 + 12.4 = 32.10; (AB2C2)2 = –1.1 + 6.9 +
10.7 – 1.7 – 5.6 + 17.5 + 16.3 – 11.0 + 9.3 = 41.30

→ SS(AB2C2) = 
2 2 265.8 32.1 41.3

18

+ +
 – 

2139.20

54
 =

33.71444  (with 2 df).

The above base-3 algebraic procedure using the
contrast function to compute the four orthogonal
components of the second-order (or three-way) in-
teraction A×B×C (with 8 df) is straightforward and
leaves no room for confusion and/or error. However,
the tabular procedure that has been used in statisti-
cal literature in the past 50 years can lead to confu-
sion and misclassification of the four orthogonal
components SS(ABC), SS(ABC2), SS(AB2C), and
SS(AB2C2) of SS(A×B×C). For example, due to the
use of tabular procedure the two components
SS(ABC2) and SS(ABC) atop p. 372 of Montgom-
ery (2001a) are reversed (albeit a minor
misclassification) because the value of SS(ABC2) is
584.11 (not 18.77 as reported) and the value of
SS(ABC) is 18.77. Similarly, the two components
SS(DOC) and SS(DOC2) near the bottom of p. 286
of Hicks and Turner (1999) are also reversed. The
value of SS(DOC) to two decimals is 0.30 (not 0.19
as reported) and the correct value of SS(DOC2) is 0.19.

The last 13 SS computations verify the fact that
SS(Model) = 1368.37333  (with 26 df) decomposes
into 13 orthogonal components, A, B, C, AB, AB2,
AC, AC2, BC, BC2, ABC, ABC2, AB2C, and AB2C2.
By orthogonal breakdown of SS(Model) is meant
that SS(Model) = SS(A) + SS(B) + SS(C) + SS(AB) +
SS(AB2) + SS(AC) + SS(AC2) + SS(BC) + SS(BC2) +
SS(ABC) + SS(ABC2) + SS(AB2C) + SS(AB2C2) =
1368.37333 .

It is paramount to note that if a complete factorial
design of any base b is orthogonal and balanced,
then the SS(Model) always decomposes into the SS
of main factors and the SS of interactions of all pos-
sible orders. For example, a complete orthogonal 43

factorial design with the same number of observa-
tions, n � 1, per FLC possesses the orthogonal de-
composition of SS(Model) = SS(A) + SS(B) + SS(C)
+ SS(A×B) + SS(A×C) + SS(B×C) + SS(A×B×C).
However, because the design base b = 4 is not a
prime number, the orthogonal decomposition of
SS(A×B) with 9 df into SS(AB), SS(AB2), and
SS(AB3) [or into SS(A2B3), SS(A3B2), and SS(A2B2)]
each with 3 df does not exist. We have verified that
the three components SS(AB), SS(AB2), and
SS(A3B2) are orthogonal in some 42 designs, but these
three components are not orthogonal to factors A
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and B and hence useless for confounding in blocks
or direct fractionalization in base 4. Thus, the Taguchi
L16(4

5) (Taguchi and Konishi 1987, p. 59) is an or-
thogonal array but its columns (3), (4), and (5) can-
not be generated from its columns (1) and (2) using
mod 4 algebra because 4 is not a prime number and
the orthogonal decomposition of A×B into Taguchi
components AB, A2B, and A3B is impossible. The
same cannot be said for the Taguchi L25(5

6) OA
because 5 is a prime number and the columns (3),
(4), (5), and (6) of L25(5

6) can for certain be gen-
erated from its columns (1) and (2) by first con-
verting to base-5 elements 0, 1, 2, 3, and 4 and
then generating column (3) from (1) + (2) (mod
5), column (4) from 2 × (1) + (2) (mod 5), column
(5) from 3 × (1) + (2) (mod 5), and generating
column (6) from 4 × (1) + (2) (mod 5) (Taguchi
and Konishi 1987, p. 64). When the design base
is a prime number, we need the decomposition of
A×B×C (or higher order interactions if the design
had more than three factors) into its orthogonal
components, each with (b – 1) df, only for frac-
tionalizing (and obtaining the corresponding alias
structure) and confounding in blocks. When the
design is a full (or complete) factorial with no
blocking, then the orthogonal decompositions of
A×B×C… into (b – 1) df effects is not needed and
perhaps quite useless. The complete ANOVA table
from Minitab for the above balanced orthogonal
design is provided below.

ANOVA: y versus A, B, C
Factor Type Levels Values
A fixed 3 0 1 2
B fixed 3 0 1 2
C fixed 3 0 1 2

Analysis of Variance for y

Source DF SS MS F P
A 2 93.418 46.709 10.24 0.000
B 2 425.988 212.994 46.68 0.000
C 2 610.443 305.222 66.89 0.000
A*B 4 51.854 12.964 2.84 0.044
A*C 4 7.406 1.851 0.41 0.803
B*C 4 48.362 12.091 2.65 0.055
A*B*C 8 130.902 16.363 3.59 0.006
Error 27 123.200 4.563
Total 53 1491.573

The last column of the above Minitab output shows
that factors A, B, C, and interactions A×B and
A×B×C are all statistically significant at the 5% level

because their P-values (or probability levels) are
all less than 0.05. The interaction B×C is signifi-
cant at the 5.5% level because its exact P-value (us-
ing Matlab) is given by α̂  = P(F4, 27 � 2.64971591)
= 0.054991546802 < 0.055. The smaller the P-value
is, the more significant the impact of the correspond-
ing effect is on the mean of response y.

Now that we have defined a foundation for bal-
anced orthogonal factorial designs, the next objec-
tive is to relate some of Taguchi’s OAs (orthogonal
arrays) to FFDs. The best source that lists nearly all
of Taguchi’s OAs is Taguchi Methods, Orthogonal
Arrays and Linear Graphs – Tools for Quality Engi-
neering, by G. Taguchi and S. Konishi (1987). This
source lists 18 OAs and two arrays ′L9 (221) and

′L27 (322) that are reported to be partially orthogonal.
Further, on p. iii of the introduction section Y. Wu
and S. Taguchi report that the most frequently used
arrays are: L16, L18, L27, and L12. Because it will be
nearly impossible to discuss all of Taguchi’s arrays,
we will relate his L8(Nf = 8), L16, and L27(Nf = 27) to
classical FFDs, discuss his L12 and L18, and by then
the reader should have a good grasp of orthogonal-
ity and how to actually design a FF experiment. The
reader is also referred to an excellent exposition by
Box, Bisgaard, and Fung (1988) that traces the ori-
gin of some of Taguchi’s OAs.

Note that out of the 18 OAs that are listed in Taguchi
and Konishi (1987), the L4(2

3), L8(2
7), L16(2

15),
L32(231), L64(263), L9(34), L27(313), L81(340), and
L25(5

6) are classical FFDs (or complete factorials). The
L16(4

5) OA can be used as a full factorial but when
used as a FFD its alias structure cannot be determined
because modulus 4 algebra cannot be used to gener-
ate columns (3), (4), and (5) of the L16(4

5) from its
columns (1) and (2) (see Taguchi and Konishi 1987,
p. 59). The L64(4

21) is an OA; however, as a FFD, its
alias structure is unknown to us because 4 is not a
prime number.

In addition to L12, ′L9 (221), and ′L27 (322), the re-
maining Taguchi’s OAs listed in Taguchi and S.
Konishi (1987) are mixed-level designs and, as such,
their alias structures are complicated and not known
to the authors. The partially OAs ′L9 (221) and ′L27 (322)
are difficult to analyze because in the case of ′L9 (221)
the design matrix, X, provides only 8 df for study-
ing effects yet it has 21 separate columns, each with
1 df. It is highly improbable that one could study 21
distinct 1-df effects separately from one another with
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nine runs that yield only 8 df. We ran Taguchi’s
′L9 (221) on Minitab’s GLM and Minitab reported rank

deficiency and positive SS’s only for eight effects,
as expected. The remaining 13 SS’s were reported
to have zero SS with zero df. Similarly, the ′L27 (322)
partially orthogonal design matrix provides 26 df
for studying different 2-df effects, but it has 22 col-
umns that need 44 df. Note that with a 26-df design
matrix in base 3 one can study a maximum of thir-
teen 2-df effects without aliasing them. We would have
to recommend against the use of these last two
Taguchi’s partially orthogonal arrays.

6. Some Commonly Used Taguchi’s OAs
(Taguchi L8(2

7) OA)
The subscript 8 in L8(2

7) implies that the design
matrix has Nf = 8 distinct rows (or distinct FLCs)
and thus provides 7 (= 8 – 1) df for studying seven
orthogonal effects, implying that the design matrix
can have a maximum of seven orthogonal columns.
Further, because 8 = 23, exactly three arbitrary col-
umns can be written, but the remaining four columns
must be obtained from the three arbitrary columns.

We use a variation of the procedure first introduced
by Kackar and Tsui (1990) by first displaying the
three arbitrary columns in Table 6 (using the base-2
elements 0 for the low level, 1 for the high level, and
later on converting to Taguchi’s notation of 1 and 2),
and then embedding a 23 full factorial into the L8

OA. The reader should bear in mind that for Taguchi’s
OAs, we are using the notation that the numbers in-
side the parentheses ( ) generally imply columns, that
is, (1) means column 1, (2) means column 2, and so
on. To generate column 3, we simply add columns 1
and 2 (modulus 2), that is, (3) = (1) + (2), mod 2. To
generate (5), we add (1) and (4) mod 2, that is, (5) =
(1) + (4), mod 2; similarly, (6) = (2) + (4), and (7) = (1)
+ (2) + (4) mod 2. The entire design matrix using this
procedure is provided in Table 7a. Note that in Table
7a it will be totally impossible to generate another
column (i.e., an eighth distinct column) that is orthogo-
nal to the above seven columns because the matrix
has only 7 df and each column (because of two lev-
els) carries exactly 1 df. To convert Table 7a to
Taguchi’s format, we simply place the third arbitrary
column in column 4 and the interaction (1) + (2) col-
umn in column 3 as shown in Table 7b.

Table 7b now shows that the interaction of col-
umns 1 and 2 is column 3, that is, if factor A is as-

signed to (1) and B is assigned to column 2, then
their interaction A×B must be assigned to (3) be-
cause the contrast function of A×B interaction is
�(AB) = x1 + x2 = (1) + (2), mod 2. Similarly, if factor
C is assigned to (4), then AC interaction must be
assigned to column (5) (if the experimenter desires
to study AC interaction). Further, the BC interaction
must be assigned to (6) because (2) + (4) = (6), mod
2, and ABC interaction must be assigned to (7) be-
cause (1) + (2) + (4) = (7), mod 2.

We next convert to Taguchi’s notation by trans-
forming 0 → 1 and 1 → 2 as displayed in Table 7c.
Table 7c is identical to the Taguchi’s OA on p. 1 of
Taguchi and Konishi (1987). So far, we have dis-
cussed how to construct the Taguchi L8 OA for a full
23 factorial. The next step is to construct the 24–1

FFD using Taguchi’s L8 OA. Here there are four fac-
tors, A, B, C, and D, that will occupy four out of the
seven columns. Although not necessary, it is usually
best to assign the main factors to the three arbitrary
columns, which are (1), (2), and (4). Because the
FFD 24–1 has only p = 1 generator, it is best to maxi-
mize resolution by selecting g = ABCD as the de-
sign generator. This means that we should assign
our factors to the columns of Taguchi’s L8 OA in
such a manner as to attain the alias structure A =
BCD, B = ACD, C = ABD, D = ABC, AB = CD, AC =
BD, and AD = BC. If our design matrix shows that D
= ABC, then a resolution R = IV is guaranteed. One
way to attain this maximum resolution is to assign A
to (1), B to (2), and C to (4), and because (1) + (2) +
(4) = (7), mod 2, we must assign factor D to column
(7); this assignment will ensure a resolution IV de-
sign because both effects ABC and D will occupy

Table 6
Three Arbitrary Columns of the Taguchi L8 OA in

Base-2 Notation

(1) (2) (4) 

0 

0 

0 

0 

0 

0 

1 

1 

0 

1 

0 

1 

1 

1 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 
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Table 7a
The Seven Orthogonal Columns of an L8 OA

(1) (2) (4) (1)+(2) (1)+(4) (2)+(4) (1)+(2)+(4) 

0 

0 

0 

0 

0 

0 

1 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

1 

1 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

1 

1 

0 

0 

1 

0 

1 

0 

0 

1 

1 

0 

1 

0 

0 

1 

 
Table 7b

The Seven Orthogonal Columns of Taguchi’s L8 OA
in Base-2 Notation

(1) (2) (3) (4) (1)+(4) (2)+(4) (1)+(2)+(4) 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

1 

1 

0 

1 

1 

1 

1 

0 

0 

1 

1 

1 

1 

0 

0 

0 

1 

0 

1 

1 

0 

1 

0 

0 

1 

1 

0 

1 

0 

0 

1 

 

Table 7c
The Seven Columns of Taguchi’s L8 OA

in His Notation

(1) (2) (3) (4) (5) (6) (7) 

1 

1 

1 

1 

1 

1 

2 

2 

1 

1 

2 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

2 

1 

1 

2 

2 

1 

2 

2 

2 

2 

1 

1 

2 

2 

2 

2 

1 

1 

1 

2 

1 

2 

2 

1 

2 

1 

1 

2 

2 

1 

2 

1 

1 

2 

 

column (7) and hence will be aliased. A minor defi-
ciency of using Taguchi’s L8 OA is to haphazardly
assign the four factors in the 24–1 FFD to any column
of his L8 array because the experimenter may disre-
gard Taguchi’s two linear graphs (see Taguchi and
Konishi 1987, p. 1) and indeed end up with the infe-

A = (1) B = (2) AB = (3) C = (4) AC = (5) D = (6) AD = (7) 
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1 

1 

1 

1 

1 

2 
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2 

1 

1 

1 

2 

1 

2 

2 

1 

2 

1 

1 

2 

2 

1 

2 

1 

1 

2 

 

Table 7d
The Inferior Assignment of Four Factors to a Taguchi L8 OA

rior resolution III design. If the experimenter follows
the column assignments of Taguchi’s linear graphs,
he or she is assured of a resolution IV design.

A poor choice of column assignments is depicted
in Table 7d as yielding a resolution III design but
does not comply with the guidelines set forth by
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Taguchi’s two linear graphs. To illustrate to the reader
that the FFD in Table 7d is indeed inferior, we revert
back to the actual base-2 notation, where 0 repre-
sents low and +1 represents the high level of a fac-
tor, as shown in Table 7e. Table 7e clearly shows
that the BCD effect cannot be assessed (or has been
sacrificed) to generate the seven orthogonal columns
of the L8 array, i.e., the generator of the design in
Table 7e is g = BCD and hence a resolution R = III
because g = BCD consists of three letters. Further,
the contrast function for g = BCD is �(BCD) = x2 +
x3 + x4, which shows that all eight FLCs inside the
brackets [0000 = (1), 0011 = cd, 0101 = bd, 0110 =
bc, 1000 = a, 1011 = acd, 1101 = abd, and 1110 =
abc] make the contrast function �(BCD) = x2 + x3 +
x4 equal to zero (mod 2). Hence, the design matrix
in Table 7e, which does not match either of Taguchi’s
two linear graphs, is the PB of the 24 1

III
−  FFD with the

generator g = BCD.
To attain a resolution IV design using Taguchi’s

L8 involving four factors, we must make the column

assignments depicted in Table 7f, which does follow
the column assignments permitted under either of
his two linear graphs. The FFD in Table 7f has a
resolution R = IV because the design generator g =
ABCD has four letters, i.e., the design matrix in Table
7f is the PB of a 4 1

IV2 −  FFD.
From the above discussions, it is concluded that

when designing a 24–1 FFD using Taguchi’s L8 OA,
the experimenter should follow the column assign-
ment guidelines set forth by either of the two linear
graphs given at the bottom of p. 1 of Taguchi and
Konishi (1987). Otherwise, he or she may attain a
resolution III for the constructed 24–1 design matrix.
Before we discuss Taguchi’s L16 OA, it is critical to
mention that the classical notation for base-2 designs
is –1 for the low level and +1 for the high level of a
factor. The use of –1 and +1 is appropriate because
when a factor is at two levels, only its linear effect
(or impact) on the mean of response variable y can
be assessed, and the contrast coefficients for any
two-level factor, say A, are simply –1 and +1. Thus,

Table 7e
The L8 OA in the Actual Base-2 Notation with R = III

A = (1)  B = (2) AB = (3) C = (4) AC = (5) D = (6) AD = (7) BCD 
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Table 7f

The Taguchi L8 OA in the Base-2 Notation with R = IV

A = (1)  B = (2) AB = (3) C = (4) AC = (5) AD = (6) D = (7) ABCD 
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contrast(A) = –1 × A0 + (+1) × A1, where A0 is the
grand subtotal of all responses for which factor A is
at its low level, and where A1 is the grand total of all
responses for which factor A is at its high level. In
classical FFD notation, the columns A, B, C, and D
of Table 7f will take the format presented in Table
7g. The signs under the generator g = ABCD are
obtained by simply multiplying the signs under A,
B, C, and D. Because all the signs under the ABCD
column are +1, the ABCD effect is also called the
identity, I, of the design matrix in Table 7g, and as a
result, D = +ABC. Note that the equality D = +ABC
can be multiplied through by D to obtain D2 = ABCD,
but Table 7g shows that if column D is squared, all
its eight entries will equal +1, and hence D2 = I. By
the identity element it is meant that any of the col-
umns (1) through (7) of Table 7g can be multiplied
by column I = ABCD without changing the column
signs of (1) through (7). The identity element for the

other 1
2  fraction (with eight FLCs) of the 4 1

IV2 −  FFD

in Table 7g is simply I = –ABCD so that the signs
under D will be obtained from –ABC. In other

words, to determine the eight FLCs in the other 1
2

fraction, simply multiply column (7) signs of Table
7g by –1 to obtain the FLCs [d, c, b, bcd, a, acd,
abd, abc]. Further, the orthogonality of Taguchi’s
L8(2

7) design matrix can be verified by the fact that
the dot product of any two columns, (1) through
(7), of Table 7g is zero because each column is sim-
ply an 8×1 vector.

The L8 OA is also very useful for designing a 5 2
III2 −

FF, which is a 1/4th fraction of a 25 factorial. Fur-
ther, it is impossible to generate a resolution IV de-

sign with k = 5 factors (similarly, it will be impos-
sible to generate a resolution V design with k = 6 or
7 factors in base 2; see Table 1a). For example, if
we use g1 = ABCD and g2 = BCDE as independent
design generators, then the third generator will be
(ABCD) × BCDE = AE, which is a resolution II de-
sign so that factors A and E will be aliased. To at-
tain an R = III, one possible assignment is A on
column 1 [A → (1) , B → (2), C → (3), D → (4), E
→ (5)]; there are now two columns left, and the
experimenter may not arbitrarily select two desired
first-order interactions to study. The only two-way
interactions that can be studied are BD = CE, both
on (6), and CD = BE, both on (7). These lead to
one of the three generators, g1 = BCDE. Because
both factor C and the AB interaction occupy (3), C
= AB implies that g2 = ABC, and hence g3 = ADE.
Note that the two linear graphs provided by Taguchi
for the L8 OA can be used for designing the 5 2

III2 −

FFD, but the experimenter is limited to study only
two related interactions, such as (AB, AC), (AB,
BC), (AC, AD), (AC, CD), … , or (CD, DE), and no
others. In other words, it will be impossible to em-
bed the seven effects, A, B, C, D, E, AB, and CD,
into an L8 OA without aliasing at least two of these
seven effects because the two interactions AB and
CD have no common letters.

The Taguchi L8 array can also be used as the 6 3
III2 −

and 7 4
III2 −  FFDs. In the case of 6 3

III2 − , we have six fac-
tors that will occupy six columns of an L8 array, and
the one interaction that can be studied should be de-
termined from Taguchi’s two linear graphs. The 7 4

III2 −

FFD matrix is saturated because every column will
be occupied by a separate main factor and thus no

Table 7g
The Taguchi L8 OA in the Classical FFD Notation with R = IV

A = (1) B = (2) AB = (3) C = (4) AC = (5) AD = (6) D = (7) I = ABCD FLC 
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two-way interaction can be studied separately from
the main factors (hence a resolution R = III design).
In summary, a Taguchi L8 OA can be used to accom-
modate a 23 complete factorial and any of the four
FFDs, 4 1

IV2 − , 5 2
III2 − , 6 3

III2 − , and 7 4
III2 − .

The Taguchi L16(2
15) OA

Because this OA has Nf = 16 distinct rows and 16
= 24, the exponent 4 shows that the design matrix
will have exactly four arbitrary columns (see pp. 3-
6 of Taguchi and Konishi 1987 for the design matrix
and the associated linear graphs) and provides 15 df
for studying distinct effects. Hence the matrix can
have up to and including 15 orthogonal columns.
The L16 on p. 3 of Taguchi and Konishi (1987) clearly
shows that columns (1), (2), (4), and (8) have been
written completely arbitrarily. As in the L8 array, the
L16 can easily be generated by first embedding a
complete 24 factorial in its 15 columns and using the
modulus 2 notation of 0 for the low and 1 for the
high level of a factor. It is paramount that the four
factors of the full 24 factorial be assigned to the four
arbitrary columns (1), (2), (4), and (8). Without loss
of generality, we assign factor A to (1), B to (2), C to

(4), and D to (8), as depicted in Table 8. Then col-
umn (3) of Table 8 is generated by adding columns
(1) and (2) mod 2; column (11) is generated by add-
ing columns (1), (2), and (8) mod 2 because the con-
trast function for the ABD effect is given by �(ABD)
= x1 + x2 + x4. In Table 8, if we replace all 0’s by 1’s
and all 1’s by 2’s, we will obtain the Taguchi L16 OA
in his own notation. In addition to a 24 full factorial,
a Taguchi L16 array can be used to accommodate the
FFDs 5 1

V2 − , 6 2
IV2 − , 7 3

IV2 − , 8 4
IV2 − , 9 5

III2 − , 10 6
III2 − , 11 7

III2 − ,
12 8
III2 − , 13 9

III2 − , 14 10
III2 − , and 15 11

III2 − . This last FFD,
15 11
III2 − , is saturated because every column of the L16

OA is occupied by a main factor, and consequently,
each effect has 211 – 1 = 2047 aliases (this is due
to the fact that there are 2047 blocks each with 16
FLCs that are not studied). The three linear graphs
(1a, b, and c) on p. 4 of Taguchi and Konishi (1987)
pertain to a 5 1

V2 − FFD, and Table 8 shows that resolu-
tion V is obtained by simply assigning the fifth fac-
tor, E, to column (15) so that E = ABCD Æ g =
ABCDE. In this case, the experimenter may also as-
sign the five main factors and the 10 two-way inter-
actions according to the linear graphs 1b and c to

Table 8
Taguchi’s L16 OA Generated Using the Base-2 Notation of 0 and 1

  A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD 

Run 
No. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

3 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

4 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 

5 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

6 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 

7 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 

8 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 

9 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

10 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

11 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 

12 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 

13 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 

14 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 

15 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 

16 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
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attain a resolution V design. The linear graphs 2a, b,
and c on p. 4 of Taguchi and Konishi (1987) will
generate a 7 3

III2 −  FFD, thus the linear graphs 2a, b,
and c are deficient in this case because they yield
only a resolution III design. Because the L16 meets
Webb’s minimum required number of runs of 2k =
14, it may be possible to generate a resolution IV
design by selecting the independent generators g1 =
ABCE, g2 = BCDF, and g3 = ABFG. Note that this set
of generators does yield a resolution IV design be-
cause the other four generators are g4 = ADEF, g5 =
CEFG, g6 = ACDG, and g7 = BDEG, each of which
has four letters. However, the experimenter will have
to follow the guidelines set forth by Bulington, Hool,
and Maghsoodloo (1990) to attain a resolution IV
design using Taguchi’s L16 OA, but must assign a
three-way interaction to column (1). Similarly, a 6 2

IV2 −

FFD can be embedded into a Taguchi L16 OA, but
the experimenter must assign two three-way inter-
actions to two of the columns. The linear graphs 3,
4, and 6a, b, and c on pp. 5-6 of Taguchi and
Konishi (1987) produce a 8 4

III2 − FFD, but it is pos-
sible to generate a resolution IV design using the
independent generators g1 = ABEF, g2 = ACEG, g3 =
ADEH, and g4 = ACFH and assigning A to column
(1) of an L16, B to (3), C to (5), D to (7), E to (9), F to
(11), G to (13), and assigning H to column (15) of
an L16 Taguchi OA. The linear graphs 5a, b, and c
produce a 10 6

III2 −  FFD, and because 2k = 20 > 16, it is
impossible to generate a resolution IV design with
16 runs involving 10 factors, i.e., the five remain-
ing columns of an L16 do not provide sufficient df
(or room) for the 10C2 = 45 interactions to be placed
two at a time (up to six at a time) on the remaining
five columns.

Y. Wu and S. Taguchi (p. iii of the introduction to
Taguchi and Konishi 1987) state that the L12(2

11),
L16(2

15), L18(2×37), and L27(3
13) are the most com-

monly used of Taguchi’s OAs. We have discussed
how to generate an L16(2

15), and the L12(2
11) Taguchi

OA is a modification of the Plackett-Burman design
(for more information see Montgomery (2001a), pp.
343-345), where every pair of columns is orthogo-
nal in the sense that the pairs (1, 1), (1, 2), (2, 1),
and (2, 2) appear exactly three times together in any
two columns of the L12. We defer the discussion of
L18(2×37) OA before we discuss Taguchi’s param-
eter design. Thus, we next discuss Taguchi’s L27 OA.

The Taguchi L27(3
13) OA

The L27(3
13) is an OA of 27 distinct FLCs in base

3; because the Nf = 27 distinct rows provide 26 df
for studying different effects and each column of an
L27 has 2 df (because of three levels), this design
matrix can be used to examine a maximum of 26/2
= 13 two-df effects. Thus, the L27 can be used to
accommodate a full 33 factorial and the FFDs 4 1

IV3 − ,
5 2
III3 − , 6 3

III3 − , 7 4
III3 − , 8 5

III3 − , 9 6
III3 − , 10 7

III3 − , 11 8
III3 − , 12 9

III3 − ,

and 13 10
III3 − . The last FFD, 13 10

III3 − , is saturated in the
sense that every 2-df column of the L27 array is oc-
cupied by a 2-df main factor and each effect will
have 310 – 1 = 59048 aliases. As in the case of L16,
the simplest way of generating the L27 is to embed a
33 complete factorial design into its 13 columns. The
exponent 3 (in 33 = 27) implies that the levels of the
three factors, A, B, and C, can be written arbitrarily
in three columns. The three arbitrary columns of the
Taguchi L27 are columns (1), (2), and (5) (see
Taguchi and Konishi 1987, pp. 37-38). Column (1)
is arbitrary because it consists of nine 1’s (low level
of factor A), followed by nine 2’s (the middle level
of factor A), and then nine 3’s (the high level of fac-
tor A). Similarly, column (2) was arbitrarily written
as three 1’s, three 2’s, followed by three 3’s, and this
pattern is repeated twice more, and column (5) is
written arbitrarily as levels 1, 2, and 3 of factor C
and repeated eight more times. Because two-way
interactions, such as A×B, have 4 df, then each two-
way interaction can be embedded in two 2-df col-
umns of an L27 OA. For example, the A×B effect will
occupy columns (3) and (4) of the L27, assuming
that A is on column (1) and B is on column (2). As
was illustrated in section 5, the A×B interaction de-
composes into two orthogonal components, AB and
AB2, but Taguchi replaces the component AB2 by
the statistically unconventional component A2B.
Converting to base-3 notation of 0 for low, 1 for
middle, and 2 for the high level of a factor, it is noted
that the contrast function for A2B is �(A2B) = 2x1 +
x2 = 2�(AB2) because in base-3 algebra, 4 = 1 modu-
lus (3), and thus the two components A2B and AB2

represent the same effect. Column (3) of L27 is occu-
pied by the AB component of A×B, and because the
contrast function of AB is �(AB) = x1 + x2, column
(3) is generated by adding columns (1) and (2) modu-
lus 3. Similarly, column (4) is generated by adding 2
× (1) + (2) (mod 3) because �(A2B) = 2x1 + x2. The
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Microsoft Excel Mod function was used to gener-
ate the entire L27 OA given in Table 9. If 0 is re-
placed by 1, 1 by 2, and 2 by 3 in Table 9, Taguchi’s
L27 OA in his own notation is obtained, as shown
on p. 37 of Taguchi and Konishi (1987). The table
of interactions between two columns (TOIBTC) on
p. 38 of Taguchi and Konishi (1987) assisted in

determining which second-order effect would oc-
cupy which column of the L27 OA. The L27 OA can
provide a resolution IV design in only one instance,
namely for the FFD 4 1

IV3 − , and to ensure that an R =
IV is attained, all the experimenter has to do is as-
sign the fourth factor D to one of the columns (9),
(10), (12), or (13), while factors A, B, and C must

Table 9
Generating Taguchi’s L27 Using Microsoft Excel Mod 3 Function

 A B AB A2B C AC A2C BC ABC A2BC B2C AB2C A2B2C 

Run 
No. 

(1) (2) (3) (4) (5) (6) ('7) (8) (9) (10) (11) (12) (13) 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 1 1 1 1 1 1 1 1 1 

3 0 0 0 0 2 2 2 2 2 2 2 2 2 

4 0 1 1 1 0 0 0 1 1 1 2 2 2 

5 0 1 1 1 1 1 1 2 2 2 0 0 0 

6 0 1 1 1 2 2 2 0 0 0 1 1 1 

7 0 2 2 2 0 0 0 2 2 2 1 1 1 

8 0 2 2 2 1 1 1 0 0 0 2 2 2 

9 0 2 2 2 2 2 2 1 1 1 0 0 0 

10 1 0 1 2 0 1 2 0 1 2 0 1 2 

11 1 0 1 2 1 2 0 1 2 0 1 2 0 

12 1 0 1 2 2 0 1 2 0 1 2 0 1 

13 1 1 2 0 0 1 2 1 2 0 2 0 1 

14 1 1 2 0 1 2 0 2 0 1 0 1 2 

15 1 1 2 0 2 0 1 0 1 2 1 2 0 

16 1 2 0 1 0 1 2 2 0 1 1 2 0 

17 1 2 0 1 1 2 0 0 1 2 2 0 1 

18 1 2 0 1 2 0 1 1 2 0 0 1 2 

19 2 0 2 1 0 2 1 0 2 1 0 2 1 

20 2 0 2 1 1 0 2 1 0 2 1 0 2 

21 2 0 2 1 2 1 0 2 1 0 2 1 0 

22 2 1 0 2 0 2 1 1 0 2 2 1 0 

23 2 1 0 2 1 0 2 2 1 0 0 2 1 

24 2 1 0 2 2 1 0 0 2 1 1 0 2 

25 2 2 1 0 0 2 1 2 1 0 1 0 2 

26 2 2 1 0 1 0 2 0 2 1 2 1 0 

27 2 2 1 0 2 1 0 1 0 2 0 2 1 
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be embedded in the three arbitrary columns (1),
(2), and (5).

As an example, suppose we wish to study six fac-
tors, A, B, C, D, E, and F, each at three levels and the
two-way interactions C×D, C×E, and D×E. These six
factors and three two-way interactions will need 2 ×
6 + 3 × 4 = 24 df and will occupy 24/2 = 12 of the 13
columns of an L27 OA, and the remaining column
can be used to study one more effect that can be
determined after column assignments are completed.
Suppose factor C is assigned to column (1), D to (2),
then CD Æ (3), C2D will have to be assigned to col-
umn (4). Assigning E to (5), then Table 9 shows that
CE will have to be embedded onto (6), C2E onto
column(7), DE onto (8), and D2E to column (11).
These assignments leave columns (9), (10), (12), and
(13) available. Without loss of generality, factor A
may be assigned to column (9), factor B to (10), and
factor F to (12), which leaves only column (13)
empty. The TOIBTC on p. 38 of Taguchi and Konishi
(1987) now shows that (1) × (12) = (11) & (13), and
hence column (13) may be used to study one com-
ponent of C×F, namely, CF or C2F. Microsoft Excel
is again used to verify that (1) + (12) = (13) mod 3,
and hence the CF component of C×F can also be
studied. The question that now arises is, “What is
the alias structure of the above 6 3

III3 −  FFD?” Because
three independent generators are needed out of the
total of (33 – 1)/(3 – 1) = 13 generators and the
Taguchi L27 always yields the PB of a FFD, the
TOIBTC on p. 38 of Taguchi and Konishi (1987) is
used to assist in identifying the alias structure. This
table shows that (13) = (2) × (10) and thus CF = BD,
or C3F3 = BC2DF2, which shows that one of the de-
sign generators is g1 = BC2DF2 because C3F3 = C0F0

= I. Next, the TOIBTC on p. 38 of Taguchi and
Konishi (1987) shows that (2) × (6) = (9), or (12).
Thus, CDE = A, or g2 = AC2D2E2. Lastly, the same
TOIBTC of Taguchi and Konishi (1987) and our
Table 9 show that 2(9) × (10) = (1), which yields
A2B = C, or g3 = AB2C. Thus, the other 10 genera-
tors are

g4 = g1 × g2 = BC2DF2 × AC2D2E2 = ABCE2F2,

g5 = 2
1g  × g2 = B2CD2F × AC2D2E2 = AB2DE2F,

g6 = g1 × g3 = BC2DF2 × AB2C = ADF2,

g7 = 2
1g  × g3 = B2CD2F × AB2C = ABC2D2F,

g8 = g2 × g3 = AC2D2E2 × AB2C = ABDE,

g9 = g2 × 2
3g  = AC2D2E2 × A2BC2 = BCD2E2,

g10 = g1 × g2 × g3 = BC2DF2 × AC2D2E2 × AB2C =

ACEF,

g11 = 2
1g  × g2 × g3 = B2CD2F × AC2D2E2 × AB2C =

AB2C2D2EF2,

g12 = g1 × 2
2g  × g3 = BC2DF2 × A2CDE × AB2C =

CD2EF2, and

g13 = 2
1g  × 

2
2g  × g3 = B2CD2F × A2CDE × AB2C =

BEF

Note that the minimum length word among the
above 13 generators in the defining relation I is three
and hence a Resolution III design. Further, because
the FFD 6 3

III3 −  is a 1/27th fraction and only one block
out of the 27 blocks is studied and 26 blocks are left
out of experimentation, each effect must have 33 – 1
= 26 aliases. For example, to obtain the 26 aliases of
factor A, we either multiply A by the 13 generators
and also multiply A by the 13 generators squared
modulus 3. Or, we may multiply A and A2 by the 13
generators modulus 3 using the statistical convention
that the first letter must have an exponent of 1. Fol-
lowing this procedure, the 26 aliases of factor A are

A = ABC2DF2 = AB2CD2F = ACDE = CDE = ABC2 =

BC2 = AB2C2EF = BCE2F2 = ABD2EF2 = BD2EF2 =

AD2F = DF2 = AB2CDF2 = BC2D2F = AB2D2E2 = BDE

= ABCD2E2 = AB2C2DE = AC2E2F2 = CEF =

ABCDE2F = BCDE2F = ACD2EF2 = AC2DE2F = ABEF

= AB2E2F2.

The Taguchi L18(2×37) OA
The L18 is the most commonly used mixed-level

Taguchi’s OA and can accommodate one two-level
factor and a maximum of seven three-level factors.
Because the total number of distinct runs Nf = 18 =
21 × 32, summing the exponents 1 + 2 = 3 implies
that exactly three columns are written completely
arbitrarily [namely columns (1), (2), and (3)]. The
design matrix provides 18 – 1 = 17 df for studying
effects, where the two-level factor A on column (1)
will absorb 1 df, and the seven three-level factors,
B, C, D, E, F, G, and H, each absorb 2 df. Thus, the
eight factors altogether will absorb 15 out the pos-
sible 17 df that the design matrix provides. This
leaves two unused df that can be used to study the
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interaction only between columns (1) and (2). As-
suming, without loss of generality, that A is the two-
level factor, the experimenter must embed the
three-level factor whose interaction with factor A he
or she would like to examine in column (2). Later it
will be shown in a parameter design example that
the only possible interaction that can be studied is
(1)×(2), but this interaction cannot be embedded into
the design matrix. The question that now arises is
how Dr. Taguchi developed the other five columns
(4, 5, 6, 7, and 8) of the L18 so that the design matrix
is orthogonal. As stated earlier, the first three col-
umns are written completely arbitrarily. Then, we
need to address the construction of columns (4)
through (8) of the L18. The reader must be informed
that we are not sure how G. Taguchi developed his
L18 OA, and what follows is our explanation. To this
end, let us define a group of three 3×1 vectors, G1 =

1

2

3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = [ ]1 2 3 ′ , ′G2  = 2 3 1[ ], and ′G3  = 3 1 2[ ] ,

where prime is used to denote matrix transpose. Note

that column (3) of L18 is arbitrarily written as
′ ′ ′ ′ ′ ′[ ]′G G G G G G1 1 1 1 1 1 . Next, the above three

vectors are translated by subtracting 2 from each el-
ement so that G1 transforms to G4 = [ ]1 0 1 ′− , G2

transforms to G5 = [ ]0 1 1 ′− , and G3 translates to
6G′  = 1 1 0−[ ] . (Note that G4 is the linear contrast

in base 3 for a quantitative factor.) It is well known
that two vectors are orthogonal if and only if their
dot product is zero. Clearly, ′ ×G G4 5  = −[ ]1 0 1  ×
0 1 1−[ ]′  = –1 = ′ ×G G64  = ′ ×G G5 6 , which implies

that the vectors G1 and G2 are not orthogonal, G1

and G3 are not orthogonal, and neither are G2 and
G3. Further, ′ ×G Gi i  = +2 for all i = 4, 5, and 6. A
close examination of the fourth column of L18 on p.
36 of Taguchi and Konishi (1987) reveals that col-
umn (4) can be written as (4) =

′ ′ ′ ′ ′ ′[ ]′G G G G G G1 1 2 3 2 3  and column (5) of L18 is
simply (5) = ′ ′ ′ ′ ′ ′[ ]′G G G G G G1 2 1 3 3 2 . If we now
take the dot product of column (4) with (5) after the
translation, we obtain ′ ′ ′ ′ ′ ′[ ]G G G G G G4 4 5 6 5 6  ×

G

G

G

G

G

G

4

5

4

6

6

5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 = 2 – 1 – 1 + 2 – 1 – 1 = 0, which shows that

columns (4) and (5) of L18 are orthogonal. Another
pattern that is obvious in the L18 is that columns (3)
through (8) have their first three rows as the 3×1
vector G1. To generate column (6), we have to find
another permutation of ′ ′ ′ ′ ′ ′[ ]′G G G G G G1 1 2 2 3 3 ,
keeping G1 in the first position, which is orthogonal
to both columns (4) and (5). One such permutation
is ′ ′ ′ ′ ′ ′[ ]′G G G G G G1 2 3 2 1 3 , which comprises col-
umn (6) of Taguchi’s L18. Similarly, two other per-
mutations of ′ ′ ′ ′ ′ ′[ ]′G G G G G G1 1 2 2 3 3  that are
orthogonal to columns (3), (4), (5), and (6) are col-
umns (7) = ′ ′ ′ ′ ′ ′[ ]′G G G G G G1 3 2 2 3 1  and (8) =

′ ′ ′ ′ ′ ′[ ]′G G G G G G1 3 3 1 2 2  of Taguchi’s L18 OA. The
last five columns of the L18 Taguchi OA in terms of
the 3×1 vectors G1, G2, and G3 are given below and
denoted as the matrix G.

4 5 6 7 8

1 1 1 1 1

1 2 2 3 3

2 1 3 2 3

3 3 2 2 1

( ) ( ) ( ) ( ) ( )

=G

G G G G G

G G G G G

G G G G G

G G G G G

G22 3 1 3 2

3 2 3 1 2

G G G G

G G G G G

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The above developments indicate that the L18 is not
unique in the sense that there are other permutations
of the last five rows of the matrix G that yield an L18

orthogonal array. We have identified all other G
matrices, of which there are 11, that are somewhat
distinct from the above Taguchi’s layout but will
also yield an L18 OA. The other 11 are listed atop
the next page. Note that the orthogonality of the 11
alternatives to Taguchi’s L18 was verified by first
replacing column (1) by nine –1’s followed by nine
+1’s, then subtracting 2 from every element of the
remaining seven columns so that all eight columns
summed to zero, and finally computing the result-
ing X′×X matrix. In all the 11 alternative cases, the
resulting 8×8 matrix X′×X was diagonal, and
Minitab’s GLM also verified that all 11 design ma-
trices were orthogonal.

7. Taguchi’s Parameter Design
A Taguchi parameter design experiment consists

of two orthogonal arrays. The inner array accom-
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modates the controllable factors, while the noise (or
uncontrollable) factors are embedded into the outer
orthogonal array. The objectives of a PDE (parameter
design experiment) for a nominal dimension is three-
fold, the last two of which are optimization steps:

1. To classify the design factors into three catego-
ries of Control, Signal, and Weak factors. A Con-

trol factor is one that impacts process variabil-
ity and may or may not impact the process mean
response. A Signal factor significantly impacts
the mean response but has no (or trivial) im-
pact on the variability of the response. A Weak
factor has no impact on the mean or variability
of the response.

( ) ( ) ( ) ( ) ( )
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2 3 3 2 1
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2. To use the levels of the Control factors to re-
duce process variability.

3. To use the levels of Signal factors to move  the
mean response toward the ideal target m.

When the response, y, is either STB or LTB, QI can
be accomplished in one step by increasing the sig-
nal-to-noise ratio (which in turn lowers the signal
for an STB and heightens it for an LTB QCH), and
as a result the experimenter can accomplish objec-
tives (2) and (3) above in one step by setting the
process conditions at those levels of influential fac-
tors that maximize Taguchi’s S/N ratio, measured in
decibels as defined below.

( )

( )

db 10

n
2

10 i
i 1

n
2

10 i
i 1

10 log MSD

10 log y n , if y is STB

1
10 log 1 y , if y LTB

n

=

=

η = − =

⎧ ⎛ ⎞− ∑⎜ ⎟⎪ ⎝ ⎠⎪
⎨

⎡ ⎤⎪− ∑⎢ ⎥⎪ ⎣ ⎦⎩

It should be highlighted that classical design of
experiments until the mid 1970s emphasized meth-
ods that improve only the mean response, and hence
one OA would generally be sufficient, and in some
cases more efficient, to carry out QI only when the
response y is STB or LTB. However, when the re-
sponse is of nominal type, the variability of response
plays a very important role in QI, and hence an outer
OA is needed to embed the noise factors that cause
process variability. In a PDE, the experimenter in-
tentionally induces noise into the response y through
the use of an outer array and then takes advantage
of the interactions between the noise factors in the
outer array with the controllable factors in the inner
array to assess and then diminish the impact of noise
on the response y (using appropriate S/N ratios). The
impact of noise factors is diminished by selecting
those levels of the controllable influential factors em-
bedded in the inner OA that are less sensitive to noise
factors embedded in the outer array, thereby pro-
ducing a more robust product.

To illustrate Taguchi’s PDE, we make use of a
quality engineering experiment published by the
American Supplier Institute (ASI), Inc. (1984) from
its Seminar Series B. The nominal response variable,
y, is the pull-force of ignition cables measured in
pounds (lb). The specifications on y are 40 ± 15 lb,
that is, the ideal target for pull-force is m = 40 lb and

the manufacturing (semi-) tolerance is � = 15 lb. The
experimental layout and the resulting data are dis-
played in Table 10. The controllable factors are A =
extrusion tooling (two levels: type 1 and type 2), B
= line speed (three levels: slow, medium, and fast),
C = water through temperature (low, medium, high),
D = insulation material (types 1, 2, and 3), E = CV
stream pressure (low, medium, and high), F = CV
speed (slow, medium, fast), G = braid tension (low,
medium, high), and H = release coating (types 1, 2,
and 3). The noise factors are Sample (two cables
selected at random), P = position within each of the
two sampled cables.

Note that we have borrowed, with permission, the
experimental layout and the data therein from the
American Supplier Institute, but all the analyses per-
formed in Microsoft Excel, Matlab, and a Taguchi
software belong to the authors. Table 10 shows that
run number 1, where all factors were at their low
levels, yielded much better results than run 2 be-
cause all four measurements of pull-force in run 1
were within the spec interval (LSL = 25, USL = 55
lb). At run 2, where factors A and B were at low
while the other six factors were at their medium lev-
els, the sample 1 at both positions gave two noncon-
forming measurements (10 and 15 lb). Table 11 gives
the summary statistics for each run (i = 1, 2, …, 18),

where the grand total 
18 4

.. ij
i=1 j 1

y y 3779
=

= ∑∑ = . In Table 11,

the first-row statistics were computed as 1.y  = (30 + 40

+ 38 + 49)/4 = 39.25, S1 = ( )
4 2

1j
j 1

1
y 39.25

3 =
∑ −  =

7.80491, and �1 = 10×log10 
2
1.
2
1

y 1

S 4

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 = 10×log10

(25.0397) = 13.9863, where the subscript i extends
over the FLCs 1 through 18 and j extends over the
four observations in the outer L4 OA. The last col-
umn gives the natural logarithm of the i-th run stan-
dard deviation.

We next use the summary statistics in Table 11 to
obtain a response table (RT) for total S/N ratios that
will help identify the factors that control process
variation. Microsoft Excel was used to obtain the RT
for S/N ratios, which is presented in Table 12a. Be-
cause this is a mixed-level design, only MSs (mean
squares) can be compared against each other to as-
sess their relative influence on the S/N ratio of the
response y. Table 12a clearly shows that factor H
has the largest impact on the S/N ratio of the pull-

(4)
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force and thus was assigned a rank of 1, and factors
A, C, and E have relatively trivial impact on the S/N
of the pull-force. The MSs in Table 12a indicate that
factors H, B, D, and G are, in that order, relatively
the most influential from the standpoint of process
variation, and factor F moderately influences S/N
ratio. Thus, the Control factors in the order of their
strength are H, B, D, G, and F. Our experience indi-
cates that most quantitative Control factors have a
quadratic impact on the response and most Signal
factors have a linear impact on y (but not always).

Before deciding where to set the levels of these
five Control factors, the reader should be reminded
that the L18 OA provides sufficient df to study only
the interaction (1)×(2) = A×B. Factors A and B are
crossed to exhibit their interaction in Table 12b.
From Table 12b, it is deduced that the effect of fac-

tor B on the S/N of y at A1 is positively quadratic
(i.e., convex upward) given by Contrast(BA1) =
48.15217 – 2(36.98029) + 54.34445 = 28.5360,
and the quadratic effect of B at A2 is given by
Contrast(BA2) = 40.40491 – 2(31.19984) +
55.08833 = 33.0936. Because these two quadratic
contrasts are quite similar, factors A and B do not
much interact in impacting the S/N ratio of the re-
sponse y. From Table 12b, the SS of A×B is given
by SS(A×B)� =

2 2 2 2 2 248.15217 36.98029 54.34445 40.40491 31.19984 55.08833

3

+ + + + + −

2266.1700

18
 – SS(A�) – SS(B�) = 6.58524 Æ MS(A×B)�

= 3.292620, which again confirms that A and B do
not materially interact in impacting the variability of
pull-force on a relative basis [see Table 12a that
shows MS(H�) = 81.7904].

Table 10
PDE Layout from ASI, Inc. (reprinted with permission)

L18 Inner OA  L4 Outer OA Taguchi’s 

L18 OA A B C D E F G H Sample 1 Sample 2 

Columns (1) (2) (3) (4) (5) (6) (7) (8)  P1 P2  P1 P2 

Run No.           

1 1 1 1 1 1 1 1 1 30 lb 40  38 49 

2 1 1 2 2 2 2 2 2  10 15  25 25 

3 1 1 3 3 3 3 3 3  49 53  53 55 

4 1 2 1 1 2 2 3 3  62 58  52 68 

5 1 2 2 2 3 3 1 1  30 50  49 62 

6 1 2 3 3 1 1 2 2  10 25  29 36 

7 1 3 1 2 1 3 2 3  58 42  41 50 

8 1 3 2 3 2 1 3 1  28 29  32 31 

9 1 3 3 1 3 2 1 2  110 74  94 115 

10 2 1 1 3 3 2 2 1  76 88  66 103 

11 2 1 2 1 1 3 3 2  52 37  54 59 

12 2 1 3 2 2 1 1 3  55 79  62 98 

13 2 2 1 2 3 1 3 2  5 35  16 42 

14 2 2 2 3 1 2 1 3  52 96  79 91 

15 2 2 3 1 2 3 2 1  50 70  56 65 

16 2 3 1 3 2 3 1 2  15 20  18 21 

17 2 3 2 1 3 1 2 3  51 62  59 70 

18 2 3 3 2 1 2 3 1  77 83  66 74 
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We are now in a position to show the only inter-
action that an L18 OA allows to be studied is (1)×(2).
The total SS from the standpoint of S/N ratios is given
by SS(Total�) = 13.98632 + 7.78152 + 26.38442 + …

+ 20.50192 – 
2266.1700

18
 = 583.77100 (with 17 df).

However, SS(A�) + SS(B�) + SS(C�) + SS(D�) + SS(E�)
+ SS(F�) + SS(G�) + SS(H�) = 577.18575 (with 15
df), showing that the value of the difference
SS(Total�) – 577.18575 = 6.58524 is exactly equal
to SS[(1)×(2)]. If we compute the SS((1)×(j)) for any
j � (2), we will not obtain the value of 6.58524 re-
quired for the orthogonality of the L18 design matrix.

Because maximizing the S/N ratio is equivalent to
minimizing variance (and simultaneously maximizing
the mean), the subtotals Li (i = 1, 2, 3) for the five
Control factors B, D, F, G, and H in response Table

12a show that their optimal levels are given by
B3D3(1)F3G3H3(1). If (A×B)� were relatively significant,
then we would have to simultaneously choose the op-
timal levels of factors A and B from the interaction Table
12b. The optimum levels B3D3(1)F3G3H3(1) provide only
four choices, B3D3F3G3H3, B3D1F3G3H3, B3D3F3G3H1,
and B3D1F3G3H1 for the five Controls B, D, F, G, and
H at which the cables should be manufactured to mini-
mize process variation. The reader should note that
some authors use graphical methods to identify the
influential effects and their optimal levels, but graphi-
cal methods work only for quantitative factors while
in the present experiment factors A, D, and H are quali-
tative. The RT method used herein (first recommended
by Dr. Taguchi and ASI) works well in all cases and is
also our recommended choice. Our next step consists
of determining which one of the remaining three de-

Table 11
Summary Statistics for the 18 Runs of Table 10

 
L18 Inner OA 

Run No. 

Mean of 
Run i 

i .y  

Standard 
Deviation 

Si 

Signal-to- 
Noise Ratio 

iη  

Natural 
log of Si 

ln(Si) 

1 39.25 7.804913 13.9863 2.05475 

2 18.75 7.5 7.7815 2.0149 

3 52.5 2.516611 26.3844 0.92291 

4 60 6.733003 18.9852 1.90702 

5 47.75 13.22561 11.0671 2.58215 

6 25 10.98484 6.9281 2.39652 

7 47.75 7.932003 15.5617 2.07091 

8 30 1.825742 24.3096 0.60199 

9 98.25 18.48197 14.4731 2.9168 

10 83.25 15.94522 14.3151 2.76916 

11 50.5 9.469248 14.5012 2.24805 

12 73.5 19.19201 11.5887 2.95449 

13 24.5 17.0196 2.6060 2.83437 

14 79.5 19.67232 12.0632 2.97921 

15 60.25 8.958236 16.5306 2.19257 

16 18.5 2.645751 16.8702 0.97296 

17 60.5 7.852813 17.7163 2.06087 

18 75 7.071068 20.5019 1.95601 
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sign factors, A, C, and E, have large impacts on the
mean of y and using their levels to adjust the mean
toward the ideal target of m = 40 lb.

To ascertain which design factors have nontrivial
impact on the mean, we have made a RT for the
mean of pull-force, which is provided in Table 13a.
In Table 13a, rank 5 is missing because the ANOVA
table from Minitab, given below, shows that A×B is
the fifth most statistically significant effect that af-
fects the mean response, as illustrated in Table 13b.
Table 13b clearly shows that the impact of factor B
on the mean response is positively linear at the low
level of A, but its impact has a negative slope at A2,
and hence factors A and B interact in impacting the
mean response.

General Linear Model: y vs. A, B, A*B, C, D, E,
F, G, H, Sample, Position, Sample*Position
Factor Type Levels Values
A fixed 2 1, 2,
B fixed 3 1, 2, 3
C fixed 3 1, 2, 3
D fixed 3 1, 2, 3
E fixed 3 1, 2, 3
F fixed 3 1, 2, 3
G fixed 3 1, 2, 3
H fixed 3 1, 2, 3
Sample random 2 1, 2
Position random 2 1, 2

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
A 1 2508.7 2508.7 2508.7 26.97 0.000
B 2 371.0 371.0 185.5 1.99 0.147
A*B 2 4715.9 4715.9 2357.9 25.35 0.000
C 2 4904.9 4904.9 2452.4 26.36 0.000
D 2 2898.8 2898.8 1449.4 15.58 0.000
E 2 3732.0 3732.0 1866.0 20.06 0.000
F 2 10166.8 10166.8 5083.4 54.64 0.000
G 2 1753.0 1753.0 876.5 9.42 0.000
H 2 6794.7 6794.7 3397.3 36.52 0.000
Sample 1 715.7 715.7 715.7 6.51 0.238
Position 1 1810.0 1810.0 1810.0 16.45 0.154
Sample* 1 110.0 110.0 110.0 1.18 0.282
 Position
Error 51 4744.5 4744.5 93.0
Total 71 45226.0

S = 9.64522 R-Sq = 89.51% R-Sq(adj) = 85.40%

The above ANOVA table from Minitab verifies that
the impact of factor B on the mean response is not
significant, but factors A, C, and E do significantly
impact (all three P-values < 0.0001) the mean pull-
force. Therefore, A, C, and E qualify as Signal (or
adjustment) factors, and their levels can be used to
adjust the mean response toward the ideal target of
40 lb. Note that even if the impact of factors D, F, G,
and H on the mean response are highly statistically
significant, their levels cannot be adjusted because
these four factors are Controls and their levels must
be set according to maximizing the S/N ratio of the
process to reduce variance.

Further, the above Minitab output can be used to
verify the fact that the only interaction that can be
studied with an L18 OA is (1)×(2). In fact, we ran
Minitab’s GLM and requested the Model terms A, B,
C, A×C, D, E, F, G, H, Sample, Position, and
Sample×Position, but Minitab would not even pro-
vide a meaningful ANOVA table due to the loss of
orthogonality. The corresponding Minitab output is
provided below.

Effects  A B C D E F  G  H 

L1 139.4769 88.5571 82.3244 96.1926 83.5424 77.1349 80.0485 100.7105 

L2 126.6931 68.1801 87.4389 69.1068 96.0658 88.1199 78.8333 63.16 

L3 N/A 109.4328 96.4067 100.8706 86.5618 100.9152 107.2882 102.2994 

SS 9.0792 141.822 16.9383 98.0253 14.2376 47.216 86.2863 163.5809 

MS 9.0792 70.911 8.4692 49.0127 7.1188 23.608 43.1431 81.7904 

Ranks 6 2 7 3 8 5 4 1 

 

 B1 B2 B3 

A1 48.15217 36.98029 54.34445 

A2 40.40491 31.19984 55.08833 

 

Table 12a
Response Table for S/N Ratio in dB

Table 12b
A×B Interaction for �dB
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General Linear Model: y vs. A, B, C, A×C, D, E,
F, G, H, Sample, Position

Factor Type Levels Values
A fixed 2 1, 2,
B fixed 3 1, 2, 3
C fixed 3 1, 2, 3
D fixed 3 1, 2, 3
E fixed 3 1, 2, 3
F fixed 3 1, 2, 3
G fixed 3 1, 2, 3
H fixed 3 1, 2, 3
Sample random 2 1, 2
Position random 2 1, 2

Analysis of Variance for y, using Adjusted SS
for Tests

Source Model DF Reduced DF Seq SS
A 1 1 2508.7
B 2 2 371.0
A*C 2 2 4395.0
C 2 2 4904.9
D 2 2 364.7
E 2 2 8665.8
F 2 2 10166.8
G 2 2 1753.0
H 2 0+ 0.0
Sample 1 1 715.7
Position 1 1 1810.0
Sample*Position 1 1 110.0
Error 51 53 9460.4
Total 71 71 45226.0

+ Rank deficiency due to empty cells, unbal-
anced nesting, collinearity, or an undeclared
covariate. No storage of results or further
analysis will be done.

S = 13.3603 R-Sq = 79.08% R-Sq(adj) = 71.98%

The above Minitab output clearly indicates that A×B
= (1)×(2) is the only interaction that can be studied

with a Taguchi L18 OA and that the request for any
other interaction will lead to a non-orthogonal (or
non-additive) SS, most of which will be erroneous.

Before searching for the optimum, it must be men-
tioned that G. Taguchi defines a measure called Sen-
sitivity for a nominal dimension as SmdB =

10×log10(CF) = 10×log10 ( )2
n y⎡ ⎤
⎣ ⎦

 = 20×log10 ( )y n

= 10×log10

2n

j
j 1

y n
=

⎡ ⎤⎛ ⎞∑⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

, which is clearly a logarithmic

transformation of the sample mean. The main utility
of Sensitivity is to use its ANOVA table to identify
the Signal factors. We would recommend against the
use of Taguchi’s SmdB because the RT for the mean
and the corresponding ANOVA (see below Table
12b) not only identify Signal factors but the RT for
the mean has the added utility of aiding the experi-
menter in adjusting the mean toward the ideal target
m. The variance-reduction logarithmic transforma-

tion, SmdB = 10×log10 ( )2
n y⎡ ⎤
⎣ ⎦ , recommended by

Taguchi is sometimes needed when data are not nor-
mally distributed, but the F tests in ANOVA are fairly
robust and can withstand moderate departures of data
from normality.

8. Identifying the Optimal Condition XO

We have partially identified the optimal levels of
some of the process parameters such as Line Speed
at its third level, Insulation Material either type 1 or
3, CV Speed at the level Fast, Braid Tension at High,
and Release Coating that must be set at either Low
(type 1) or High (type 3). To identify the optimal
levels of the Signal factors A, C, and E, we have a
two-fold problem:

1. At what FLC was the process being run be-
fore PDE and thus what is the mean of the
existing process condition and the resulting
societal QLs?

Effects  A B C D E F  G  H 

L1 46.58333 52.95833 45.54167 61.45833 52.83333 42.125 59.45833 55.91667 

L2 58.38889 49.5 47.83333 47.875 43.5 69.125 49.25 39.25 

L3 N/A 55 64.08333 48.125 61.125 46.20833 48.75 62.29167 

Ranks 3 9 4 7 6 1 8 2 

 

Table 13a
Response Table for the Mean in Pounds

Table 13b
A×B Interaction Table Based on Means

 B1 B2 B3 

A1 36.83333 44.25000 58.66667 

A2 69.08333 54.75000 51.33333 
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2. What are the best levels of A, C, and E that
will force the mean of the process closest to
40 lb to minimize societal QLs?

For example, if the existing process condition is FLC1,
then the process mean is close to 1.y  =  157/4 = 39.25
(see Table 11) and thus the mean does not need ad-
justment, but if the process is being run at FLC2 for
which 2.y  = 18.75, then the mean has to be adjusted
upward with the aid of factors A, C, and E. In the
absence of this information about the existing pro-
cess condition (EPC), we will assume that the default
value of the process mean is at the grand average of
all 72 observations of the pull-force from the PDE,
namely µEPC � y  = 3779/72 = 52.48611  lb. Before
we proceed to adjust the mean downward from the
default value of 52.48611 toward 40 lb, we first ex-
amine what the value of the mean would be without
the use of the Signal factors A, C, and E. For example,
if the Control factor B is set at its high level, then from
Table 13a the adjustment to the process mean would
amount to roughly (55.00000 – 52.48611) = 2.51389,
that is, setting Line speed at B3 adjusts the mean fur-
ther upward to 52.48611 + 2.51389 = 55.0000. Thus,
from Table 13a, based only on our Controls (B, D, F,
G, and H), the value of the process mean (assuming
additivity of individual adjustments) is in the vicinity
of CTµ̂  = 52.48611 + (55.00000 – 52.48611) +
(48.12500 – 52.48611) + (46.20833 – 52.48611) +
(48.75 – 52.48611) + 62.29167 – 52.48611) = B3y  +

D3y  + F3y  + G3y  + H3y  – 4 × 52.48611 = 50.43056.
We are now in a position, based on the above value

of µ̂CT  = 50.43056 (CT denotes Control), to set the
levels of the adjustment factors A, C, and E to lower
the process mean. Table 13a again reveals that set-
ting A and C at their low levels and E at its middle
level should adjust the mean downward to the value
given below.

µ̂ (A1B3C1D3E2F3G3H3) = 46.58333 + 55.00 +
45.54167 + 48.125 + 43.50 + 46.20833 + 48.750 +
62.29167 – 7 × 52.48611 = 28.59723 lb

Note that in the above calculation we have errone-
ously ignored the interaction between factors A and
B in impacting the mean response. To include the inter-
action effect in computing µ̂ (A1B3C1D3E2F3G3H3),
we replace the values of 46.58333 + 55.00 with their
joint value of 58.66667 from Table 13b. Thus,

µ̂ (A1B3C1D3E2F3G3H3) = 58.66667 + 45.54167 +
48.125 + 43.50 + 46.20833 + 48.750 + 62.29167 –
6 × 52.48611 = 38.16668 lb

We now use Table 12a to evaluate the estimated
value of the S/N ratio at the FLC A1B3C1D3E2F3G3H3.

η̂dB (A1B3C1D3E2F3G3H3) = 139.4769/9 +
109.4328/6 + 82.3244/6 + 100.8706/6 + 96.0658/6
+ 100.9152/6 + 107.2882/6 + 102.2994/6 – 7 ×
266.1700/18 = 28.5196 dB

which compares favorably against the default value
of ηdB  = 266.1700/18 = 14.78722 dB. We are now
faced with the question “is the FLC
A1B3C1D3E2F3G3H3 truly optimal?”—that is, does it
produce nearly the least amount of variation and a
process mean very close to the ideal target of 40 lb.
To answer this question, a complete search is needed
using a computer because our five Control factors
provide four possibilities, while our three Signal fac-
tors, A, E, and C, provide 3×3×3 = 27 additional
possibilities, adding to a total of 4×27 = 108 FLCs
whose S/N ratios and means have to be computed to
pinpoint the location of the estimated optimal pro-
cess condition XO. Further, the location of the opti-
mum always depends on the PEC S/N ratio and the
mean. We used the Taguchi software written by
Hung-Hsiang (Kevin) Hsu to make a search of XO

that yielded the result XO = A1B3C2D3E2F3G3H3 with
η̂O  = η̂(A1B3C2D3E2F3G3H3) = 29.37202 dB and µ̂O

= 40.45834 lb. A complete search to pinpoint the
true optimum would be impossible because not all
possible 2×37 = 4374 FLCs were studied, but only a
1/243rd fraction were experimentally tested.

9. Loss Function Analysis After a PDE
To estimate the percent reduction in societal QLs,

we must first compute the amount of QL at the PEC
(present existing condition) given by

( ) ( )22
PEC n PECL k S PEC y m⎡ ⎤= + −⎣ ⎦                    (5)

where the value of k = Ac/�
2. Although k does not

play any role in determining the value of percent
reduction in QLs, it does play a part in the actual
value of average quality loss per unit. For the sake
of illustration, it is assumed that the amount of qual-
ity loss at either the LSL = 25 lb or USL = 55 lb is
equal to $11.25. This assumption yields k = 11.25/
152 = 0.05. Substitution into Eq. (5) yields LPEC . There
are two choices for the estimate of process variance
of the existing condition:
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1. Use of MSError = 93.0302 = σ̂y
2  from the Minitab

ANOVA table and then multiplying this esti-
mate by (n – 1)/n = 3/4, which yields Sn

2 (PEC)
= 69.7726.

2. Because we are assuming that the existing pro-
cess mean is 52.48611 and the existing S/N ratio
is 14.78722, then by the definition of S/N ratio
we must have:

( )
2

10 2

52.48611 1
14.78722 10 log

S PEC 4

⎡ ⎤
= × −⎢ ⎥

⎢ ⎥⎣ ⎦
   (6)

Dividing Eq. (6) by 10 and exponentiating both sides
using base 10 yields S2(PEC) = 90.7352, which gives
the final result of Sn

2 (PEC) = (3/4) × 90.7352 =
68.0514. Because the value of σO

2  has to be esti-
mated using the S/N equation similar to (6), we settle
on Sn

2 (PEC) = 68.0514. Hence, LPEC  = 0.05[68.0514
+ (52.48611 – 40)2] = $11.1977 � $11.20. Note that
LPEC   = $11.20 is very close to the amount of QL at
a spec limit of Ac = $11.25 and thus is perhaps a
pessimistic overestimate.

The amount of QL at the optimal condition, XO, is
given by

( ) ( )22
O n OL k S O y m⎡ ⎤= + −⎣ ⎦                            (7)

To compute Sn
2 (O), Eq. (6) is used, replacing the

present existing values with those at the optimum,

that is, 29.3720 = 10×log10

40 45834 1

4

2.

S Optimal2 ( ) −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. Solv-

ing for SO
2  = S2(Optimal) from this last equality yields

SO
2  = 1.89099 and Sn

2 (O) = (n – 1)SO
2 /n = 1.41824.

The use of Eq. (7) results in LO  = 0.05[1.41824 +
(40.45834 – 40)2] = $0.0814. Thus, the expected per-
cent reduction in QLs is given by [(11.1977 –
0.08142)/11.1977] × 100% = 99.2729%. A word of
caution is quite necessary at this juncture because a
percent reduction in QLs of 99.2729% is quite unre-
alistic and most probably impossible to achieve by
one set of experiments. The reader should bear in mind
we assumed that the location of process mean before
optimization was at 52.48611 lb, which is quite off
target and pessimistic relative to the nominal desired
value of m = 40 lb, and further we made the assump-
tion (perhaps unrealistic and optimistic) that the over-
all change in the mean �µ = 52.48611 – 40.45834 =
12.0278 lb is the sum of individual improvements
from each factor (that is, we are assuming an additive

model), and so was the improvement in the S/N ratio
�� = 29.37202 – 14.78722 = 14.58480 dB. We will
use the confidence intervals developed in the follow-
ing section to obtain a more realistic and plausible
percent reduction in societal QLs.

10. Confidence Intervals for µ(XO)
and �����2(XO)

Because the expression for µ̂ (XO) = µ̂O  is a linear
combination of means of normal random variables,
the sampling distribution of µ̂O  = µ̂ (XO) =
µ̂ (A1B3C2D3D2F3G3H3) is normal with expectation
E( µ̂O ) = µ(XO) and variance V( µ̂O ) yet to be deter-
mined. Thus, a 97.5% confidence interval (CI) for
µ(XO) is given by µ̂O  ± t0.0125; � × se ( µ̂O ), where � is
the degrees of freedom of se( µ̂O ) given by se( µ̂O ) =

V Oµ̂( ) . We are obtaining 97.5% CIs for both pro-
cess mean and variance to be on the safe side so that
the joint Bonferroni confidence level will be (0.975)2

� 0.95. It is well known from statistical theory that
for a Gaussian (or normal) process, the sample mean
and standard deviation are stochastically indepen-
dent so that the Bonferroni CIs are not needed be-
cause the Bonferroni procedure accounts for the
correlation structure between two responses. Thus,
we are developing Bonferroni intervals just in case
the independence assumption between y  and S is
not quite tenable.

To compute the V( µ̂O ), we first apply the vari-
ance operator to the expression for µ̂O .

V

V y y y y y y y y

O

A B C D E F G H13 2 3 2 3 3 3

µ̂( ) =

+ + + + + + − ×⎡⎣ ⎤⎦× 6  
(8)

Second, it is noted that the means that comprise µ̂O  are
positively correlated and thus the covariance of any
pairs of means in Eq. (8) is larger than zero and must
be taken into account in applying the variance opera-
tor in Eq. (8). It is well known from statistical theory

that if Y = ∑
=i

n

1
ciXi is a linear combination of random

variables, where ci’s are known constants, then

( )
n n-1

2 2
i i i j ij

i 1 j>i i 1

n n

i j ij
i 1 j 1

V Y c 2 c c

c c

= =

= =

= ∑ σ + ∑∑ σ =

∑∑ σ                (9)
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where �ij = the covariance between Xi and Xj =
E[(Xi – µi) × (Xj – µj)], i � j, �ii = σi

2  = V(Xi), and µi

= E(Xi). Further, if Xi’s that comprise the sum Y are
all normally distributed, then the sampling distribu-
tion of Y itself is Gaussian regardless of the correla-
tion structure among all distinct pairs of Xi’s. For a
proof of Eq. (9), the interested reader is referred to
www.eng.auburn.edu/~maghsood/homepage.html,
STAT 3600, Chapter 5, pp. 88-89.

Comparing Eq. (8) with (9), it is noted that c1 = c2 =
c3 = c4 = c5 = c6 = c7 = 1 and c8 = –6. We now compute
the variances and covariances of the eight means in
Eq. (8) term by term.

V y V y
12

V y V
1

24
y

A B
j

12

A B j
y
2

C
j

13 1 3

2

×
=

=

( ) = ∑⎛
⎝⎜

⎞
⎠⎟

=

( ) = ∑

1

1

24

1

12 , ;
σ

CC j
y
2

2, 24
⎛
⎝⎜

⎞
⎠⎟

=
σ

;

similarly, V ( )
3Dy  = V ( )

2Ey  = V ( )
3Fy  = V ( )

3Gy  =

V( )
3Hy  = 

2
y

24

σ
, and V(–6× y ) = 36

2
y

72

⎛ ⎞σ
⎜ ⎟⎜ ⎟
⎝ ⎠

. The covariance

between 
13A By ×  and 

2Cy  is Cov ( )
13 2A B Cy , y×  =

Cov 1 3 2

12 24

A B ,j C ,j
j 1 j 1

1 1
y , y

12 24= =

⎛ ⎞∑ ∑⎜ ⎟
⎝ ⎠

. To carry out this last covari-

ance operation, it is noted that out of the 12 yij’s that
comprise 

13A By ×  exactly four of them are the same ob-
servations as the 24 observations that comprise 

2Cy ,
and thus Cov ( )

13 2A B Cy ,y×  = (1/12) × (1/24) × 4 2
yσ  =

2
y

72

σ
; similarly, the covariance of 

13A By ×  with 
3Dy ,

2Ey , 
3Fy , 

3Gy , and 
3Hy  is also equal to 

2
y

72

σ
.

The covariance between 
13A By ×  and –6× y  is given

by Cov ( )
13A By , 6 y× − ×  = Cov 1 3

12 18 4

A B ,j ij
j 1 i 1 j 1

1 6
y , y

12 72= = =

−⎛ ⎞∑ ∑∑⎜ ⎟
⎝ ⎠

 =

(1/12)(–6/72)(12) 2
yσ  = (–6/72) 2

yσ . Similarly,

Cov ( )
2Cy , 6 y− ×  = 

2
y6

72

− σ
. Combining Eqs. (8) and (9),

we obtain the result V ( )Oµ̂  = 
2
y

12

σ
 + 6 × 

2
y

24

σ
 + 36 ×

2
y

72

σ
 + 2

2 2
y y

7 2

6
C 7

72 72

⎡ ⎤σ − σ
× + ×⎢ ⎥

⎢ ⎥⎣ ⎦
 = 

2
y10

12

σ
 +

2
2 2
y y67 6

7
2 72 72

⎡ ⎤σ − σ× × + ×⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
2
y10

12

σ
 + 2

2
y21

72

⎛ ⎞− σ
⎜ ⎟⎜ ⎟
⎝ ⎠

 = 
2
y

4

σ
.

This last result is intuitively appealing because X0

is an FLC and there were n = 4 observations at each

FLC, and it is well known that V ( )y  = 
( )V y

n
 = 

2
y

4

σ
.

Because 2
yσ  is unknown, it must be estimated from

the gathered data. We have two choices, namely the
MSError = 93.0302 from the Minitab ANOVA table
with 51 df, or the estimate of the optimal variance
SO

2  = 1.89099 with 3 df. Because Oµ̂  is the estimated
mean at the optimum, the estimated variance at the
optimum is the more logical choice, that is, σ̂y

2  =
SO

2  = 1.89099. Therefore, the standard error is given

by se µ̂O( )  = 
σy

2

4
 � 

1

2
2SO  = 

1 89099

2

.
 = 0.6876,

and the 97.5% confidence interval for µO is given
by 40.45834 ± 4.1765 × 0.6876 = (37.5867,
43.3300), where 4.1765 = t0.0125; 3 = the inverse of
W.S. Gosset’s t-distribution with 3 df at a cumula-
tive of 0.9875.

Dr. Taguchi highly recommends that once the opti-
mal condition XO is identified, the experimenter should
conduct several confirmation runs at the optimal FLC
because of the fact that only 18 out of the possible
4374 FLCs were experimentally tested. Before con-
ducting confirming experiments, one should note if the
optimal condition XO = A1B3C2D3E2F3G3H3 is one of
the FLCs that was studied using the L18 OA. A com-
parison of XO with the 18 FLCs of the L18 design ma-
trix reveals that A1B3C2D3E2F3G3H3 is not one of the
FLCs that was included in the L18. Note that the 18
runs that were studied are just a 1/243rd fraction of all
2×37 = 4374 possible distinct FLCs. Thus, in this case,
Dr. Taguchi recommends that we set the process at XO

= A1B3C2D3E2F3G3H3 and make (at least) two cables,
measure the pull-force at two positions, and compute
the mean of the four measurements denoted by yCN ,
where CN represents confirmation. We may use either
the inexact decision rule that if yCN  falls inside the 97.5%
CI (37.5867, 43.3300), then there should be no con-
cern about XO from the standpoint of the mean; or we
may compare yCN  against the decision interval
40.45834 ± t0.025; � × se( yCN ). The experimenter should
also be cognizant of the fact that the confidence band
against which the future confirmation mean is to be
compared should actually be wider than (37.5867,
43.3300) because the confirmation runs will also have
experimental error that is not included in the computa-
tion of the CI (37.5867, 43.3300), which includes only
the model error.
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To arrive at an upper 97.5% CI for �2(XO) = σO
2 ,

we make use of the fact that the sampling distribu-
tion of (n – 1)SO

2 /σO
2  is chi-squared with 3 df, as-

suming that n = 4. Thus, the upper 97.5% confidence

limit for σO
2  is given by σO

2 (U) = 
n SO−( )1 2

0 975 3
2χ . ;

 =

3 1 89099

0 2158

× .

.
 = 26.2887, that is, 0 < σO

2  � 26.2887 at

the 97.5% confidence level. Again, if the variance

found through confirmation experiments lies within
the CI, 0 < σO

2  � 26.2887, then the optimal condi-
tion is practically (not exactly from a statistical view-
point) confirmed from the standpoint of variability
because this CI includes only the model error.

11. Further Loss Function Analysis
In section 9, we computed an unrealistic percent

reduction in QLs as 99.2729% that was, to say the
least, very optimistic. We now use the results of the
CIs from section 10 to obtain a more realistic value
for the percent reduction in QLs. To accomplish this
objective, we use the worst-case scenarios for the
mean within the CI (37.5867, 43.3300), namely µO

= 43.3300, and also for the variance we will use the
worst-case σO

2  = 26.2887. These yield an expected
QL at the optimal condition as LO(U) = 0.05 [26.2887
+ (43.3300 – 40)2] = $1.8689. This leads to a per-
cent reduction of [(11.1977 – 1.8689)/11.1977] ×
100% = 83.31%. Because the two confidence bands
each were at the 97.5% level, we would have a
Bonferroni confidence level of (0.975)2 � 95% in
the percent QL reduction interval (83.31, 99.273%).
Again, even the expected 83.31% reduction in QLs
is overly optimistic and is due to the fact that we are
using the default value of y  = 52.48611 lb for the
existing mean and the default value of S PECn

2 ( )  =
68.0514. This brings us to the point that is impor-
tant experimentally, and that is, if at all possible,
one of the experimental runs should generally be
the FLC at which the process is presently being run
so that the experimenter would have a good idea
about the mean and S/N ratio of the existing pro-
cess before optimization. Most design matrices af-
ford sufficient flexibility to embed the existing
condition in the design matrix, but this is some-
times impossible. Our 11 alternatives to Taguchi’s
L18 in section 6 should help in this regard. For ex-
ample, if run number 7 (see Table 11) in the L18 OA
is the PEC of the process, then from Table 11 we

obtain LPEC  = 0.05 [62.9167 + (47.75 – 40)2] =
$6.1490, which leads to a more realistic percent re-
duction in QLs of 69.61%. From the above discus-
sions, if the optimal condition XO is verified through
confirmation experiments for the design matrix of
Table 10, then we should expect more than a 50%
reduction in QLs from the above optimization pro-
cedure and no further analysis is needed. Otherwise,
we will also need to reexamine our analyses accord-
ing to the following section, and we should ponder
the possibility that there may be active interactions
in the process that were left out in the design phase
of the experiment.

12. Further Analysis of Data from a PDE
One warranted criticism of Taguchi methods by

most Western statisticians is the use of the S/N ratio
for analyzing data from a DOE. Because the sample
mean and variance, when sampling a normal pro-
cess, are stochastically independent, the recommen-
dation from the statistical community is to analyze
the mean and variance separately. This is the reason
that in Table 11 we provided a column for the ln(Si).
Table 14a provides the RT for the ln(S). Unfortu-
nately, the RT for ln(S) in Table 14a does not yield
rankings that are totally consistent with those of the
S/N ratio in Table 12a because now the factor H has
very minimal (if any) impact on process variability
while H was the number-one factor in impacting the
S/N ratio as shown in Table 12a. This can some-
times happen because the S/N ratio measures the si-
multaneous impact of mean and variance. However,
factors B, G, and D are still influential in impacting
process variability, and factors A, E, and F may also
affect process variation, while from Table 12a fac-
tors A and E did not influence the S/N ratio. From
Tables 14a and 13a, factors C and H now seem to be
the only Signal factors. Tables 14a and 14b show
that the optimal condition based only on the Control
factors is A1B3D3E2F3G3, A1B1D3E2F3G3, or
A2B3D3E2F3G3, and the tables also indicate that fac-
tors B and A are relatively more influential than
(A×B) on the variability of pull-force. Testing the
mean at the presumed optimum A1B3D3E2F3G3 yields
(see Table 13a) µ̂ (A1B3D3E2F3G3) = 46.58333 +
55.00 + 48.125 + 43.5 + 46.20833 + 48.75 – 5 ×
52.48611 = 25.7361. To increase this expected mean
toward 40 lb, we set the Signal factors at C3H1. This
yields µ̂ (A1B3C3D3E2F3G3H1) = 40.7639, which
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again assumes that the process mean is at the default
value of 52.48611. Because the average of ln(S) in
Table 14a is ln S( )  = 2.1353, the estimated ln(S) at
XO = A1B3C3D3E2F3G3H1 is given by ln S( )  =
17.4679/9 + (10.57953 + 13.3393 + 10.64274 +
10.64393 + 10.98955 + 10.47035 +12.15664)/6 –
7 * 2.1353 = 0.1307. This yields SO = e0.1307 =
1.1396 and LO  = 0.05[0.9740 + (40.7639 – 40)2] =
$0.0779. This compares favorably against LO  =
$0.0814 obtained in section 9.

It is paramount to emphasize that the optimal lev-
els of the Signal factors always depend on the value
of the existing process mean. In all the above analy-
ses, we assumed the default value of µPEC =
52.48611; had we assumed any other value of µPEC,
the optimal levels of the signal factors would alter
accordingly.

13. Taguchi’s Tolerance Design
A tolerance design is performed always after a

PDE only if sufficient reduction in process variabil-
ity is not attained after parameter design. A good
example for tolerance design is provided by Barker
and Clausing (1984). To describe the objective of a
tolerance design, we quote from the excellent refer-
ence An Introduction to Off-Line Quality Control

Methods by Kackar and Phadke (1984). These two
authors state that, “Whenever the reduction in the
output variation achieved by parameter design is not
enough, the last alternative is tolerance design. Nar-
rower tolerance ranges are specified for those pro-
duction process factors whose variations impart large
influence on the output variation. To meet the tighter
process specifications, better grade material and bet-
ter equipment are needed. Thus tolerance design in-
creases the production costs.”

Because the article by Barker and Clausing may
not be easily accessible, we present their work al-
most in its entirety to illustrate Taguchi’s tolerance
design. In the tolerance design experiment by Barker
and Clausing, the objective is to improve a friction
welding process, where the response y represents
the tensile strength of weld. Presently the company
is experiencing heavy losses due to breakage at weld
strength below 160 ksi (in consultation with Profes-
sor J T. Black we have assumed ksi for the units as
the authors do not provide the units). Although the
QCH is of the LTB type, it seems that the authors
use a modification of the NTB type loss function to
perform their loss function analyses. Further, the two
authors report that the company is presently losing
$350/engine due to field failure and the resulting
warranty service claims. Because y is an LTB type
QCH, it seems that from a quality standpoint 160 ksi
may be the value of the LSL. However, Figure 5 on
Barker and Clausing’s p. 40 shows that the value of
the loss function is nearly zero at 160 ksi (perhaps
this is why the authors did not assume that LSL =
160 ksi because the value of Ac cannot equal to zero
at the LSL for an LTB type QCH); further, their Fig-
ure 5 on p. 40 shows that L(y) = $500.00 at y = 100
ksi. It seems (but we are not certain) that the modi-
fied loss function the authors are using is given by

Table 14a
Response Table for ln(S)

 B1 B2 B3 

A1 4.99257 6.885692 5.589688 

A2 7.971703 8.006151 4.989838 

    

SS(A×B) = 1.067958 Rank(A×B) = 7 

 

Table 14b
Response Table for A×B for ln(S)

Effects  A B C D E F G H 

L1 17.4679 12.96427 12.60916 13.38007 13.70545 12.90299 14.46037 12.15664 

L2 20.9677 14.89184 12.48718 14.41283 10.64393 14.54310 13.50493 13.38358 

L3 N/A 10.57953 13.33930 10.64274 14.08626 10.98955 10.47035 12.89542 

SS 0.6805 1.5555 0.0708 1.2652 1.1871 1.0544 1.4468 0.1272 

MS 0.6805 0.7777 0.0354 0.6326 0.5935 0.5272 0.7234 0.0636 

Ranks 3 1 9 4 5 6 2 8 
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To compute their loss function constant, k, Barker
and Clausing inserted the point (y =100 ksi, L =
$500.00) into their loss function as 500 = k(100 –
160)2 and obtained k = 500/3600 = 0.1388889. Thus,
L(y) = 0.1388889(y – 160)2 if y � 160 and L(y) = 0
if y > 160 ksi. It should be emphasized that the two
authors do not specify L(y) = 0 when y > 160, but
we deduced this information from their loss func-
tion graph of Figure 5 on their p. 40.

Table II of Barker and Clausing on their p. 41,
reproduced above, lists the six process parameters
that may impact the tensile strength of the weld along
with their low-cost (or wide-range) tolerances. The
PDE started with the Taguchi L27 as the inner OA
with the factor Speed at three levels, 1000, 1200,
and 1400 rpm, embedded on column (1) of L27;
Heating Pressure (HTPRS) at three levels, 4000,
4400, and 4800 psi, on column (2) of L27; Upset
Pressure (UPPRS) at 8500, 9000, and 9500 on col-
umn (5); Length at –30, 0, 30 on column (9); Heat-
ing Time (HTTIME) at levels 2.8, 3.2, and 3.6 on
(10); and Upset Time (UPTIME) also at three levels,
3.2, 3.6, and 4.0 seconds, embedded on column (12)
of L27. The reader should refer to our Table 9 to fol-
low the logic behind the above column assignments
that forbids aliasing a main factor with a two-way
interaction; our Table 9 shows that column (13) of
L27 could also have been used for one of the factor
assignments. The inner OA for the PDE is reproduced
below and shown as Table III of Barker and Clausing.
Because this PDE is the first step in a tolerance de-
sign, there is an outer array for each FLC of the L27

inner array consisting of the wide-range (or low-cost)
tolerances of process factors. The first FLC of the

inner array is (1000, 4000, 8500, –30, 2.8, 3.2) for
which columns (2) through (7) of Taguchi’s L18 OA
is the outer array as shown in Table IV of Barker
and Clausing. (Because Table V of Barker and
Clausing provides the responses for their Table IV,
the two tables are combined and reproduced as
Tables IV and V below.) Because the low-cost toler-
ances on Speed are ±10% and at the first FLC of
Table III the factor “Speed” is 1000 rpm, then ±0.10
× 1000 = ±100, so the three levels of Speed in the
L18 outer array are 1000 – 100 = 900, 1000, and
1000 + 100 = 1100 rpm. Similarly, the low-cost tol-
erances for Heating Pressure are ±15%, so for the
first FLC of the inner array the third column of the
outer array consists of three levels, 4000 – 0.15 ×
4000 = 3400, 4000, and 4000 + 0.15 × 4000 = 4600.
Tables IV and V of Barker and Clausing (on their p.
45) exhibit the L18 outer array for the first FLC of the
Taguchi L27 inner OA and the corresponding val-
ues of tensile strength y. Because each FLC of the
inner array has a Taguchi L18 as its outer array, there
are a total of 27 × 18 = 486 runs, requiring one
week (as reported by the two authors) of experi-
mentation.

Each L18 outer array yields one mean ( iy ), one
standard deviation (Si), and one S/N ratio (�i) for i =
1, 2, 3, …, 27. We used Tables IV and V of Barker
and Clausing to compute 1y  = 85.2391 ksi, S1 =
38.0393 ksi, and type B S/N ratio �1 = –10 ×

log10 ( )
18 2

1j
j 1

1
1 y

18 =

⎡ ⎤∑⎢ ⎥⎣ ⎦
 = 34.2211 db, where by type B

S/N ratio Barker and Clausing mean bigger is bet-
ter (the same as larger the better). Our values of S1

= 38.0393 and �1 = 34.2211 exactly match those of
Barker and Clausing to four decimals, which they
list near the bottom of their p. 45, but we could not
obtain their targeted strength value of 104.345 ksi.
From the information provided in the article, we could

Table II of Barker and Clausing—Process Factors and Their Low-Cost (or Wide-Range) Tolerances

Process Parameters Range of Interest Low-Cost (or Wide-Range) 
Tolerances 

Speed 1000 – 1400 rpm ±10% 

Heating pressure = HTPRS 4000 – 4800 psi ±15% 

Upset pressure = UPPRS 8500 – 9500 psi ±15% 

Length –30 to +30 thous. ±10% 

Heating time = HTTIME 2.8 – 3.6 sec. ±20% 

Upset time = UPTIME 3.2 – 4.0 sec. ±20% 
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not ascertain how the authors determined that the
nominal (or targeted) value of tensile strength for
the FLC #1 was 104.345 while the realized experi-
mental value of the mean computed from their Tables
IV and V was 1y  = 85.2391 ksi. Our concern here is
the fact that the targeted signal value of 104.345,
although not achieved experimentally, was also used
along with 26 other presumably nominal strength
values in their Table VI on their p. 46 to perform an
analysis of variance to identify the Signal factors.
Because the raw data for the remaining 26 outer ar-
rays of FLCs 2 through 27 of L27 were not provided,
we are not presently sure how to interpret the strength

values provided by Barker and Clausing in their Table
VI, which is also reproduced below. Further, Barker
and Clausing also provide the type N (nominal the
best) S/N ratio near the bottom of their p. 45 as �1 =
8.76478, which they obtained from �1 = 10 ×

log10 ( )2

1 1y S⎡ ⎤
⎣ ⎦  by using the nominal value of 104.345

for their 1y , while as mentioned above, the sample
mean for the L18 outer array of FLC 1 is 1y  =
85.2391. If we use the realized value of 1y  = 85.2391
in our NTB type S/N ratio, we would obtain �1 = 10

× log10 ( )2
y S 1 18⎡ ⎤−⎣ ⎦  = 6.95982.

Table III of Barker and Clausing—Taguchi’s L27 Used as Inner OA

Speed 
(1) 

HTPRS 
(2) 

UPPRS 
(5) 

Length 
(9) 

HTTIME 
(10) 

UPTIME  
(12) 

1000 4000 8500 –30 2.8 3.2 

1000 4000 9000 0 3.2 3.6 

1000 4000 9500 30 3.6 4.0 

1000 4400 8500 0 3.2 4.0 

1000 4400 9000 30 3.6 3.2 

1000 4400 9500 –30 2.8 3.6 

1000 4800 8500 30 3.6 3.6 

1000 4800 9000 –30 2.8 4.0 

1000 4800 9500 0 3.2 3.2 

1200 4000 8500 0 3.6 3.6 

1200 4000 9000 30 2.8 4.0 

1200 4000 9500 –30 3.2 3.2 

1200 4400 8500 30 2.8 3.2 

1200 4400 9000 –30 3.2 3.6 

1200 4400 9500 0 3.6 4.0 

1200 4800 8500 –30 3.2 4.0 

1200 4800 9000 0 3.6 3.2 

1200 4800 9500 30 2.8 3.6 

1400 4000 8500 30 3.2 4.0 

1400 4000 9000 –30 3.6 3.2 

1400 4000 9500 0 2.8 3.6 

1400 4400 8500 –30 3.6 3.6 

1400 4400 9000 0 2.8 4.0 

1400 4400 9500 30 3.2 3.2 

1400 4800 8500 0 2.8 3.2 

1400 4800 9000 30 3.2 3.6 

1400 4800 9500 –30 3.6 4.0 
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It should be noted that the authors did use the S/N
ratios obtained from the experimental results to ob-
tain their MSs (mean squares) in their Table VII for
S/N, but as far as we could ascertain they used the
targeted strength values to obtain their MSs for the
strength values. We could not resolve this trouble-
some issue from all the data that were provided in
their article. To explain the values in Table VII of
Barker and Clausing, we are providing RTs for both
S/N ratio and Strength in our Tables 15 and 16, re-
spectively. In Table 15, one asterisk on an F statistic
implies significance at the 5% level and two aster-
isks on an F implies statistical significance at the 1%
level. Using the S/N ratios from Table VI of Barker
and Clausing, the SS(Total�) = USS� – CF� =
34935.110 – 33376.685 = 1558.4252 →
SS(Residual�) = 345.5563 → MS(RES�) = 345.5563/
14 = 24.683, which differs a bit from Barker and
Clausing’s MSRES = 26.00 in their Table VII (p. 46).
The discrepancy could be due to the fact that the
authors provide only one-decimal accuracy in their
Table VI for both S/N and Strength values. In our Table

15, we obtained the linear and quadratic contrasts for
the six factors by applying the orthogonal polyno-
mial coefficients PL = −[ ]′1 0 1  and PQ = 1 2 1−[ ]′ .
Note that these two 3-D vectors are contrasts (that is,
the components of PL and PQ add to zero) and they
are perpendicular (or orthogonal) because their vec-
tor dot product is zero. In our Table 15, the linear
contrast for speed was computed from SpeedL = –1
× 298.4 + 0 × 334.2 + 1 × 306.7 = 8.3, and the qua-
dratic contrast was computed from SpeedQ = 1 ×
298.4 – 2 × 334.2 + 1 × 306.7 = –83.3 (concave
downward). Because the factor “Speed” is at three
levels with 2 df, each of these two contrasts carry
exactly 1 df, and thus the SS and MS of contrasts are
the same, while the MS(Speed) = SS(Speed)/2. The
SS of these two contrasts were computed from

SS(SpeedL) = 
28.3

2 9×  and SS(SpeedQ) = 
( )2

83.3

6 9

−
×

. Fur-

ther, few of the MSs that Barker and Clausing pro-
vide in their Table VII are actually the SS as shown
in Table 15. To check our answers, we ran Minitab’s
GLM (general linear model) on the S/N ratio of the

Tables IV and V of Barker and Clausing—Using Taguchi’s L18 as Outer Array for First FLC of
Taguchi’s L27 Inner Orthogonal Array

Speed 
(2) 

HTPRS 
(3) 

UPPRS 
(4) 

Length 
(5) 

HTTIME 
(6) 

UPTIME 
(7) 

Tensile 
Strength (y) 

900 3400 7225 –27 2.24 2.56 26.7038 

900 4000 8500 –30 2.8 3.2 90.9161 

900 4600 9775 –33 3.36 3.84 133.1830 

1000 3400 7225 –30 2.8 3.84 84.7627 

1000 4000 8500 –33 3.36 2.56 40.8376 

1000 4600 9775 –27 2.24 3.2 120.489 

1100 3400 8500 –27 3.36 3.2 94.7072 

1100 4000 9775 –30 2.24 3.84 146.1440 

1100 4600 7225 –33 2.8 2.56 29.4095 

900 3400 9775 –33 2.8 3.2 111.1420 

900 4000 7225 –27 3.36 3.84 72.2078 

900 4600 8500 –30 2.24 2.56 22.4529 

1000 3400 8500 –33 2.24 3.84 124.7730 

1000 4000 9775 –27 2.8 2.56 72.4566 

1000 4600 7225 –30 3.36 3.2 93.8594 

1100 3400 9775 –30 3.36 2.56 58.6379 

1100 4000 7225 –33 2.24 3.2 88.8731 

1100 4600 8500 –27 2.8 3.84 122.7480 
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Table VI of Barker and Clausing—Using Taguchi’s L27 as Inner Array

Table VII of Barker and Clausing—ANOVA for S/N and Strength

Speed HTPRS UPPRS Length HTTIM UPTIME S/N STRENGTH STD. DEV. 

1000 4000 8500 –30 2.8 3.2 34.2 104.3 38.04 

1000 4000 9000 0 3.2 3.6 39.9 135.1 27.89 

1000 4000 9500 30 3.6 4 12.3 128.6 45.16 

1000 4400 8500 0 3.2 4 25.6 123.8 42.41 

1000 4400 9000 30 3.6 3.2 37.5 134.6 45.59 

1000 4400 9500 –30 2.8 3.6 40 134.7 27.06 

1000 4800 8500 30 3.6 3.6 40.6 150.6 38.88 

1000 4800 9000 –30 2.8 4 28.6 116.2 43.24 

1000 4800 9500 0 3.2 3.2 39.7 151.2 45.03 

1200 4000 8500 0 3.6 3.6 39.6 134.2 31.73 

1200 4000 9000 30 2.8 4 35.4 134.1 41.28 

1200 4000 9500 –30 3.2 3.2 39.1 132 40.67 

1200 4400 8500 30 2.8 3.2 37.9 125.8 38.47 

1200 4400 9000 –30 3.2 3.6 40.5 140.9 28.67 

1200 4400 9500 0 3.6 4 37.8 158.5 46.85 

1200 4800 8500 –30 3.2 4 30.9 129.6 44.86 

1200 4800 9000 0 3.6 3.2 41.3 164.5 50.00 

1200 4800 9500 30 2.8 3.6 41.7 156.1 29.91 

1400 4000 8500 30 3.2 4 12.5 111.7 43.96 

1400 4000 9000 –30 3.6 3.2 31.1 109.6 40.74 

1400 4000 9500 0 2.8 3.6 40.8 146.7 30.66 

1400 4400 8500 –30 3.6 3.6 38.3 125.6 37.59 

1400 4400 9000 0 2.8 4 34.6 128.3 44.40 

1400 4400 9500 30 3.2 3.2 39.3 139.1 44.84 

1400 4800 8500 0 2.8 3.2 35.2 119.9 44.07 

1400 4800 9000 30 3.2 3.6 40.8 148 36.84 

1400 4800 9500 –30 3.6 4 34.1 150.1 53.13 

 

S/N: Source MS F0 Strength: Source MS F0 

Speedq 128.7 4.9 Speed 693 15.8 

HTPRSL 126.8 4.8 HTPRS 1248 28.5 

UPPRS 78 3.0 UPPRS 1633 37.3 

Length 75 2.9 LengthL 407 9.3 

HTTIME 25 1.0 Lengthq 434 9.9 

UPTIMEL 388 14.9 HTTIME 452 10.3 

UPTIMEq 350 13.5 UPTIME 611 14.0 

Residual 26  Residual 44  
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Table 15
Response Table for S/N Ratio and Corresponding F Statistics

F
0.05; 2, 14

 = 3.74; F
0.05; 1, 14

 = 4.60; F
0.01; 2, 14

 = 6.51; F
0.01; 1, 14

 = 8.86

F
0.05; 2, 14

 = 3.74; F
0.05; 1, 14

 = 4.60; F
0.01; 2, 14

 = 6.51; F
0.01; 1, 14

 = 8.86

Table 16
Response Table for Strength and the Corresponding F Statistics

Effects Speed HTPRS UPPRS Length HTTIME UPTIME 

L1  298.4 284.9 294.8 316.8 328.4 335.3 

L2  344.2 331.5 329.7 334.5 308.3 362.2 

L3  306.7 332.9 324.8 298.0 312.6 251.8 

SS =  132.325 165.834 79.3341 74.0363 24.8941 736.445 

MS =  66.163 82.917 39.667 37.018 12.447 368.223 

F0 =  2.681 3.359 1.607 1.500 0.504 14.918** 

Linear 
Contrast  

8.3 48 30 –18.8 –15.8 –83.5 

SSL =  3.82722 128.00 50.00 19.6356 13.8689 387.347 

F0 =  0.15506 5.186* 2.02572 0.7955 0.56189 15.693** 

Quadratic 
Contrast  

−83.3 −45.2 −39.8 −54.2 24.4 −137.3 

SSQ =  128.498 37.8341 29.3341 54.4007 11.0252 349.098 

F0 =  5.206* 1.53282 1.18845 2.204 0.44668 14.144** 

 

Effects Speed HTPRS UPPRS Length HTTIME UPTIME 

L1 1179.1 1136.3 1125.5 1143.0 1166.1 1181.0 

L2 1275.7 1211.3 1211.3 1262.2 1211.4 1271.9 

L3 1179.0 1286.2 1297.0 1228.6 1256.3 1180.9 

SS = 691.943 1248.334 1634.014 839.4430 452.005 612.7341 

MS = 345.971 624.167 817.007 419.721 226.003 306.367 

F0 = 7.914** 14.277** 18.688** 9.601** 5.169* 7.008** 

Linear 
Contrast 

–0.1 149.9 171.5 85.6 90.2 –0.1 

SSL = 0.0005556 1248.334 1634.014 407.0756 452.002 0.00056 

F0 = 1.271E-05 28.5538** 37.3757** 9.3113** 10.3389** 1.3E-05 

Quadratic 
Contrast 

–193.3 –0.1 –0.1 –152.8 –0.4 –181.9 

SSQ = 691.94241 0.000185 0.000185 432.3674 0.00296 612.7335 

F0 = 15.82718** 4.24E-06 4.24E-06 9.890** 6.8E-05 14.0154** 
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authors’ Table VI, whose output is given below, and
Minitab’s GLM verified our answers of Table 15.
The entries at the bottom of Tables 15 and 16 are
inverse functions of Fisher’s F distribution at the cdf
values of 0.95 and 0.99, respectively.

ANOVA: SN vs. Speed, HTPRS, UPPRS, Length,
HTTIME, UPTIME

General Linear Model: SN versus Speed, HTPRS, ...

Factor Type Levels Values
Speed fixed 3 1000, 1200, 1400
HTPRS fixed 3 4000, 4400, 4800
UPPRS fixed 3 8500, 9000, 9500
Length fixed 3 –30, 0, 30
HTTIME fixed 3 2.8, 3.2, 3.6
UPTIME fixed 3 3.2, 3.6, 4.0

Analysis of Variance for SN, Using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Speed 2 132.33 132.33 66.16 2.68 0.103
HTPRS 2 165.83 165.83 82.92 3.36 0.064
UPPRS 2 79.33 79.33 39.67 1.61 0.235
Length 2 74.04 74.04 37.02 1.50 0.257
HTTIME 2 24.89 24.89 12.45 0.50 0.614
UPTIME 2 736.45 736.45 368.22 14.92 0.000
Error 14 345.56 345.56 24.68
Total 26 1558.43

S = 4.96816 R-Sq = 77.83% R-Sq(adj) = 58.82%

The above Minitab output shows that the most
influential factor that impacts the S/N ratio of Strength
is Upset Time, while Heating Pressure is significant
at the 0.064 level and Speed’s effect is significant at
the 10.3% level. Thus, the only factors that impact
process variability in the order of their influence are
Upset Time, Heating Pressure, and Speed. From our
RT 15, Speed is optimal at L2 = 1200 rpm, Heating
Pressure attains maximum S/N ratio at either L2 =
4400 psi or L3 = 4800 psi, and Upset Time is optimal
at its middle level, L2 = 3.60 seconds. We will break
the tie between L2 = 4400 psi and L3 = 4800 psi of
Heating Pressure from the RT of Strength. The RT
for Strength values of Barker and Clausing’s Table
VI is given in Table 16, and the associated Minitab
file, which also verified our answers, is available on
request. Table 16 clearly shows that the impact of
Upset Pressure and Length are highly significant on
the mean Strength, while the effect of Heating Time
is statistically significant at the 5% level (F0 = 5.169
> F0.05; 2, 14 = 3.74). Thus, these three process param-
eters (UPPRS, Length, and HTTIME) are Signal fac-
tors because they significantly influence the mean
response but have minimal impact on variability of
y. Table 16 further shows that the optimal levels of

these Signal factors to maximize Strength are
UPPRS3(L3 = 9500 psi), Length2(L2 = 0), and
HTTIME3(L3 = 3.60 seconds). Further, we had a
choice of two levels for the Control factor HTPRS
(L2 = 4400 psi or L3 = 4800 psi). Because Heating
Pressure has the maximum signal at 4800 psi, its
optimal level is L3 = 4800 psi. Therefore, our opti-
mum settings from our PDE for low-cost tolerances
are XO = Speed1200 HTPRS4800 UPPRS9500 Length0

HTTIME3.6 UPTIME3.6.
The article by Barker and Clausing (1984) then

proceeded with a confirmation experiment at the
above optimum condition XO as a tolerance design
with low-cost tolerances, and the result is given in
their Table IX and reproduced below. The value of
the mean for the confirmation run of Table IX is CNy
= 159.7312 and the larger-the-better S/N ratio is �CN

= –10 × log10(MSD) = 43.2496, and the confirma-
tion standard deviation SCN = 40.1526. Our values of
mean, S/N, and standard deviation match those of
the authors listed near the bottom of their p. 49, but
again we could not determine how Barker and
Clausing arrived at their nominal strength value of
184.152 for the confirmation experiment. The reader
should observe that the optimal levels from the PDE
have improved the mean strength to CNy  = 159.7312
(barely below 160 ksi) but better than 26 out of the
27 means listed in their original design Table VI.
However, the variability measured by SCN = 40.1526
is still too large (coefficient of variation is still more
than 25%), yielding a quality loss based only on
variability as L  = kS2 = 0.138889 × 40.15262 =
$223.921, which is consistent with the authors’ value
of $224 listed in their Table IX (p. 49). We have a
slight problem with using k = 0.138889 for the loss
function L  = kS2 because the value of 0.138889 was
computed for a modified form of the NTB loss func-
tion given in Eq. (10). Because Strength is LTB, we
used the Taguchi LTB loss function L(y) = k/y2 to
compute the constant k using the point (100 ksi, $500),
which yields k = 5,000,000. Then, L  = k(MSD) = 5 ×

106 ( )
18 2

i
i 1

1
1 y

18 =

⎡ ⎤∑⎢ ⎥⎣ ⎦
 = 5 × 106(0.00004732) = $236.5961,

which is in slight disagreement with the value of $224
reported near the bottom of the authors’ p. 49.

Barker and Clausing (1984) next ran an ANOVA
on the 18 strength values of their Table IX and pro-
vided their results in Table X, which is reproduced
below. There is a slight problem with Barker and
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Source Sum of Squares (SS) % Contribution 

Speed 772 2.0% 

Heat pressure 9318 34.0% 

Upset pressure 5595 20.0% 

Length 535 2.0% 

Heat time 5733 21.0% 

Upset time 3312 12.0% 

Residual No value was provided 9.0% 

 

Table X of Barker and Clausing—Analysis of Sources of Variation

Table IX of Barker and Clausing—Confirmation Run at X0 with Wide-Range Tolerances

Speed: 1200±10%; HTPRS: 4800±15%; UPPRS: 9500±15%; Length: 0± 10%; HTTIME: 3.6±20%; UPTIME: 3.6±20%

Clausing’s Table X, which represents the ANOVA
output from their Table IX design matrix. That is, in
their Table IX, the level of Length stays at zero
throughout the matrix and thus no SS (sum of squares)
attributed to Length can be computed because levels
of Length have to change at least once before a SS
can be computed. Our Minitab output with Length at
zero at all 18 FLCs is provided below.

General Linear Model: Strength vs. Speed,
HTPRS, ...

Factor Type Levels Values
Speed fixed 3 1080, 1200, 1320
HTPRS fixed 3 4080, 4800, 5520
UPPRS fixed 3 8075, 9500,10925
HTTIME fixed 3 2.88, 3.60, 4.32
UPTIME fixed 3 2.88, 3.60, 4.32

Speed 
(2) 

HTPRS 
(3) 

UPPRS 
(4) 

Length 
(5) 

HTTIME 
(6) 

UPTIME 
(7) 

Strength 
(y) 

1080 4080 8075 0 2.88 2.88 93.8254 

1080 4800 9500 0 3.6 3.6 180.285 

1080 5520 10925 0 4.32 4.32 247.502 

1200 4080 8075 0 3.6 4.32 96.4075 

1200 4800 9500 0 4.32 2.88 173.245 

1200 5520 10925 0 2.88 3.6 194.133 

1320 4080 9500 0 4.32 3.6 151.143 

1320 4800 10925 0 2.88 4.32 152.789 

1320 5520 8075 0 3.6 2.88 148.251 

1080 4080 10925 0 3.6 3.6 179.554 

1080 4800 8075 0 4.32 4.32 142.253 

1080 5520 9500 0 2.88 2.88 130.376 

1200 4080 9500 0 2.88 4.32 124.819 

1200 4800 10925 0 3.6 2.88 178.513 

1200 5520 8075 0 4.32 3.6 229.883 

1320 4080 10925 0 4.32 2.88 145.504 

1320 4800 8075 0 2.88 3.6 131.302 

1320 5520 9500 0 3.6 4.32 175.376 
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Analysis of Variance for Strength, Using Adjusted SS

for Tests

Source DF Seq SS Adj SS Adj MS F P
Speed 2 774.5 774.5 387.2 1.01 0.411
HTPRS 2 9311.3 9311.3 4655.6 12.17 0.005
UPPRS 2 5598.4 5598.4 2799.2 7.32 0.019
HTTIME 2 5732.8 5732.8 2866.4 7.49 0.018
UPTIME 2 3313.0 3313.0 1656.5 4.33 0.060
Error 7 2678.0 2678.0 382.6
Total 17 27407.9

S = 19.5594 = (382.6)1/2 R-Sq = 90.23% R-Sq(adj) = 76.27%

The only way that we could generate a SS for Length
was to replace the zeros in column (5) of Barker and
Clausing’s design matrix IX on their p. 49 with col-
umn (5) of the Taguchi L18 OA, which is

[ ]1 2 3 2 3 1 1 2 3 3 1 2 3 1 2 2 3 1 ′

We again ran Minitab on the resulting design matrix
and obtained the following output.

General Linear Model: Strength vs. Speed,
HTPRS, ...

Factor Type Levels Values
Speed fixed 3 1080, 1200, 1320
HTPRS fixed 3 4080, 4800, 5520
UPPRS fixed 3 8075, 9500,10925
Length fixed 3 1, 2, 3
HTTIME fixed 3 2.88, 3.60, 4.32
UPTIME fixed 3 2.88, 3.60, 4.32

Analysis of Variance for Strength, Using Adjusted SS

for Tests
Source DF Seq SS Adj SS Adj MS F P %Contrib.
Speed 2 774.5 774.5 387.2 0.90 0.462 2.826%
HTPRS 2 9311.3 9311.3 4655.6 10.87 0.015 33.973%
UPPRS 2 5598.4 5598.4 2799.2 6.53 0.040 20.426%
Length 2 535.6 535.6 267.8 0.62 0.572 1.954%
HTTIME 2 5732.8 5732.8 2866.4 6.69 0.039 20.917%
UPTIME 2 3313.0 3313.0 1656.5 3.87 0.097 12.088%
Error 5 2142.4 2142.4 428.5 7.816%
Total 17 27407.9

S = 20.6998 R-Sq = 92.18% R-Sq(adj) = 73.42%

Note that Minitab’s GLM does not provide a percent
contribution column, and as a result we used
Microsoft Excel to compute the last column of the
above output. Further, the last column of the above
Minitab output is in good agreement with Table X of
Barker and Clausing.

As stated earlier, although the mean strength has
improved to CNy  = 159.7312, variability for low-
cost tolerances measured by standard deviation SCN

= 40.1526 is still too large, causing 10 out of the 18
confirmation runs to have strength values well be-
low 160 ksi. The only option left for further vari-
ance reduction is to find high-cost (or narrow-range)
tolerances for the six process factors to reduce stan-

dard deviation from SCN = 40.1526 to a desired value
of, say Sd = 20 ksi, where the desired value of Sd =
20 was selected by the authors. Thus, the desired
variance of high-cost (or narrow-range) tolerances
is 2

dS  = 400 ksi2, resulting in 400/40.15262 = 0.2481,
or simply 24.81% of the low-cost variance of
40.15262 = 1612.2313. To determine the high-cost
tolerances of the six factors, Barker and Clausing
set up a tolerance reduction formula based on the
percent contribution of their Table X. Their trade-
off tolerance reduction formula, based on Table X,
is duplicated below and designated as Eq. (11).

( )

( )

2 2

2

2 2
2

Speed HTPRS UPPRS

1 1
0.2481 1 0.02 0.34 0.20

hp up

Length HTTIME UPTIME Residual

1 1
1 0.02 0.21 0.12    0.09

ht ut

⎛ ⎞ ⎛ ⎞
= + × + × +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ × + × +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

As Barker and Clausing state on their p. 48, Speed
and Length had minimal impact on variation
(roughly a total of 4%) and thus it is not worthwhile
tightening their tolerances. As a result, they kept the
Speed and Length tolerances at the low cost of ±10%.
The authors’ tolerance reduction Eq. (11) has an in-
finite number of solutions for hp, up, ht, and ut to
reach a goal of 24.81%. Although there are an infi-
nite number of solutions to the rational tolerance re-
duction Eq. (11), in practice the values of hp, up, ht,
and ut should be determined not only to reach the
desired goal of 0.2481 but also to minimize the cost
of tolerance reduction. One possible solution that
Barker and Clausing (1984) provide at the bottom
of their p. 50 is to reduce the low-cost tolerances
±15% of Heating Pressure by a factor of hp = 3 to
high-cost tolerances ±5%; to reduce the low-cost tol-
erances ±15% of Upset Pressure by a factor of up =
2 to the high-cost tolerances ±7.5%; to reduce the
low-cost tolerances Heating Time by a factor of ht =
4 from ±20% to ±5%; and to reduce the low-cost
tolerances of Upset Time by a factor of ut = 4 from
±20% to ±5%. We inserted these values of hp = 3, up
= 2, ht = 4, and ut = 4 into Eq. (11), and the left-hand
side of the Eq. (11) becomes 0.2384 so that the re-
sulting variance reduction is a bit more than the de-
sired amount of 0.2481. Another possible solution,
out of infinite, is hp = 2.5, up = 3, ht = 3, and ut =

(11)
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2.57, for which the left-hand side of Eq. (11) be-
comes 0.2481.

Before presenting the authors’ Final Design Sec-
tion, we must present an excellent quote from Barker
and Clausing (1984) from their p. 51, which is re-
produced below:

“Based on the rational reduction of variation we set
up a final design to verify our new tolerances. We
use another 18 treatment Taguchi L18 OA and the
results show that the variation has been reduced as
predicted to a much more tolerable level. The S/N
is now 45 db which is 2.13 times better than the

Table XI of Barker and Clausing—Confirmation Experiment at XO Using High-Cost or
Tight-Range Tolerances Embedded in the Taguchi L18 OA

START END 

 Speed Wide Range 10% Tolerances  1200 rpm 10% Tolerances 

 HTPRS Wide Range 15% Tolerances  4800 psi 5% Tolerances (1/3 of original) 

 UPPRS Wide Range 15% Tolerances  9500 psi 7.5% Tolerances (cut in half) 

 Length Wide Range 10% Tolerances  Zero 10% Tolerances 

 HTTIME Wide Range 20% Tolerances  3.6 sec. 5% Tolerances (1/4 of original) 

 UPTIME Wide Range 20% Tolerances  3.6 sec. 5% Tolerances (1/4 of original) 

 Strength Wide Range causing a big loss 

 Response LOSS: $350/engine 

 Strength Reduced range  

 Loss reduced LOSS: $22/engine 

 

Table XII of Barker and Clausing—Summary of Experimental Work

Speed 
(2) 

HTPRS 
(3) 

UPPRS 
(4) 

Length 
(5) 

HTTIME 
(6) 

UPTIME 
(7) 

Strength 
(y) 

1080 4440 8787.5 0 3.42 3.42 148.175 

1080 4800 9500 0 3.6 3.6 180.285 

1080 5160 10212.5 0 3.78 3.78 214.085 

1200 4440 8787.5 0 3.6 3.78 154.614 

1200 4800 9500 0 3.78 3.42 187.569 

1200 5160 10212.5 0 3.42 3.6 203.285 

1320 4440 9500 0 3.78 3.6 168.928 

1320 4800 10212.5 0 3.42 3.78 186.335 

1320 5160 8787.5 0 3.6 3.42 178.602 

1080 4440 10212.5 0 3.6 3.6 179.920 

1080 4800 8787.5 0 3.78 3.78 170.139 

1080 5160 9500 0 3.42 3.42 183.808 

1200 4440 9500 0 3.42 3.78 165.605 

1200 4800 10212.5 0 3.6 3.42 195.667 

1200 5160 8787.5 0 3.78 3.6 192.875 

1320 4440 10212.5 0 3.78 3.42 180.443 

1320 4800 8787.5 0 3.42 3.6 161.258 

1320 5160 9500 0 3.6 3.78 192.165 
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best combination of our original design and far bet-
ter than anything we would have achieved by trial
and error. More importantly, we have come to a
logical end point. There is no more searching for
that ‘pot of gold’ at the end of the rainbow that
often goes on in a nonsystematic searches for opti-
mum conditions.”

There may be a minor typographical error in their
S/N assessment in the above quote because we could
not verify the value “2.13 times better” because the
best S/N ratio in the original design occurs at run
number 18, whose S/N is �18 = 41.7 db.

As stated in the above quote, Barker and Clausing
(1984) then conducted another set of confirmation
experiments at the optimal condition XO = Speed1200

HTPRS4800 UPPRS9500 Length0 HTTIME3.6 UPTIME3.6

with high-cost tolerances Speed: 1200 ± 10%,
HTPRS: 4800 ± 5%, UPPRS: 9500 ± 7.5%, Length:
0 ± 10%, HTTIME: 3.6 ± 5%, and UPTIME: 3.6 ±
5% using a Taguchi L18 OA. The results are given in
their Table XI (p. 51) and duplicated above. Table
XI of Barker and Clausing may have a minor error
because the high-cost (or tight-range) tolerances of
Heating Pressure are 4800 ± 5% = 4800 – 0.05 ×
4800, 4800, 4800 + 0.05 × 4800 = 4560, 4800, 5040,
while they are listing 4440, 4800, and 5160 as the
three levels of HTPRS in their L18 outer OA. We do
not know if this minor error is typographical or if
4440, 4800, and 5160 are the actual levels used in
the final tolerance design confirmation runs. If in-
deed the HTPRS levels were set at 4440, 4800, and
5160, then the high-cost tolerances that are being
used for HTPRS are 4800 ± 7.5% (not the required
amount of ±5%), so the actual value of hp = 2 and
not the required amount of 3. With hp = 2, up = 2, ht
= 4, and ut = 4, the LHS of Eq. (11) becomes 0.2856
(not satisfying the desired amount of 0.2481).

We computed the mean, standard deviation, and
the larger-the-better S/N ratio of Table XI of Barker
and Clausing (1984), obtaining XIy  = 180.2088, SXI

= 16.8246, and �XI = 45.00522, which are identical to
those of the authors’ to three-decimal accuracy, which
they list near the bottom of their p. 51. The authors
then state that the amount of QLs has been reduced to
$22/engine in their Table XII, which is reproduced
above. We tried to use the data of Table XI of Barker
and Clausing to reproduce the amount of reduced QLs
that Barker and Clausing report as $22/engine at the
bottom of their Table XII. We attempted three differ-

ent methods to obtain the average quality loss/engine
of $22, which are summarized below.

1. L  = k × 2
XIS  = 0.138889 × 16.82462  = 39.3149

(not too far from $22/engine)

2a. L  = k × MSD, where MSD = ( )
18 2

i
i 1

1
1 y

18 =
∑  =

0.000568526/18 = 0.0000315848 Æ L  =
5000000 × 0.0000315848 = $157.924 (very
far from the stated $22/engine)

2b. Or, since �db = –10 × log10(MSD), L  = k ×
(10–�db/10) = 5000000 × (10–4.500522) = $157.924
(identical to 2(a) as expected)

3. Using the modified loss function L(y) =

( )2
k y 160 , if y 160 ksi

0, if y 160 ksi

⎧⎪ − ≤
⎨

>⎪⎩ , we obtained (see Table

XI of Barker and Clausing) L  = k × [(148.175
– 160)2 + (154.614 – 160)2]/18 = 0.138889 ×
[(–11.825)2 + (–5.386)2]/18 = $1.3028 (not
close to $22/engine)

Presently, we are not sure how Barker and
Clausing arrived at their L  = $22/engine. However,
it is quite clear that Taguchi’s tolerance design has
led to a tremendous amount of reduction in societal
QLs. Even if we take the average of the above three
distinct computed quality losses, we obtain an L  =
(39.3149 + 157.924 + 1.3028)/3 = $66.1806, which
is a quality loss reduction of ($350 – $66.1806)/$350
= 81.09% (a remarkable achievement).

14. Summary and Conclusions
In this article, each of Taguchi’s major contribu-

tions has been presented and described in sufficient
detail to allow the reader to understand and use the
tools presented. Taguchi’s contributions were iden-
tified as:

• The quantification of quality through Gauss’s
Quality Loss Function*

• Orthogonal Arrays to simplify the use of De-
sign of Experiments (DOE)

• Robust Designs (Parameter and Tolerance
Designs) to identify optimum settings to re-
duce process variability and to get the mean
on target*

• Definition and use of the Signal-to-Noise (S/N)
Ratio, which combines the mean and standard
deviation into one measure
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where * implies Taguchi’s major contributions. Each
of the above contributions was reviewed in detail
with an objective review of accolades and criticisms
of each contribution and examples of its use.

The Quality Loss Function was introduced as one
of Taguchi’s two greatest contributions. By apply-
ing Gauss’s quadratic loss, Taguchi was able to quan-
tify quality as deviation from the ideal target (instead
of the traditional view that cost is incurred only when
results do not meet design or consumer specifica-
tions). This contribution of Taguchi induced a change
in philosophy by manufacturers, who now realize
that to minimize total cost they must reduce vari-
ability around a customer-defined target instead of
just meeting customer specifications.

Although Orthogonal Arrays (OAs) were not “in-
vented” by Dr. Taguchi (many are actually classical
(fractional) factorial designs credited to Sir R.A.
Fisher, Box and Hunter, Kempthorne, Yates, and
other notables), he can certainly be credited with
popularizing their use by simplifying their format.
This article explained how OAs are constructed, the
importance of their alias structure and design reso-
lution, and provided examples of the construction
and use of some of the more popular Taguchi’s OAs,
specifically the L8, L16, L27, and L18 designs. The
contents presented herein can also aid those who
wish to use the Taguchi and Konishi (1987) book on
orthogonal arrays.

Taguchi’s Robust (Parameter and Tolerance) De-
signs are the other most significant contributions;
both were reviewed with examples of each. Param-
eter Design Experiments use inner and outer OAs to
identify the Control and Signal factors through the
use of Signal-to-Noise Ratio (S/N). The optimum lev-
els are identified with a resulting cost reduction (us-
ing Taguchi’s Loss Function). The authors used an
example from Barker and Clausing (1984) to show
how Taguchi’s Parameter Design is used to identify
optimum process condition, followed by Tolerance
Design to tighten factor tolerances to attain suffi-
cient reduction in process variation. As a general rule,
we would recommend to the process or manufactur-
ing engineer to use a single classical FFD with maxi-
mum resolution if the QCH of interest is STB or LTB
and if the CV is known to be < 20%. However, if the
QCH is a nominal dimension, then it is best to use
Taguchi’s crossed-array (or inner and outer OAs) to
perform DOE.

Throughout the discussions on Robust Designs,
the Signal-to-Noise Ratio was used. This is perhaps
one of Taguchi’s most controversial contributions
because some Western statisticians believe that
sample mean and variance should be analyzed sepa-
rately since they are stochastically independent for
a Gaussian process. The example used for Param-
eter Design was also presented by analyzing the mean
and variance separately (as compared to the analy-
sis using S/N), and results were presented that were
in slight disagreement with the results obtained from
the use of the S/N ratio. The dilemma of when to use
Taguchi’s S/N ratios and when to analyze the mean
and ln(S) separately is an interesting problem that
should be investigated in the future.

Finally, all manufacturing and process engineers
should be well aware of the fact that Sir Ronald A.
Fisher is the founder of the field of DOE, and Dr.
Taguchi is one of the pioneers of its applications to
process and manufacturing engineering. Taguchi fa-
cilitated the use of the very same methodology that
Sir Fisher started in the early 1920s and on which
many prominent Western 20th-century statisticians
continued to expand and build.

Nomenclature

ANOVA Analysis of Variance
CV Coefficient of Variation
CF Correction Factor
CIs Confidence Intervals
cdf Cumulative Distribution Function
df Degrees of Freedom
DOE Design of Experiments
FF Fractional Factorial
FFD Fractional Factorial Design
FLC Factor Level Combination
FNC Fraction Nonconforming
GLM General Linear Model
k Loss function coefficient and the num-

ber of factors in a factorial or FFD
L Mean (or Average) Quality Loss
LHS Left Hand Side
LTB Larger the Better
LSL Lower Specification Limit
L(y) Quality Loss Function for a single item
mod Modulus
MSD Mean Squared Deviation
MS Mean Square
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Nf Number of Distinct Factor Level com-
binations

NTB Nominal the Best
OA Orthogonal Array
PCR Process Capability Ratio
PDE Parameter Design Experiment
PEC Present Existing Condition
QCH Quality Characteristic
QL Quality Loss
QLF Quality Loss Function
QD Quality Difference
QI Quality Improvement
R Resolution
RT Response Table
RHS Right Hand Side
S/N Signal to Noise
SS Sum of Squares
STB Smaller the Better
SPC Statistical Process Control
TOIBTC Table of Interactions Between Two Col-

umns
USL Upper Specification Limit

CNy Mean of Confirmation runs
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