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Reference: Chapter  15 of Ebeling        Weibull  Failure  Data  With  (Types I & 

II)  and Multiple Censoring                                                              Maghsoodloo  

 For type II censoring, [n, U, Nf = r = r*], we have n units on test and our objective is to test 

exactly a  priori fixed number r < n of them to failure in order to obtain the failure times t1, t2, ..., tr 

and then use these observed failure instances to obtain the MLEs of    and .  We should first 

obtain the proper LF as provided below, where nPr is the permutations of n units taken r at a time. 
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For type I censoring (i.e., testing-time is censored), the above likelihood function modifies to 

L,)= r( )
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For multiple censoring the LF becomes  
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where r = SF  represents the failed units and SC = nr represents the censored units.   

        For type II censoring, taking the natural logarithm of Eq. (121a) yields 

L(, ) = ln(nPr) + r (ln
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Because the derivative of 1st and 4th terms on the above RHS will vanish, the above log-likelihood 

function reduces to   

 L(, ) = r ln(  ) r ln( )  + (  1)
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              = rln()  + (  1)
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We 1st take the partial derivative of L(, ) in (122a) wrt  and will require it to be zero. 
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                                                                      (123a) 

In order to solve for ̂  from equation (123a), we multiply throughout by +1/, which will reduce 

(123a) to    r +
r

i
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 + (n  r)( rt ) = 0   Thus for 

Type II  Censoring [n, U, r]:  ̂  =  
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Next we partially differentiate L(, ) in equation (122a) wrt  and set it equal to zero in order to 

obtain the MLE of  for type II censoring. 
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This last equation will simplify to 
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Combining Eqs. (124a), (123b), and using the fact that 
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This last equation (124b) and Eq. (123b) have to be solved simultaneously for ̂  and ̂  in order to 

obtain the ML estimates of the two Weibull parameters for type II censoring.  However, there will 

never exist a closed-form solution for the two MLEs ̂  and ̂ , and hence the approximate solutions 

have to be found using similar procedure that I have outlined on pages 232-243 of my notes for the 

case of no censoring.    

 For Type I censoring (i.e., testing-time is censored), similar procedure as above will lead to 

2 equations with 2 unknowns that will have to be solved simultaneously in order to obtain the MLEs 

̂  and ̂ ; the procedure is outlined in my summary at the end of this Chapter. 

           

For multiple censoring the log-likelihood function is 
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For multiple censoring, the partial derivative of L(, ) in (125) wrt  is given by 
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Set to  0                                                         (126a)   

The solution to Eq. (126a) will lead to the following MLE of the parameter  for the case of  
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Note that the MLE of  given in (126b) reduce to equation (111a) for the case of no censoring when 

all n units are tested to failure.  For Multiple Censoring, the log-likelihood function in Eq. (125a) 

reduces to  

L(, ) = r(ln   ln ) + (  1)
r

i
i 1

ln(t / )


   
r

i
i 1

(t / )


   

n r

j
j 1

(t / )


 


                         (125b) 

and its partial derivative wrt  is given by 
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For multiple censoring the two Eqs. (126b) and (126c) have to be solved numerically in order to 

obtain their simultaneous solutions for ̂  and ̂ .  To illustrate the procedure, I will go through the 

Example 5.19 on pages 310-314 of E. A. Elsayed that involves type II censoring. 

 

The Example 5.19 on page 310 of E. A. Elsayed.   In this experiment n = 30 

identical units are put on test at time zero W/O replacement and testing is stopped at the instant of 

t22 = 33 time units.  The instances of failure are 18.5, 20, 20.5, 21.5, 22, 22.5, 23.5, 24, 24.3, 24.6, 

25, 25.3, 25.6, 26, 26.3, 26.7, 27, 28, 29, 30, 32, 33.  From the problem statement I could not 

surmise if the units of measurements were in hours, days, or possibly weeks.  If this were an 

accelerated testing procedure, we could easily assume that the failure times were measured in hours; 

otherwise, the time unit could easily be in days.  For simplicity, I will assume that our TTF in this 

example is measured in hours.  It is clear that 8 units were right-censored at the instant t22 = 33 

hours, i.e., the most conservative lives that we can assign to the 8 surviving units is the value of the 

22nd order-statistic tr =22 = 33 hours.  As in other examples, we 1st try to obtain a rough value of the 

sample cv of TTF.  Note that it is impossible to compute the exact sample cv because we do not 

know the exact values of t23, t24, ..., t30, but we do know that their times TF are greater than 33 

hours.  To this end, let ut  and su represent the mean and standard deviation of the uncensored part 

of our data, i.e., ut  = 
r=22

i
i=1

1
t

r   = 25.2409 and su = 3.7203   cvu = 0.1474.  Now reference to 

Table 1 on page 10 of my Chapters 2, 3&4 will reveal that the value of ̂  will roughly lie within the 

interval [5, 10].  Please note that t  = 
n=30

i
i=1

1
t

n   > ut   but also the standard deviation, s,  of all the 30 

times TF, if the last 8 order statistics were available, would also be larger than su because the 
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corresponding complete sample would have larger range (however, note that a larger range does not 

always guarantee a larger s value).  This implies that the value of cvu = 0.1474 should be fairly 

close to cv = s/ t .   

 To obtain the ML estimates, I will start by assuming that ̂   5.0 at which equation (123b) 

yields ̂  = 30.5811.  Inserting these initial estimates into the LHS of equation (124b) yields the 

value of 0.1288 > 0 for the LHS.  Several trial and errors, using the MS Excel-Solver, yield ̂  = 

5.1055565545 and ̂  = 30.5764557476.  Note that these MLEs are almost identical to those of 

Elsayed’s given in the middle of his page 310, and also exactly match those of Minitab’s. 

 

Reducing  the  Amount  of  Bias  in  the  MLEs  of  Weibull  Parameters 

 As I have repeatedly mentioned before, the MLEs of Weibull parameters  and  are biased, 

i.e.,  E(̂ ) >  and only when n  r > 30 the amount of overestimation in ̂  is almost negligible.  As 

Elsayed mentions on his page 310, Bain and Engelhardt (B&E, Statistical Analysis of Reliability 

and Life-Testing Models, Theory and Methods, 1991, 2nd Edition, Marcel Dekker) provide a bias 

reducing factor for ̂  in their Chapter 4, which can be approximated by Elsayed’s empirical 

formula given below. 

                            G(n) = 1.00  1.346/n  0.8334/n2                      (5.39 of Elsayed) 

Because I have not done extensive research in this area, I cannot asses how accurate equation (5.39 

of Elsayed) for reducing the amount of bias B( ̂ ) = E( ̂  ) is.  However, Elsayed’s apparent 

regression result (5.39) seems to ignore the observed number of failures, r, which has a higher 

impact in determining the accuracy of the MLEs than the actual number of units, n, put on test at 

time zero.  Clearly, the larger the value of n, the higher the failure intensity level of a testing 

process, but if only r < 10 failures are observed, the MLEs may not be very precise (i.e., they may 

have large standard errors).  Further, for r < 10, the MLEs will most likely be fairly biased.  Just to 

check the accuracy of the model (5.39), I regressed the biasing factors, Bn, of Bain and Engelhardt 

(B&E) given in their Table 2 on page 221 of their text, using Minitab and obtained the following 

model (with 2
ModelR = 100%). 
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The Minitab regression equation is 

   nB̂  = 1.00104  1.41518 /n + 1.2288/n2  18.1081/n3 + 47.86/n4     (5.39Magh) 

I also had Minitab compute the fitted values of Bn and all of them were identical to 3 decimals to 

the tabular values of Bain & Engelhardt’s Table 2 on their page 221. 

 It seems that Minitab does not adjust the MLEs for bias and uses their value and the 

corresponding elements of the Fisher’s information-matrix in order to obtain the standard-errors of 

the estimates, which are described below. 

 

Approximating  the  se( ̂)for Type II Censoring 

The exact variance of ̂  cannot be computed, but as a 1st step we can compute the Cramer-Rao’s 

glb for the V(̂ ) from glb[V( ̂ )] = 
1

I(β)
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   + (n r) (tr/)ln2(tr/)].  Computing the exact expectation of the rv 

inside the large brackets is probably too complicated and seems not possible to this author, and thus, 

an approximate value of the V(̂ ) is given by 
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                        (127)                      

Substitution of ̂  = 5.1055565545 and ̂  = 30.5764557476 into equation (127) and the use of  

Matlab computation yields glb[V(̂ )]  0.8334754 and thus the se(̂ )  0.91295.  Due to the fact 

that our censoring ratio p = 22/30 = 0.733333, then from Table 5.11 of Elsayed simple interpolation 

yields c22 = 1.0577.  Therefore, the se(̂ )  0.91295 1.058  = 0.9391   HCIL (half CI length) = 

1.960.9391 = 1.84054    L = 5.10556  1.84054 = 3.26502,  and  U = 5.10556 +1.84054 = 

6.94610.  My Excel file shows how Minitab obtain the 95% CI for  using the se(̂ ) = 0.913278, 

and the 95% CI on : 3.59568    7.24945.  The details of obtaining the two CIs, that account for 

the cov(̂ , ̂ ) are provided on pp. 267-268 of these notes.. 
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Approximating  the  se( ̂)for Type II Censoring 

 As in the case of ̂ , computation of the exact V( ̂)is intractable mainly due to the fact that 

there is no closed-form solution for the MLE ̂ .  So, the 1st step is to obtain the glb for V( ̂ ) from 

glb[V( ̂ )} = 
1

I(θ)
, i.e., the I11 of the Fisher’s Info-Matrix, where I() = E[2L(, )/2] =  

=  
2

r


+  ( + 1)2 E[
r

i
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  + (n  r) rt ].  Again taking the exact mathematical expectation 

of the rv inside this last large brackets seems almost impossible to carry out (due to the fact that it 

will require the knowledge of the pdf of the ith –order, i = 1, 2, …., r, statistics from a Weibull base-

line distribution), and thus an estimate of I() is given by 
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                                   (128a) 

Since the glb[V( ̂ )} = 
1

I( )
, then from (128a) we obtain the approximate asymptotic variance  
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Combining (123b) with equation (128b) results in V( ̂ )  
2

2

ˆ

ˆr




.                                        (128c)              

The above approximate asymptotic variance for ̂  is fairly close to what Minitab would provide to 

2 decimals, but it totally disregards the correlation between ̂ and ̂ .  For the data of his Example 

5.19, equation (128c) yields V( ̂ )  1.6303 and se( ̂ ) = 1.27683, where Minitab gives 1.27729.  

My Excel file provides all the necessary computations.  Further, this last answer should be fairly 

close to the value of L if we approximate the se( ̂ ) from  se( ̂ ) = 2 2
11c θ / (nβ )ˆˆ  = 

2 21.4473×30.576456 / (30×5.105556 )   = 1.3154 (see Table 5.11 of Elsayed on page 272 of 

my notes at this chapter’s end).  Note that in the denominator of this last formula for the se( ̂ )  
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2 2
11c θ / (nβ )ˆˆ  you must use n and not r.   

          Bain and Engelhardt (1991) state that the asymptotic SMD of â = ̂ ln( ˆ /  ) is 

approximately Gaussian with zero mean and asymptotic variance equal to c11/n, where the values of 

c11 are listed in Table 5.11 of  Elsayed and reproduce herein on p. 272.  Using this approximation 

we obtain V( â ) = 1.057695/30 = 0.0352565   se( â ) = 0.187767143  P[ â   1.645 

0.187767143) = 0.95   P[ ̂ ln( ˆ /  )  0.30887695) = 0.95   P[ln( ˆ /  )  0.30887695 

/5.10556  ) = 0.95  P[ ˆ /    0.30887695/ 5.10556e ) = 0.95  P[ ̂ 0.30887695/ 5.10556e–  ) = 

0.95  L = 28.7814793.  If we use the MLEs of  and  in this last equation, i.e., ̂  = 

5.1055565545 and ̂  = 30.5764557476, we would obtain L = 28.6191, which is in good agreement 

with the value of L = 28.7814793 that I calculated using the fact that â = ̂ ln( ˆ /  ) is 

approximately N(0, c11/n). 

  Before discussing how to use 2 to obtain a more accurate CI for , we must state that a 

point MLE of the RE function for the Example 5.19 of E. A. Elsayed is given by R(t)ˆ = 

5.10556(t /30.576456)e , but obtaining a lower one-sided confidence limit for R(t) is not a simple task 

because R(t) is a monotonically increasing function of  but not of .  Recall that if  = 1, i.e., the 

TTF is exponential, then RL(t) = Lt/e  , where I discussed the development of exponential L and 

the 95% lower bound for RE in Chapters 12&13 of my notes.  However, in the Example 5.19 of 

Elsayed the TTF distribution is Weibull [ > 1 and thus an IFR (increasing failure rate)] and hence 

we need the exact SMD of the statistic R̂(t) = 
ˆˆ( t / )e
   in order to obtain the exact lower 95% 

confidence limit for R(t).  I am not well-read in this part of the literature of RE engineering, but I 

surmise that the exact SMD of 
ˆˆ(t / )e
  , where ̂  is the MLE of  and ̂ is the MLE of , is not 

mathematically tractable.  However, all MLEs in the universe have the following nice properties 

under certain regularity conditions, which are generally met in life testing situations. 

 

(1)  Suppose the statistic ̂  is the MLE of the parameter  and let g() be any function of the 

parameter  ; then it can be proven that g( ̂ ) is also a MLE of the parameter g().  For the example 
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5.19 of Elsayed, this property shows that 
ˆˆ( t / )e
   is a MLE of the parameter R(t) = (t / )e

  .  Note 

that unbiased estimators, unless the function g() is linear, do not possess this property. 

 

(2)  All MLEs in the universe, under certain regularity conditions (see Cramer H., Mathematical 

Methods of Statistics, Princeton University Press, 1946) are asymptotically unbiased.  For practical 

applications, the size of the sample n must exceed 50 before the amount of bias in the MLE 

becomes small relative to its se of the estimate.  For life testing situations, as I have repeatedly 

pointed out, the number of observed failures, r, also plays a very important role in the accuracy of 

the MLEs.  For practical applications, r should exceed 20 (or perhaps at least 15) before the amount 

of bias in a MLE is small relative to the se of the estimate.  

 

(3)  The SMD of all MLEs approach normality under certain regularity condition (see the 2nd 

volume of Kendall and Stuart, page 43).  However, the approach to normality is agonizingly slow 

unless the parent population is Gaussian, and unfortunately sometimes so slow that the practical 

application of this property may be rendered useless!  As before, I would refrain from using the 

normal approximation unless the value of r is reasonably large.  Let us relax the required value of r 

to at least 15 for practical applications, but be cognizant of the fact that the larger r values yield 

much better normal approximations of confidence intervals.  

 

(4)  MLEs are generally consistent and asymptotically efficient if the range of the frequency 

function f(t  ) does not depend on .  By consistency we mean that Lim of ̂  as n   is equal to 

, and by asymptotic efficiency we mean that V( ̂ ) attains its Cramer-Rao’s glb as n  .  

 

(5)  Unless the underlying population is Gaussian, the exact SMD of ML estimators for most 

underlying distributions (specifically the Weibull) are not known.  Even if the underlying 

distribution of the data is Gaussian, the exact SMD of a general g( ̂ ), is to my knowledge, not 

tractable.  For example, it is well known that the sample mean x  is the MLE of the population 

mean E(X) =  when the parent population is N(, 2) and the SMD of x  has been known for a 

long time to be N(, 2/n).  However, this does not imply that the exact SMD of g( x ) = 
2(x)e is 



 263

also normal just because x  is normally distributed.  However, since 
2(x)e  is the MLE of 

2
e , 

then its asymptotic SMD should be close to normal.  I hope the reader understands the spirit of what 

I am trying to convey from a statistical point of view?  Getting now back to the problem at hand, we 

do know that the Weibull MLEs ̂  and ̂  are asymptotically normal, but this does not imply  that 

the SMD of the MLE 
ˆˆ( t / )e
  approaches normality as fast as ̂  and ̂  do as n becomes 

increasingly large.  A second obvious problem is the fact that the MLE R̂(t) = 
ˆˆ( / )te
   contains a 

bivariate vector 
ˆ

ˆ

 
 
  

 whose components are highly correlated (see the information matrix inverse 

on page 207) and we have to obtain our lower confidence bound on R(t) without ignoring this 

correlation (i.e., we must take this correlation into account). 

 

The  Bonferroni  CI  for  the Two-Parameter Weibull  W(0, , )   

       The 95% CIs for  and  that we have obtained thus far have ignored the correlation between ̂  

and ̂ , i.e., the correct confidence band for the vector parameter 
 
  

 is an ellipsoid that with 95 % 

confidence contains the true vector 
 
  

.  To avoid such a complicated multivariate analysis, we 

use the Bonferroni method of obtaining a 95% rectangular confidence region that has at least 95% 

chance (prior to sampling) of containing the true parameters  and  simultaneously.  This method 

is valid regardless of the correlation structure of the estimators and allows the experimenter to 

control the overall error rate .  It can be shown that   
m

i
i=1

α , where for our case m = 2 

parameters, 1  1 is the confidence coefficient for  and 1  2 is the confidence coefficient for the 

parameter .  This implies that if we wish to obtain a joint 95% rectangular confidence region for 

 
  

 so that  = 0.05, then the individual error rates should be set at 1 = 2  0.025 because the 

overall confidence pr is given by (0.975)2 = 0.950625 > 0.95.  If we had three parameters for which 
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we would like to build a cubic 95% confidence region, then the Bonferroni method of obtaining 

joint CIs tells us that we should set the individual error rates i at approximately 0.05/3 = 0.016667 

because (1  0.016667)3 = 0.95083.  Please note that the larger the value of m is, the more 

conservative (or smaller) the overall error rate, , becomes; further, this method will work 

regardless of the correlation structures behind the confidence statements. 

         The above discussions tell us that in order to obtain a simultaneous Bonferroni 95% CI for  

and , we should really obtain the 97.5% individual CI for  and .  Therefore, the Bonferroni 95% 

CIs for  and  are as follows: 

          ̂    Z0.0125se(̂ ) = 5.10556   2.24140.9391  3.00066     7.21046 

L = ̂  Z0.025se( ̂ ) = 30.57646  1.961.27683 =  28.07387   28.07387   < . 

Due to the fact that the Weibull reliability, R(t) = (t/ )e
  , is an increasing function of both 

parameters  and  up to the characteristic life , the Bonferroni 95% lower confidence bound for 

R(t) is given by 
L

L(t / )e


  = 
3.00066 t /22175.055041e , which is valid only for 0  t       

3.00066 t /22175.055041e   R(t) < 1, 0  t   .   For example, the 95% lower confidence limit for R(t) 

at t = 22.5 hours is given by  RL(22.5) =  0.597664 (22.5 < ̂ ).  Note that the number of survivors 

beyond 22.5 hours for the data of Example 5.19 on page 299 is Ns = 24 so that a direct point 

estimate of R(22.5) would be roughly equal to R̂(22.5) = 24/30 = 0.80.  It seems that the Bonferroni 

confidence limit, RL(22.5) =  0.597664, for R(t) is quite conservative, and perhaps not very useful!   

 Before using the 2 for CI estimation, let’s try to obtain the 95% greatest lower bound on RE 

which is valid for the class of IFR distributions (such as the Weibull with  > 1) that generally will 

work even if the underlying distribution is not Weibull.  The (95%) glb on RE at a specific t0 < /n 

is given by 

   RL(t0) = 
0.05;r 1

o

( )
Exp[ t ]




,               (129a) 

where  represents the total testing time for all n units and  0.05; r1 =   is the solution to  

        
xr 1

x 0

e
x!






    = 0.05                (129b) 
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For the Example 5.19 on page 310 of E. A. Elsayed,  = 
22

i
i=1

t + 8tr =  555.3000 + 833 =  

819.3000, and  = 0.05; 21 is the solution to 
x21

x 0

e
x!





  0.05.  Matlab computations yields  = 

0.05; 21 = 30.24045.  Then at t0  22.5, we have from (129a), RL(22.5) = (30.24045 / 819.30)(22.5)e = 

0.4358412.  Note that this 95% glb on RE is too conservative relative to 0.597664 obtained from the 

Bonferroni method, and perhaps almost useless.  The main reason behind this is the fact that the glb 

in (119a) does not make the assumption of the Weibull baseline distribution; it just provides a glb 

on RE no matter what the underlying failure distribution is as long as the HZF is of increasing rate.  

Note that Eq. (119a) is disallowed if t0 > .  

 Bain and Engelhardt (1991) also state on their page 220 that the asymptotic SMD of R̂(t)  

(for n > 20) is normal with asymptotic mean R(t) and asymptotic variance equal to 

  V[ R̂(t) ]  2 2 2
11 12 22

ˆ ˆ ˆ ˆR [(ln(1/ R)] c 2c ln(ln(1/ R)) c [ln(ln(1/ R))] / n          (130)              

From Table 5.11 on page 308 of Elsayed at p = 0.73333, interpolation yields c11 = 1.38237665, c12 

= 0.080121, and c22 = 1.057695.  Inserting these c values and R(at t = 22.5)ˆ = 

5.10556(22.5/30.576456)e = 0.81148505 into (120) yields V[ R̂(t) ]  0.003567906 and se[ R̂(t) ] = 

0.05973195; as a result, RL(22.5) = 0.81148505  1.6450.05973195 = 0.713226.  This 95% glb on 

RE is more meaningful than the previous three, as all three were too conservative. 

 

Minitab’s Computations of CIs for the Two Weibull-Parameters 

Again, for type II censoring Minitab first obtains the Local-Fisher’s Information-matrix as 

follows: 

      I =  
11 12

21 11

I I

I I

 
 
 

 = 
I( ) I( , )

I( , ) I( )

   
    

 =
2 2 2

2 2 2

E( L/ ) E( L/ )

E( L/ ) E( L/ )

     

    

 
 
   

 

where I() = E[2L(, )/2] =  
2

r


 + ( + 1)2 E[
r

i
i 1

t


  + (n  r) rt ] = I11, 
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I() = E[2L(, )/2] = 2

r


 + E[

r
2

i i
i 1

[(t / ) ln (t / )]



   +(n  r)(tr/)ln2(tr/)] = I22, and  

I( , )  = E( 2 L/ )= r/ +  (+1)E[
r

i r
i 1

[t (n r)t ] 



  (1 ln) +(+1) 

E[
r

i i r r
i 1

[t ln(t ) (n r)t ln(t )] 



  = 12I . For the estimated elements of the matrix I, see my 

summary at the end of this chapter.  Minitab uses the inverse of the above, however approximated, 

Fisher’s matrix to obtain the se’s of ̂  and ̂ , which takes the correlation between the 2 Weibull 

estimators into account.  For the Example 5.19-Elsayed, we have 11Î  

 E[2L(, )/2]   0.61338703, 12Î  =  0.02301614 = 21Î , and 22Î    1.199795402; Î   

 

=
0.02301614

I(θ,β)

0.613387029

1.199795402ˆ

 
 
 

.  Upon inverting this last Local-Fisher’s matrix, we obtain   

 
   

1Î  = 
0.031297052

0.031297052

1.631466416

.8340758230

 
 
 

 .  Thus, the se( ̂ )= 1.631466416  =  

1.277288679 and the se(̂ ) = 0.913277517, which are identical to those of Minitab’s to 5 decimals. 

 

More  Exact  Confidence  Interval  for  the Weibull  slope   

             For censored data Bain and Engelhardt (1991, p. 223) have established that the SMD of 

2r/̂  approximately follows a 2 with an approximate df = 2(r  1), while for complete samples 

the SMD of 2/ ˆ 2 approximately follows a 2  with n  1 df.  Further, Bain and Engelhardt state that 

a better approximation for censored and complete samples is that the SMD of  cr
2

1+p(β / β)ˆ  

approximately follows a 2  with c(r 1) df, where the constant c = 
2 2

22

2

p(1 p ) c 
.   Table 5.11 

on page 308 of Elsayed provides the values of c22 for different values of failed fraction p = r/n.  For 

his Example 5.19 data on pages 310-314, the failed fraction p = 22/30 = 0.7333 = , c22  = 1.0577 and 

thus c = 1.0901 and as a result df = 1.0901(22  1) = 22.8915.  In order to obtain the 95% CI for , I 
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will interpolate for the 
0.025,22.8915

2χ  and  
0.975,22.8915

2χ  between the percentage points of 2 with 22 

and 23 degrees of freedom.  Given that 
0.025,22

2χ =    36.7807, 
0.025,23

2χ = 38.0756, then
0.025,22.8915

2χ   

37.9351; similarly, 
0.975,22

2χ = 10.9823, and  
0.975,23

2χ =  11.6886 yield 
0.975,22.8915

2χ  11.6120.   

Letting  = 22.8915, then the 95% confidence pr statement using 2 distribution is given by 

P(11.6120  2


   37.9351) = 0.95, or P[11.6120  cr ˆ( / )
21 p    37.9351] = 0.95     

                              P[
21/(1 p )11.6120 

( )
cr

  ˆ/    
21/(1 p )37.9351 

( )
cr

 ] = 0.95    

   

           P[ ̂
21/(1 p )11.6120 

( )
cr

     ̂
21/(1 p )37.9351 

( )
cr

 ]    L = ̂
21/(1 p )11.6120 

( )
cr

    and  

U = ̂
21/(1 p )37.9351 

( )
cr

 .   

   For the data of Example 5.19 of Elsayed, n = 30, r = 22,  ̂  = 5.105557 so that p = 22/30 = 

0.73333, c = 
2 2

22

2

p(1 p ) c 
 = 

2 2

2

0.73333(1 0.73333 ) 1.058 
 = 1.090074, and L = 

̂
21/(1 p )11.6120 

( )
cr

  = 3.185816  and  U =  ̂
21/(1 p )37.9351 

( )
cr

  =  6.87950, i.e., the 95% 

confidence interval is 3.185816    6.87950. 

    Finally, a more exact 95% lower confidence bound on  can be obtained from L  = 

̂ 0.95
ˆu /( n )e  , where the 95th percentiles of  U = ̂ n ln( ˆ /  ) are given in equation (5.50) of 

Elsayed (p. 313) for a censored sample for different values of p = r/n and is reproduced below. 

         U0.95 = 4.08   4.76 p + 2.43p2 + 11.41/n   9.85/(np) + 10.46/(np)2           (5.50 of Elsayed)  

 

The Approximate se’s for Multiple Censoring 

The exact variance of ̂  cannot be computed, but as a 1st step we can compute the Cramer-Rao’s 
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glb for the V(̂ ) from glb[V( ̂ )] = 
1

I(β)
, where I() = E[2L(, )/2] =  2

r


 +  

E[
r

2
i i

i 1

[(t / ) ln (t / )]


   +

n r
2

j j
j 1

[(t / ) ln (t / )]


  


   ].  Computing the exact expectation of the rv 

inside the large brackets is probably too complicated and seems not possible to this author, and thus, 

an approximate value of the V(̂ ) for Multiple Censoring is given by 

           ˆV̂( )   
2

r n r
ˆ ˆ2 2 2

i i j j
i 1 j 1

ˆ

ˆ ˆ ˆ ˆ ˆr [(t / ) ln (t / )] + [(t / ) ln (t / )]


   

 



       
 
 
  
 

                            (131)  

A better approximation than the above glb can be obtained from ˆV̂( )   
2

22
ˆc

n


.                  

As in the case of ̂ , computation of the exact V( ̂)for multiple censoring is intractable 

mainly due to the fact that there is no closed-form solution for the MLE ̂ .  So, the 1st step is to 

obtain the glb for V( ̂ ) from glb[V( ̂ )} = 
1

I(θ)
,where  I() = E[2L(, )/2] = r2 + 

+12E[
r

β
i

i=1

t  +
n r

j
j 1

(t )


 


 ].  Again taking the exact mathematical expectation of the rv inside 

the last large brackets seems almost impossible to carry out (due to the fact that it will require the 

knowledge of the pdf of the powers of ith –order, i = 1, 2, …., r, statistics from a Weibull base-line 

distribution), and thus an estimate of I() is given by 

                  I()  
ˆ 2ˆ ˆ ˆ( 1)( )   [

r ˆ
i

i 1

t


  +

n r ˆ
j

j 1

(t )


 


 ]  

2

ˆr
ˆ



= 
2

2

ˆr
ˆ



                                  (132a)  

Since the glb[V( ̂ )} = 


1

I( )
, then from (132a) we obtain the approximate glb of the asymptotic 

variance from V( ̂ )  
2

r n rˆˆ ˆ
ji

i 1 j 1

ˆ ˆ/

ˆ ˆ( 1)( ) t (t ) r[ ]


  

 

 

    
                                                (132b)                             

Combining (132b) with equation (126b) results in  
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                                                  V( ̂ )  
2

2

ˆ

ˆ


r
.                                      (132c)  

Thus an approximate more conservative V( ̂ ) is given by V( ̂ )  = c11

2

2

θ

nβ

ˆ

ˆ
.              

                              

Summary of Weibull with Censoring 

1. For type I censoring, numerically solve the following two Eqs.  in 2 unknowns. 

̂  =  

ˆ1/r ˆ ˆ
i

i 1

t (n r) / r[ ]


 



 
  

 
 T    and   

1

̂
 + 

r

i
i 1

1
ln(t )

r 
   

r
ˆ ˆ
i i

i 1
r

ˆ ˆ
i

i 1

t ln(t ) (n-r) ln( )   

t (n-r)    

 



 











T T

T

 = 0                         

  V( ̂ )  
2

rˆ ˆ ˆ
i

i 1

ˆ ˆ/

ˆ ˆ( 1)( ) [ t (n r) ] r  



 

     T

  , se( ̂)  2 2
11

ˆ ˆc / (n )   

            ˆV̂( )   

2

r
ˆ ˆ2 2 2

i i
i 1

ˆ

ˆ ˆ ˆ ˆ ˆr [(t / ) ln (t / )] +(n r)( / ) ln ( / ) 




 

        
  
 T T

    

         

          se(̂ )  22
ˆ c / n  

It is paramount to note that the se’s of ̂  and ̂  both diminish with increasing n and r.  

The decreasing relationship wrt n is obvious.  However, when r increases, then p 

increases and Table 5.11 of E. A. Elsayed shows that both c11 and c22 decrease. 

A more accurate estimate of se(̂ ) can be obtained from 

 se(̂ )  Unb n
ˆ C / n  

where Cn = 0.617 + 1.8/n  + 78.25/n3                                                     (5.40Elsayed)                     

and                                    Unb̂ = MLE n
ˆ G    
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where Gn = 1 1.346/n  0.8334/n2                                                        (5.39Elsayed)                 

From Bain & Engelhardt â= ̂ ln( ˆ /  ) is approximately Gaussian with zero mean and 

asymptotic variance equal to c11/n, and cr
21 pˆ( / )   approximately follows a 2  with c(r 

1) df, where the constant c = 
2 2

22

2

p(1 p ) c 
, where p = sample failed fraction.  

  In order to obtain Minitab’s answers CI limits, you must invert the local Fisher’s 

Information-Matrix in order to obtain their se’s and the resulting CI limits from are  L =      

ˆZ ×cv(β)0.025ˆe
 ,   u = 

Z ˆ×cv(β)0.025ˆe    and similarly for . 

 

2. Type II Censoring: ̂  =  

ˆ1/r ˆ ˆ
ri

i 1

t (n r)t / r{ }


 



 
  

  
    ;  1

̂
 + 

r

i
i 1

1
ln(t )

r 
  + 

ˆ

ˆ

r
ˆ
i i r r

i 1

t ln(t ) (n-r)t ln(t )   

ˆr( )









 




 = 0.  The elements of Fisher’s I-matrix are 

2

211I
ˆ

ˆ r
ˆ





,   

22Î =  
2

r

̂
 + 

r
ˆ ˆ2 2

i i r r
i 1

ˆ ˆ ˆ ˆ(t / ) ln (t / ) (n r)(t / ) ln (t / )[ ] 



       , and 12Î = ˆ ˆ ˆr( / )ln( )     

r
ˆ ˆ ˆ( 1)

i i r r
i 1

ˆ ˆ t ln(t ) (n r) t ln(t )[ ]{ }   



   . 

                    

In order to obtain Minitab’s answers on CI limits, you must invert the local Fisher’s 

Information-Matrix, Î , in order to obtain their se’s and the resulting CI limits. 

3. Multiple Censoring: ̂  =  

ˆ1/
r n rˆ ˆ

ji
i 1 j 1

t (t ) / r{ }



  

 

 
 

  
   and the constraint is   

     
r

i
i 1

r ˆln(t / )
ˆ 
 




n ˆ ˆ
i i i i

i 1

ˆ ˆ ˆ ˆ(t / ) ln(t / ) (t / ) ln(t / )[ ]   


       = 0,  
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The estimated elements of Fisher’s Info-matrix are I11 = I) 
2

2

ˆr
ˆ



, 22 2

r
Î

ˆ



+ 

n
ˆ 2 2

i i i i
i 1

ˆ ˆ ˆ ˆ(t / ) ln (t / ) (t / ) ln (t / )[ ]   



       , and  12
ˆ ˆ ˆÎ r( / ) ln( )      

n
ˆ ˆ ˆ( 1)

i i i i
i 1

ˆ ˆ (t ) ln(t ) (t ) ln(t )[ ]     



  .  

4.   In all cases R̂(t) = 

ˆˆ(t / )e
 

 ,  V[ R̂(t) ]  

 2 2 2
11 12 22

ˆ ˆ ˆ ˆR [(ln(1 / R)] c 2c ln(ln(1 / R)) c [ln(ln(1 / R))] / n    , and the 95% glb on R(t) is given 

by                             LR (t)   
ˆˆ(t / )e
   1.645se[ R̂(t) ] 

 

Table 5.11 of E. A. Elsayed (on his page 308, 1p = proportion of the sample that is censored; p 

= failed proportion) 

   p 1 0.9 0.8 0.7 0.6 0.5 

c11 1.108665 1.151684 1.252617 1.447258 1.811959 2.510236 

c22 0.607927 0.767044 0.928191 1.122447 1.372781 1.716182 

c12 0.257022 0.176413 0.049288   0.144825   0.446603   0.935766 

   p 0.4 0.3 0.2 0.1 

c11 3.933022 7.190427 16.478771 60.517110 

c22 2.224740 3.065515 4.738764 9.744662 

c12   1.785525   3.438610  7.375310   22.187207 

 


