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Reference :  Chapter 15 of Ebeling (The simple case of r = n)           Maghsoodloo  

Statistical  Inference  (SI)  When  the  Underlying  Distribution  is  Weibull  

 Recall that by SI we mean estimation and test of hypothesis.  We will cover only the case of 

minimum life  = 0, and therefore, the underlying TTF pdf is given by: f(t) = 1 (t / )t e
  






 = 

1 (t / )(t / ) e
  




= 1 ( t)( ) ( t) e
    .  We consider two experimental life testing situations: (1) 

No Censoring, (2) Failure Data with Censoring.  The experimenter should bear in mind that if data 

shows the minimum life is not zero (for example if the value of the 1st-order statistic were equal to 

23000 cycles, then obviously the minimum life is not zero), then such data can easily be converted 

to  = 0 by subtracting, say 0.90t(1) = 20700 cycles, from all times to failure and treating the 

resulting data with minimum life equal to zero in order to use the above 2-parameter Weibull pdf.  

The experimenter should bear in mind that if data shows that the minimum life is not zero (for 

example if the value of the 1st‐order statistic were equal to 23000 cycles to failure, then obviously 

the minimum life is not zero), then such data can easily be converted to t0 =  = 0 by subtracting, 

say 0.90t(1) = 20700 cycles (you may even try 0.85t(1) ), from all times to failure and treating the 

resulting data with minimum life equal to zero in order to use the above 2‐parameter Weibull pdf.   

For more accurate estimate of minimum life t0 see pp. 412 and 413 of Ebeling, where for the 

exponential (β =1)  0t̂  = Max [2t(1) – t(2), 0], this is basically the Eq. 15.25 of Ebeling on p. 413.  For β 

> 1 (IFR), use Eq. (15.23) of Ebeling on his page 412,  2
0 1 n j 1 n jt̂ (t t t ) / (t t 2t )    , where t1 = t(1) , 

tn = t(n) is the nth order‐statistic, and tj for the Weibull is jth‐order statistic, where j =  np    and np 

is always rounded up to the next higher positive integer.  The value of p is given in Ebeling’s Eq. 

(15.24) on his p. 413 as p = 0.8829n0.3437.  In almost all cases, the results of these more accurate 

formulas come very close to  0.85t(1)   0t̂  0.91t(1).  Further, Ebeling (p. 421) states that the 

MLE of t0 =  =Minimum‐life is equal to t(1).   

  When TTF, T, has the 3‐parameter‐Weibull W(,,), my recommendation is to make a 

simple transformation of the data to t= T   in order to reduce the 3‐parameter to the 2‐

parameter Weibull.  
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Failure  Data  Without  Censoring  (Complete  Samples, i.e. r = n) 

 In this case we have n units on test and our objective is to test all of them to failure in order 

to obtain the ordered failure times t1, t2, ..., tn and then use these observed failure instances to obtain 

the MLEs of    and .  Note that this testing situation is applicable only to components that have 

moderately large increasing hazard rate (function); otherwise, the testing duration will become cost 

prohibitive.  I will provide the MLF and its log and the resulting two partial derivatives wrt  and , 

but I am doing it only for the record.  You will be responsible only for knowing how to apply the 

results, which I will outline in a step-by-step procedure.    

 

ML  Estimation  Procedure 

 Recall that the Pr element of the ith failure time, ti, is given by i1 (t / )
it e
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hence the LF (likelihood function) is given by 
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               (109a)     

Taking the natural log of  (109a) leads to 

    L(, ) = n[ln()   ln()] + (  1)
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The partial derivative of  L(, ) wrt  is given by 

L(, )/  =  n/  


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Set to  0        (110)    

The solution to equation (110) is the MLE of  given below. 

                     ̂  =  

ˆ1 /n ˆ
i
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1
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

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 
 
  
                                                            (111a) 

Equation (111a) is the result that we need to obtain the point MLE of the characteristic life tc = , 

but the difficulty lies in the fact that unless we 1st obtain the point ML estimate of the slope , then 

we will not be able to compute ̂  from Eq. (111a).  Next we will obtain the MLE of  by partially 

differentiating L(, ) wrt . 
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Set to  0              (111b) 

Equations (111a&b) will have to be solved simultaneously in order to obtain the ML estimates of  

and .  Unfortunately, no closed-form solution will ever exist for ̂  and ̂ .  Therefore, the solutions 

have to be obtained thru trial/and error that will make both partial derivatives 

L(, )/ in (110)  and L(, )/ in (111b) almost equal to zero.  I will now go thru the 

Example 5.17 on pages 304-307 of E. A. Elsayed (2nd Ed.) in a step-by step procedure, and compare 

answers with his solution and that of Minitab’s. 

 Step 1:   For the Example 5.17 on pages 304-307 of E. A. Elsayed (2nd Ed.), n = 10 diodes 

were tested to failure under accelerated conditions.  The instances to failure in his example are ti = 

31000, 36000, 40000, 44000, 50000, 51000, 51500, 54000, 57000, and 63000 minutes (i = 1, 2, …, 

10); however, no information about the load factor Af  is provided.  Matlab computations yield  xS  

= 
n 10

i
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1
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
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  =  47750 minutes,  S = 

10
2

i
i 1

1
(t x)

9 

    = 
1

CSS
9

   = 
1

(879625000)
9

 =   

9886.1575504 minutes.  (Notice that Elsayed lists hours for the units of x  and s.)  Thus the sample 

coefficient of variation of TTF is given by cv =  S/ x  = 20.704% < < 1, which clearly implies that 

the underlying TTFS distribution is not exponential.  

 

 Step 2.    Since the hazard function of a Weibull is decreasing only during the early-life 

cycle of products (i.e., only during the RE growth cycle or burn-in period the slope lies in the 

interval 0 <  < 1), then for our example  > 1.  Equation (5.32) on page 304 of E. A. Elsayed (2nd 

Ed.) gives a rough approximation of the Weibull slope in terms of the corresponding sample cv.  

          ̂  = 
1.05

cv
                   (Equation 5.32 of Elsayed) 

The above equation gives us a starting point for ML estimation, i.e., we estimate our initial slope as 

̂  = 1.05/0.20704 = 5.0715.  I have used the values in my Table 1 in my Chapters 2,3&4, p.10, to 
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obtain a better regression model that relates the Weibull slope to the cv. The Minitab output is 

given below. 

 

Regression Analysis: Beta versus x = 1/CV 
 
The regression equation is 
Beta = - 0.270 + 1.20 x, where x = 1/CV,  1    5. 
 
Predictor       Coef      SE Coef        T        P 
Constant     -0.27015     0.02082     -12.97    0.000 
x             1.19841     0.00715     167.71    0.000 
 
S = 0.03010     R-Sq = 99.9%     R-Sq(adj) = 99.9% 
 
 
 
Analysis of Variance 
 
Source            DF        SS          MS         F          P 
Regression         1      25.486      25.486     28125.57    0.000 
Residual Error    15       0.014       0.001 
Total             16      25.500 
 
Unusual Observations 
Obs         x      Beta          Fit      SE Fit     Residual      St Resid 
  1       1.00    1.00000     0.92826     0.01435     0.07174        2.71R  
 
R denotes an observation with a large standardized residual 
 
 

 
Results for: WBeta.MTW 
 
Regression Analysis: Beta versus x = 1/CV 
 
 
The regression equation is 
Beta = - 0.591 + 1.28 x,   5    20 
 
Predictor        Coef     SE Coef          T        P 
Constant    -0.590770    0.008170     -72.31    0.000 
x             1.27540     0.00075    1698.72    0.000 
 
S = 0.01085     R-Sq = 100.0%    R-Sq(adj) = 100.0% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      340.00      340.00 2.886E+06    0.000 
Residual Error    14        0.00        0.00 
Total             15      340.00 
 
Unusual Observations 
Obs          x       Beta         Fit      SE Fit    Residual    St Resid 
  1        4.4     5.0000      4.9762      0.0052      0.0238        2.50R  
 16       16.1    20.0000     19.9801      0.0052      0.0199        2.08R  
 
R denotes an observation with a large standardized residual 



 234

 
 

 The estimate of  from the above 2 regression models are, respectively, ̂  =  0.27015 + 

1.19841 /0.20704 = 5.5182, or ̂  = 0.59077 +1.2754 /0.20704 = 5.5694.  These are fairly close to 

the value of 4.83 obtained from Cohen (1965), Technometrics 7, pp. 579-588, given in equation 

(5.32) of Elsayed.  So, I will settle for a rough estimate of ̂  = 5.00 and will use this to obtain a 

rough value of ̂  from my equation (111a), which is ̂  = 50938.5117215225 minutes.  These two 

estimates (̂= 5.00) make the RHS of equation (111b) equal to 0.504003453.  Since L(, )/ in 

equation (111b) is a decreasing function of , then we must increase the value of  in order to 

reduce the RHS of (111b) close to zero.  Through the Excel-Solver, I found that at ̂  = 

5.996972780 and ̂ = 51559.62598478 minutes, the RHS of (111b) is close to 1015.   As a matter of 

fact, the estimate ̂  = 5.996972780  is very close to that of Elsayed’s in the middle of his page 306. 

Therefore, the MLE of   and  to 6 decimals are ̂  = 5.996973 and ̂ = 51559.625985, which lead 

to R(t)ˆ =  
5.996973 (t /51559.625985)e .   As a result, a point ML estimate of the RE function at 40000 

minutes is given by R(40000 min)ˆ = 0.8039725487, which is consistent (to 3 decimals) with 

Elsayed’s answer on his page 306. 

 We have completed point ML estimation  for a W(0, , ) for a complete sample, and now it 

is time to perform further SI by obtaining a 95% CI for both parameters  and .  Again since the 

Weibull tc (characteristic life) is definitely a LTB type parameter (and thus no concern on the high 

side), my personal engineering preference would be to obtain the one-sided CI for , (L   < ), 

and a 2-sided CI for the parameter : L    U.  The reader must be cognizant that throughout 

these notes, we are setting the confidence coefficient, for the sake of convenience, at  1   = 0.95; 

further, the statistical entities L, L , and U  are indeed (correlated) random variables  before 

experimentation for obtaining failure data.  However, after experimental data are gathered and the 

needed sample statistics are computed, then no longer L, L , and U  are random variables but they 

are simply real-valued numbers and hence the deterministic intervals no longer have 95% pr of 

containing the true values of   and .  Once these two CIs are obtained, then they may be used to 

conduct tests of hypotheses about the parameters  and .  For example, if the data of the example 
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5.17 of Elsayed provides the 95% CI :  3.5     8.5, then we cannot reject the null hypothesis H0 : 

 = 6.5 at the LOS  = 0.05 because the hypothesized value of 0  6.5 lies inside the 95% CI :  3.5 

   8.5. 

 

Confidence  Interval  for  the  Weibull  Slope (or Shape)  

 It is well known that an exact CI for a parameter can be obtained only if the frequency 

function of the corresponding point estimator is exactly known.  Equation (111b) clearly shows that 

no closed-form solution exists for the point estimator ̂ .  I am almost certain that the exact SMD (or 

pdf) of ̂  for small to moderate values of r (r < 50) is not known, but from statistical theory the 

frequency function of all ML estimators (MLEs) asymptotically approach normality with 

asymptotic mean equal to the corresponding parameter and the asymptotic variance equal to 1/I(), 

where the sample information I() is described below.  Therefore, the asymptotic 95% CI for 

parameter  is given by  ̂    Z0.025se(̂ ), where Z0.025  = 1.959964.  I am also fairly certain that no 

exact closed-form formula exists for the V(̂ ) and hence the exact se(̂ ) cannot be computed, and 

as a result all of the following developments are simply approximations, and only for moderately 

large values of r failures the approximate CIs  are expected to be fairly accurate.  Thus, our next 

objective is to obtain a rough estimate of the se(̂ ).  This will require understanding the concept of 

statistical efficiency.    

 

Efficiency 

 We first show that E[L(t; )/] is always zero for any parameter , where t = [t1  t2 ...  tn] 

represent a complete sample of n failure times.  E[L(t; )/] = L f[ (t; )/ ] (t; )dt     = 

1 f (t; )
[ f
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  = 
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  (1) = 0   V[L(t; )/] = E{[L(t; )/]2}, 

where  we are using the fact that the joint pdf of  t = [t1  t2 ...  tn] is given by f(t; ) = 
n

i
i 1

f (t ; )


 .  

Let ̂  be a MLE of  (or any estimator of ); then, the COV[ ̂ , L(t; )/] = E[ ̂ L(t; )/] = 
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t

ˆ [
R

(t;  )/ ] f(t; )]dt L     = dˆ [
d

f(t; )]dt  
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E( ̂ ) =

d

dθ
 [ + B( ̂ )] = 1 + B( ̂ ), 

where B( ̂ ) is the amount of bias in the estimator ̂ and B( ̂ ) = 
d

dθ
B( ̂ ).  For convenience of 

notation, let  = L(t; )/ for which we just have shown that E() = 0 and COV( ̂ , ) = 

E( ̂ ) = 1 + B( ̂ ).  It is well known that 0  2  1, where  is the correlation coefficient 

between any two random variables.  Thus, 0  2 ˆρ (θ, ξ )  1     0   
2COV (θ,ξ )

V(θ) V(ξ )

ˆ
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  V( ̂ ) <               (112a)           

The quantity V() = V[L(t; )/] = E(2) = I() in the denominator of (112a) is called the 

information in the sample (about ); since, COV( ̂ ,) = E( ̂ ) = 1 + B( ̂ ), then (112a) reduces 

to 

          
ˆ[ ( )]

( )

21 B

I

 


  V( ̂ ) <                (112b) 

The information inequality (112b) is called the Cramer-Rao inequality in the field of statistics.  It 

provides the greatest lower bound (glb) for the variance of any estimator in the universe.  Simply 

put, there exists no estimator in the universe whose variance is less than the glb 
2[1+ B (θ)]

I(θ)

ˆ
.  

Further, only those estimators whose variance is equal to the Cramer-Rao’s glb are called efficient.  

Before discussing an Example, we need to show that V() = V[L(t; )/] = E(2) = I() is also 

equal to E(/) as illustrated below. 
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

ln(f(t; )] = 



[
f (t; )

f (t; )

 


], where f(t; ) = 

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Applying the expected-value operator to both sides of (113), and using the fact that  
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 (1) = 0,  we obtain V() = E(/). 
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This last result also shows that 

 I() = V() =  E[
2

2




ln(f(t; )] =  E[
2

2


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 L(t; )]= I11                         (114) 

 In general, if i̂ ( i = 1, 2, ..., m)  are the MLEs of m parameters with the log likelihood 

function L(x; 1, 2, ..., m), then the (i, j)th element of the information matrix, I, is given by Iij =  

E[2L(x; 1, 2, ..., m)/ij].  It can then be shown that the asymptotic covariance matrix of the 

vector ̂  = [ ˆ
1     ˆ

2 ...      m̂ ] is given by the inverse of the information matrix I, i.e., COV( ̂ ) = 

COV[ ˆ
1     ˆ

2 ...      m̂ ] = I1.   

 

 I will start the procedure by 1st obtaining the exact Cramer-Rao’s glb for the V( ̂ ); recall 

from inequality (112b) that  
2[1+ B (β)]

I(β)

ˆ
  V(̂ ) < .   From statistical theory it is well known that 

MLEs are asymptotically unbiased, and hence for large r, 
1

I(β)
  V(̂ ) < , where I() = 

E[2L(, )/2].  I partially differentiated equation (111b) to obtain 2L(, )/2, which is 

provided below. 
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n

2
i i

i 1
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Eq. (115) clearly shows that the information on  in the sample is directly proportional to the  

number of failures n because as n increases, the amount of information about  increases.  Further, 

in involves a very complicated mathematical expectation on the RHS of equation (115), given by   


n

2
i i

i 1

E (t ) [ln(t / )]


     .  Applying the Expected-Value operator to the term inside the 

summation in order to obtain an exact result is impossible, at least to the capability of this author.  
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Even simulation may not help because both parameters  and  are unknown and therefore the 

simulation procedure has to start with specified values of these parameters of the Weibull and hence 

the simulation result for 
n

2
i i

i 1

E (t ) [ln(t / )]


     would depend on the inputted values of  and 

.  Having stated the simulation problems, there is hope because once failure data are obtained, then 

the MLEs of  and  can be obtained, and hence the simulation can get started with these MLEs.  

This last computer simulation procedure in order to estimate the se(of any estimator) is called 

Bootstrapping in the field of Statistics.     

 

Bootstrap  Estimation  Procedure 

Step 1:  Recall that the MLEs of  and  (to 3 decimals) for the Example 5.17 are ̂  = 5.997  

and ̂  = 51559.626 minutes.  First assume that the underlying distribution of the failure data is  

W(0,  = 51559.626,  = 5.997), i.e.,  assume that the cdf is actually F(t) = 1  
5.997(t /51559.626)e . 

Recall from statistical theory that all continuous cdfs in the universe are uniformly distributed over 

the interval [0, 1], i.e., F(t) ~ U(0, 1).  This is because 
1

0

dF  = 1 for all continuous F(t). 

Step 2:  Use the cdf  from step 1 with the aid of a computer to generate a random bootstrap 

sample of  r ( = n in this case) t11 , t12, ...  . t1n.  Use these sample results to obtain the point MLE 

estimate of   and , denoted by *
1̂  and  *ˆ

1 , as outlined above. 

 

Step 3:   Repeat step 2 roughly B = 500 times (i.e., a simulation run size of at least 500, where B  

= 500 is my recommendation).  By now we will have roughly 500 bootstrap estimates ( *ˆ
1  , *ˆ

2  , ...,  

*ˆ
500 ) and ( *ˆ

1 ,  *ˆ
2 , ...,  *ˆ

500 ).   Next compute the bootstrap averages * = *ˆ
B

i
i 1

1

B 
   and  * . 

Step 4:  Then Bootstrap estimate of the se(̂ ) is given by ˆS  = * *ˆ[ ]
B

2
i

i 1

1

B 
    and similarly  
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for the se( ̂ ), i.e.,  ˆS  = * *ˆ[ ]
B

2
i

i 1

1

B 
    .   You may wish to replace B in the divisors by B  1, 

if that is your preference.   Note that the above Bootstrap procedure can be applied to all estimates 

whether the underlying distribution family is known or not.   When the underlying distribution 

family is unknown, it will become more difficult.  

 Now that I have outlined how to obtain reliable point estimates of the standard errors by a 

computer simulation, we have to get back to the problem at hand where we have to obtain rough 

estimate of se(̂ ) W/O the use of a computer.  Eq. (112b & 115) show that the glb for the V( ̂ ) is 

given by 

                       
2

n
2

i i2
i 1

ˆ[1 B ( )]

n
E (t / ) [ln(t / )]



 

     


    V(̂ ) <  .                  (116) 

If we assume that n = r is sufficiently large in order to ignore the amount of bias in the MLE ̂ , then 

the numerator of (116) reduces to 1.  To get the procedure for estimation of v(̂ ) started from 

inequality (116), we first assume that v(̂ )  2β / nˆ , where the two dots on the equality imply very 

rough approximation, and n = r when the failure data are not censored.  Note that v(̂ )  2β / rˆ   is 

consistent with  equation (5.37) atop page 308 of Elsayed with the element in the 2nd row and 2nd 

column of I1, except for the multiplier c22, which for the case of  r = n is equal to 0.607927 from 

Table 5.11 on page 308 of Elsayed, reproduced below.  Therefore, for the Example 5.17 data on pp. 

304-307 of Elsayed, we have a better approximation for v(̂ )  c22  2β / nˆ  = 0.608(5.99697)2/10 

= 2.18633 se(̂ )  1.4786  cv(̂ ) = 0.246562. Therefore, lower 95% confidence limit for the 

parameter  is given by  1.959964 0.2465625.99697e   = 3.69878, which is fairly close to Minitab’s   

answer of 3.65760.  Another way to estimate the value of the se(̂ ) is simply computing the glb of 

the inequality (116) using the given data, which I will now proceed to do.  From Eq. (116), 

v( ̂ )   
n

2
i i2

i 1

1

n
E (t / ) [ln(t / )]



     


     
2

2 n ˆ 2
i i

i 1

ˆ / n
ˆ

ˆ ˆ1 (t / ) [ln(t / )]
n







       


 = 



 240

Table 5.11 of  E. A. Elsayed (on his page 308, 1p = proportion of the sample that 

is censored; p = failed proportion) 

p 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

c11 1.1087 1.1517 1.2526 1.4473 1.8120 2.5102 3.9330 7.1904 16.4788 60.5171

c22 0.6079 0.7670 0.9282 1.1225 1.3728 1.7162 2.22474 3.0655 4.7388 9.7447 

c12 0.2570 0.1764 0.0493 -.1448 -.4466 -.9358 -1.7855 -3.4386 -7.3753 -22.1872 

 

 = 2.063142867; this Cramer-Rao glb (CRGLB) is very close to the actual v(̂ )  2.18633. 

We can now use the 95% CI: 3.69878    9.72312 to perform further SI on the parameter .  For 

example, suppose we wish to test the null 2-sided hypothesis H0 :  = 4.00 at the preassigned LOS 

 = 0.05.  Since the hypothesized value of , 0  4, is inside this 95% CI, then we cannot reject  

H0:  = 4.00 at the % LOS.  However, if we were to test H0 :  = 10.00 at  = 0.05, then we have 

sufficient evidence to reject H0:  = 10.00 because 0  10.00 lies outside the 95% CI 3.0989    

8.8950.  In other words, our 95% CI: 3.69878    9.72312  has provided all possible 5%-level 

tests of hypotheses regarding the parameter . 

Our next objective is to use the MLE point estimator of , which is given by ̂  =   

1/βn
β
i

i=1

1
t

n

ˆ

ˆ 
 
 
 , and its se to obtain a lower one-sided 95% CI for the characteristic life tc = . 

  To this end, we 1st need to compute the value of the sample information on  given by I11 = I() =  

 E[2L(, )/2]  =  ( + 1)2 E(
n

β
i

i=1
t )  

2
nβ

θ
 = 

2
β

θ

n

i
i 1

( 1) E( t ) n



 
    

 
 .   Therefore, 

from Cramer-Rao’s inequality the glb[V( ̂ )] = 
2

n

i
i 1

( 1) E( t ) n





    
 
 
 


.     Equation (110) 

shows that L(, )/  =  n/ +  1 
n

β
i

i=1
t  

Set to  0 , or    n  +
ˆˆ( )

n
β
i

i=1
t
ˆ

 = 0. 
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Inserting 
ˆˆ( )

n
β
i

i=1
t
ˆ

   = n  into  glb[V( ̂ )] =
2

n

i
i 1

( 1) E( t ) n




 

     
 


  ,  we obtain   

v( ̂ ) 
2ˆ

ˆ ˆ( 1)n n


     

  = 
2ˆ ˆ( / )

n

 
                           (117a) 

It is interesting to notice that 
n

i
i 1

E t


 = 

n

i
i 1

E(t )


  = n 1 (t/ )

0

t (t / ) e dt


   


  = n, which is 

consistent with ML estimation.  The v( ̂ ) in Equation (117a) is identical to the term in the 1st row 

and column of the I1  matrix given in equation (5.37) of Elsayed, except for the multiplier c11, 

which is equal to 1.108665 listed in his Table 5.11.  Thus, for the case of uncensored data (i.e., 

complete sample),    

    v( ̂ )  1.109
2ˆ ˆ( / )

n

 
                (117b) 

For the failure data of the Example 5.17 of Elsayed, v( ̂ )  1.1087 (8597.6088104)2/10 = 

8195127.205356   se( ̂ ) = 2862.7133 hours.  Hence, the value of the asymptotic 95% lower 

confidence limit is L =  51559.6259832  1.645se( ̂ ) = 46850.4627    46850.4627   < .    

This 95% CI provides uncountably infinite number of right-tailed tests on the parameter  of the 

type H0:  = 0  versus the alternative H1 :  > 0.  For example, if we were to test  H0:  = 50000 

hours vs  H1:  > 50000, then our CI does not provide sufficient evidence at the 5% level to reject 

H0 and hence we will be unable to conclude that   > 50000.  This is due to the fact that the 

hypothesized value 0  50000  hours lies inside the 95% CI:  46850.4627   < .  On the other 

hand, our 95% CI will provide sufficient evidence to conclude, at the 5% level, that the value of tc = 

  exceeds 45000 hours. 

 

Computing the Standard Error using Fisher’s Information-Matrix 

The Fisher’s inverse of information matrix, I, for the 2-parameter Weibull is given by 

                                   I1   
ˆ ˆ ˆV( ) Cov( , )

ˆ ˆ ˆCov( , ) V( )

   
 

    
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E. A. Elsayed recommends the following variance-covariance matrix in order to compute the 

variances of the two estimators ̂  and ̂  

                                             

2 2
11 121

2
12 22

ˆ ˆ ˆc / (n ) c / n
Î

ˆ ˆc / n c / n


   

  
   

.        (5.37 of E. A. Elsayed) 

For example, if a sample is 70% completed to failure, or 30% censored (i.e., p = r/n = 0.70), then 

Table 5.11 of Elsayed shows that v( ̂ )  1.4473
2(θ / β)

n

ˆˆ
, v(̂)  c22 2β / nˆ = 

1.1225 2β / nˆ , and cov( ̂ ,̂ )  0.1448 ̂ /n.  The above I1 clearly shows that the two Weibull 

estimators ̂ and ̂  are not independent, i.e., they are correlated.    

However, Minitab first obtains the Local-Fisher’s Info-matrix as follows: 

      F =     
11 12

21 11

I I

I I

 
 
 

 = 
I( ) I( , )

I( , ) I( )

   
    

 =
2 2 2

2 2 2

E( L/ ) E( L/ )

E( L/ ) E( L/ )

     

    

 
 
   

 

where E( 2 L/ ) n(̂ / ̂ )ln( ̂ )  (̂ / ̂)
nˆ ˆ

ii
i 1

ˆ t ln(t ) 



      = 12Î . Minitab uses the 

inverse of the above approximated Fisher’s matrix to obtain the se’s of ̂  and ̂ , which takes the 

correlation between the 2 Weibull estimators into account.  I will now do so for the Example 5.17 of 

E. A. Elsayed.   

11Î  [2L(, )/2]  = 2n β / θ)ˆ ˆ(  = 0.06135283, 12Î =  0.0480405433 = 21Î  and 22Î   
2

n

̂
 

+
n ˆ 2

i i
i 1

ˆ ˆ(t / ) [ln(t / )]



       = 
2

n

̂
 +

nˆ ˆ 2
ii

i 1

ˆ ˆt [ln(t / )] 



      = 0.484697408; F̂  = 

0.000000135283 0.000080405433

Î( , ) 0.484697408

 
 

  
 .  Upon inverting this last Local-Fisher’s matrix, 

we obtain  1F̂  =
8200408.0038111 1360.348435

1360.348435 2.288808208

 
 
 

.  Thus, the se( ̂)= 
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8200408.0038111  = 2863.6354523 and the se(̂ ) = 2.288808208 = 1.512881, which are 

identical to those of Minitab’s to 5 decimals. 

 

The Example 5.18 on  page 309 of Elsayed.    This example provides a complete 

sample with times to failure of n = 10 identical units.  Since the unit of  TTF is not specified, I will 

assume the times TF were measured in hours.  The failure data are 20, 22, 24, 25, 26, 27, 30, 35, 42, 

52 hours, which give mttf = 30.3000, S = 10.0117, and cvt = 33.04% < < 1.  The Minitab output on 

page 233-234 of my notes yields ̂  =  0.270 + 1.20/0.3304 = 3.3620 as the initial value of ̂ . 

Next, using the MS-solver and solving (111a) and (111b) simultaneously yields ̂  = 33.7585 ̂= 

3.27550.  These MLEs are consistent with those of Elsayed’s listed in the middle of his page 309.  

Using v(̂ )  0.6079 2ˆ(β) /n  yields v(̂ ) = 0.65232 (Elsayed’s answer is 0.6521) and the se(̂ ) = 

0.80766.  Thus, the asymptotic 95% CIs are provided in the Excel file that has already been emailed 

to you.  Further, Elsayed uses the more exact SMD of (cr)
2(1+p )(β / β)ˆ  which is 2

c(r-1)
χ , where p = 

proportion of the sample that has failed and (1  p) represents the censored proportion of the 

sample), and c = 2[(1+p2)2pc22]1.   Table 5.11 on page 308 of Elsayed gives the values of cij for p 

= 0.10(0.10)1.  The 95% lower confidence limit for the characteristic life is given by ̂   

1.645se( ̂ ), where  se( ̂ ) = 
2

11

(θ / β)
c

n

ˆˆ
 = 

2(33.7585 / 3.2755032)
1.1087 ×

10
 = 3.4317  L = 

33.7585 1.6453.4317 = 28.1133  28.1133   <  at the 95% confidence level. 

 

Obtaining  More Exact  95%  Lower  One-Sided  CI  for  the  Weibull    

W(0, , ) Characteristic  Life and  Reliability  Function 

 Since the characteristic life, tc = , is an LTB type population parameter, then there is 

absolutely no concern on the high side and hence, as before, we will obtain only a  

lower  95%  CI for  of the form L   < .  As always, before experimentation L is a rv (random 

variable), but after data have been gathered and a numerical value computed for L, then the 

deterministic interval L   <  is no longer random and its pr of containing the true value of  
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reduces to 0 or 1.  I will discuss the CI estimation for the uncensored sample case first.  This 

estimation is easier than CI estimation for a censored data.  We will first obtain the lower one-sided 

CI for , followed by a lower 1-sided CI for R(t). 

 Since there does not exist a closed-form solution for the ML estimator ̂ , then it will always 

be impossible to use mathematical statistics to obtain the precise SMD of the statistic θ̂ / θ .  

However, Bain, L. J. and Engelhardt, M. (1991), 2nd Edition, New York, Marcel Dekker, used 

simulation to obtain the approximate percentiles of the SMD of the statistic U = β n ln(θ / θ)ˆ ˆ , 

which they tabulate on their page 230 for different sample sizes and confidence levels  = 1  = 

0.02, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.98.  I do not know why the tabulation was not 

done for 1  = 0.005, 0.99, and 0.995.  Since, we are interested only in developing a 95% lower 

one-sided CI for , then our interest centers only at the value of  = 1  = 0.95.  I took Bain and 

Engelhardt’s 95 percentiles of U, for n = 5 to n = 120, given in their Table 4A on their page 230 and 

used Minitab to obtain the following models for the percentiles u0.95 and u0.975.   

          0.95û (n)= 1.7093 + 3.8522 /n   11.3533 /n2 + 56.3650 /n3                      (118a) 

          0.975û (n) = 2.1043 + 6.3308 /n   30.918/n2 + 153.95 /n3                      (118b) 

 

Minitab reported an 2
ModelR   99.6% for the above models and I tried to improve them to obtain  

nearly a 100% value of  2
ModelR  by adding 1/n4, but the models would not improve any further.  I 

tested the values of 0.95u (n)ˆ   from equation (118a) against those given in equation (5.48) of Elsayed 

on page 322 as U0.95 = 1.720 + 3.163/n + 18.25 en,  both Elsayed’s and mine agree (to 3 decimals) 

with those listed in Table 4A of  Bain and Engelhardt (on their page 230) for n = 5 to n = 120. 

 The Example 5.18 on page 309 of Elsayed provides a complete sample for n = 10 with times 

to failure as 20, 22, 24, 25, 26, 27, 30, 35, 42, 52 hours (note that units are not provided in this 

example and I am guessing that it is hours to failure).   Inserting n = 10 in equation (109a) gives 

0.95u (10)ˆ  = 2.03733 (B&E report U0.95 = 2.037 in their Table 4A on page 230 for n = 10).   

Therefore, the P [β n ln(θ / θ)ˆ ˆ   2.03733 ]  0.95.  Rearranging the inequality inside this last 

brackets yields 
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        L(0.95)  = 0.95
ˆu /( n )ˆ e                                                    (119)                             

Inserting the values of ̂  = 33.7585, ̂  = 3.2755032, and .ˆ ( )0 95u 10  = 2.03733 into equation (119) 

yields ( . )L 0 95  = 27.7307.  Thus, we are 95% confident that the true value of  lies in the interval  

27.63201 hours   < .  This CI is not as conservative as that of Elsayed’s 26.20 hours   < , 

given on his page 313, because of the fact that Elsayed used the unbiased estimates of  and , 

which he computed to be ̂  = 2.81 and 1θ̂ = 33.01.  Since his 95% lower bound for  is more 

conservative, then you may wish to also use the unbiased estimates of  and , as he did.  Using 

equation (119), Lθ (0.975)  = 0.975
ˆu /( n )ˆ e   =  26.30984. 

 A point MLE of R(t) is given by R̂(t) = 
3.2755(t/33.7585)e .   For example, R(25hours)ˆ = 

0.6881.  Due to the fact that the RE function of a Weibull is not a monotonically increasing function 

of the slope  (recall that the Weibull RE increases with increasing  up to the characteristic life  

and then decreases with increasing ).  Hence, RL(t) will not equal to 
L

L(t/ )e
  and as a result in 

order to obtain a lower 95% CI for R(25hours) , we need to have some idea about the SMD of 

R(25hours)ˆ .  As stated before, the SMD of all MLEs approach normality (as n  ) with mean 

equal to the corresponding parameter, namely R(25), and a variance whose asymptotic value is 

equal to 1/I[R(t)].  I surmise that I[R(t)] = E[2L(, )/R2] cannot be computed directly.  Thus, 

Bain and Engelhardt (p. 217) provide an empirical formula to compute the asymptotic variance of 

R̂(t) , but their formula does not provide a conservative glb for R(t) as shown in their Table 7A (pp. 

236-243).  Thus, I took the liberty, through trial/error, to provide a revised version of their formula, 

given below, so that the normal approximation will provide a more conservative value of RL(t) for 

almost all n.  

v[ R̂(t) ]  2R̂ (t)[ln(1/ R̂(t) ]2 {1.70  0.70 ln(ln(1/ R̂(t) ) )+ 0.70[ln(ln(1/ R̂(t) ))]2 }/n     

                                                                       (120) 

Inserting the value of R(25hours)ˆ = 0.6881 into equation (120) gives v[ R̂(25) ] = 0.0203, and the 

se[ R̂(25) ] = 0.142449 and 1.645se( R̂(25) ) = 0.23433, and hence RL(25 hours)  R̂(25)  
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Z0.05se[ R̂(25) ] = 0.45373   0.45373  R(25) < 1.  Thus, we are 95% confident that the 

reliability function at t = 25 hours exceeds 0.45373. 

 

Estimation of Weibull Parameters using Weibull Graph Paper (WGP) and 

Least-Squares.  

Recall that because R(t) =

t
( )

e , t



  , then  ln[R(t)] =

t
( )
 


  

  ln[1/R(t)] =
t

( )
 

  
  

ln{ln[1/R(t)]} =
t

ln( )
 


  

 ln{ln[1/R(t)]} = [ln(t ) ln( )]        = ln(t ) ln( )       = 

ln(t ) C    , where C = ln( )    is a constant .  Letting y = ln[ln(R 1)] , x = ln(t )   yields 

y = βx + Cwhich represents a line with slope  and Y-intercept C.  This is why the shape parameter 

 is also called the slope of the Weibull distribution.  For the case of zero minimum life, x = ln(t)  

and the y-intercept is C = ln( )  =βln(1 / θ) .  Because all Weibull distributions have a RE value 

of e 1 at their characteristic life tc = , the Weibull graph paper (WGP) has two ordinates, where the 

right scale gives ln[ln(R 1)]  and the opposing left scale gives F(t).  Thus, y = ln[ln(R 1)] is the 

right coordinate scale and its value at t =  is equal to y() = ln[ln(e 1)  1] = ln[ln(e)] = ln(1) = 0 

while the corresponding left ordinate is obtained from 0 = ln[ln(1/R)] = 
1

ln[ln( )]
1 F

  
1

ln( )
1 F

 

= e0 = 1    
1

1 F
 = e   1  F = e 1  0.3679  F = 0.6321  The 63.21% failure point on the 

left scale corresponds to the characteristic life  on the abscissa because ln[ln(1/R())] = 0 [see 

Figure 11.2 of Kapur and Laberson (1977) on their p. 296] reproduced on the next page.  Yet as 

another example, 1 = ln[ln(1/R)] on the right scale of figure 11.2 implies that 
1

ln( )
1 F

 = e1 = 

0.3679   
1

1 F
 = 1.4447 1F =  0.6922  F =  0.3078  the WGP left scale will correspond 

to roughly 30.78% cumulative failure, etc.  Finally, the RE function of the Weibull for the same 

values of  and  is an increasing function of the slope  up to the characteristic life  and then 

becomes a decreasing function of  for t values beyond .   As an example of using the WGP to 
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estimate the parameters of a W(0, , ), see the Example 15.5 on pages 366-7 of Ebeling and my 

Excel file on my website that obtains the LSE of  followed by . The 95% glb on RE at 40 hours 

for the example 15.5 of Ebeling is roughly given by 10.52 = 0.48, while we are 90% confident that 

30% of the units will fail within the interval (20, 87 hours).   The 5 failure-times of Ebeling’s 

Example 5.15 are 32 hours, 51, 74, 90, and 120. 

 

Chapter 15 Summary 

1. In order to obtain MLE of Weibull  and , solve the two Eqs.  

          ̂  =  

ˆ1 /n ˆ
i

i 1

1
t

n






 
 
  
   and   L(, )/ = 

n


  n ln() + 

n

i
i 1

ln(t )

   [

n

i
i 1

(t / )






 ]  

               = 
n


  n ln() + 

n

i
i 1

ln(t )

   

n

i i
i 1

(t / ) ln(t / )



      
Set to  0     

simultaneously in order to obtain ˆ ˆand  .  Then, the point estimate of RE at time t 

is given by 
ˆˆ[(t / ) ]R̂(t) e
  .   In general, the elements of Fisher’s Info-matrix are 11Î   

β2 β

1
βθ β +1)θ

n ˆˆ
i

i

ˆ ˆˆ ˆ( t n[ ] 


 , 12Î =

ˆˆˆ ˆ( 1) ( 1)
ii

ˆ ˆ ˆ ˆ ˆ ˆt
n n βββ β

i
i=1 i=1

n / θ + θ βln(θ) 1 βθ (t ×ln(t )[ ]     
   

 
   , 

and 22Î   
2

n

̂
 + 

n ˆ 2
i i

i 1

ˆ ˆ(t / ) [ln(t / )]



       = 
2

n

̂
 +

nˆ ˆ 2
ii

i 1

ˆ ˆt [ln(t / )] 



      .  These will 

reduce further for MLE, but have to be used as is for LSQ estimation. 

 

2. Better Approximation for CI limits on  and  when n < 20. 

Bain and Engelhardt state that a better approximation for censored and complete 

samples is that the SMD of  cr
21 pˆ( / )   approximately follows a 2  with c(r 1) df, 

where the constant c = 
2 2

22

2

p(1 p ) c 
.   Table 5.11 on page 308 of Elsayed (page 

223 of my notes) provides the values of c22 for different n and censoring proportion  
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Figure 11.2 of Kapur and Lamberson (1977) from their page 296 
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 1  p.  For the Example 15.5 of Ebeling, n=5, ti : 32, 51, 74, 90, 120 hr, p =1, c = 

2 2

2

1(1 1 ) 0.60793 
 = 0.822463  df = 0.822463(5  1) = 3.289852  

 4.112316
2ˆ( / )   ~  

3.3

2   
0.975;3.3

2  0.2964 and 
0.025;3.3

2  9.8869   P[0.2964  

4.112316
2ˆ( / )   9.8869]  0.95     L  

0.2964ˆ
4.11232

  = 2.645510.26846198 = 

0.710219 and u  
9.8869ˆ

4.11232
  = 4.101998.  0.95û (n) =1.7093 + 3.8522 /n    

11.3533 /n2 + 56.3650 /n3  0.95û (5)  = 2.476528, L (0.95)    0.95
ˆu /( n )ˆ e   = 

82.9054
-2.47653/(2.64551 5)e = 54.54644.  Note that the above  L = 0.71022 is 

troublesome because the baseline distribution is IFR Weibull and  < 1 implies DFR.  

Minitab gives the 95% CI for  as 1.3093    5.34540.  From their help menu, I got 

the formulas  

                           L  
ˆz ×cv(β)0.025ˆe

       and         u  
ˆz ×cv(β)0.025ˆ e        

I inverted Minitab’s formulas to ascertain that the SMD of ˆ ˆln( / )    must be 

approximately normal with mean zero and stdev of roughly equal to se(̂ ), as 

depicted below. The Figure shows that the P[  1.96se(̂ ) 
ˆ ˆln( / )     

1.96se(̂ ) ]  0.95  

                     P[  1.96cv(̂ )
ˆ ˆln( / )    1.96cv(̂ ) ]  0.95 

                     
ˆ ˆ1.96 cv( ) 1.96 cv( )ˆ ˆP e e[ ] 0.95             For the data of 

Example 15.5 of Ebeling, ̂ = 2.64551, se(̂ ) = 0.9223  cv(̂ ) = 

0.348712  L  
-1.96×0.348712.64551e  = 1.3356 and  u   

ˆ1.96 cv( )ˆ e           



 252

u  
0.683482.64551 e = 5.2401    1.3356 5.2401     

Minitab’s answers: 1.3093 5.3454  . 

 

 

            

 

 

To obtain the 95% glb on , use the SMD of U = ˆ ˆn ln( / )    with the approximate 

percentiles  0.95û (n) = 1.7093 + 3.8522 /n   11.3533 /n2 + 56.3650 /n3 and         

              0.975û (n)= 2.1043 + 6.3308 /n   30.918/n2 + 153.95 /n3   

For n = 5, 0.95û (5)  =  2.47653   P [ ˆ ˆn ln( / )     2.47653 ]  0.95   

P [ ˆln( / )    2.4765/ 5.9155402 ]  0.95 ; ̂  82.9054           

P [ ˆ( / )    e0.4186431]  0.95     P [ ̂e 0.4186431   < ] = 0.95     

   L  ̂e 0.4186431 = 54.5464 hours  

It turns out the 2-sided 95% CI on  can also be obtained from a similar formula as in 

the case of the shape parameter .  That is,   

                           L  
θ̂)z ×cv(0.025ˆ e

       and         u   
θ̂)z ×cv(0.025ˆe      

 0 

Roughly = 
se(Betahat)

0.025 

0.025 

ˆ ˆln( / )    
 
 

0.95 

 1.96se(̂ ) 
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 L  
-1.96×0.178082.9054e  = 58.4855   and  u  117.5167 

 To obtain the glb on R(40 hours), we use the fact that for n > 20 

v[ R̂(t) ]  2R̂ (t)[ln(1/ R̂(t) ]2 {1.70  0.70 ln(ln(1/ R̂(t) ) )+ 0.70[ln(ln(1/ R̂(t) ))]2 }/n     

R̂(40)   
2.64551[(40 / 82.9054) ]e  =  0.864656  v[ R̂(40) ]   0.031379141  

ˆ[R(40)]se  = 0.1771416  LR (40)  = 0.864656  1.6450.1771416 = 0.5733. 

 

Table 5.11 of  E. A. Elsayed (on his page 308, 1p = proportion of the sample that is 

censored; p = failed proportion) 

p 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

c11 1.1087 1.1517 1.2526 1.4473 1.8120 2.5102 3.9330 7.1904 16.4788 60.5171

c22 0.6079 0.7670 0.9282 1.1225 1.3728 1.7162 2.22474 3.0655 4.7388 9.7447 

c12 0.2570 0.1764 0.0493 -.1448 -.4466 -.9358 -1.7855 -3.4386 -7.3753 -22.1872 

 

                Finally, it will be best to compute the se’s of the 2 Weibull 

estimators by inverting the estimated Fisher’s Information-Matrix  Î  = 

11 12

21 11

ˆ ˆI I

ˆ ˆI I

 
 
  

, i.e., 1Î  =   
ˆ ˆ ˆv( ) cov( , )

ˆ ˆ ˆcov( , ) v( )

   
 

    
; this procedure takes the 

correlation between ̂  and ̂  into account.  The needed formulas for 

ijÎ are given on p. 243 of my notes.  The formulas for the normally 

approximated  CIs are  L  
ˆZ ×cv(β)0.025ˆe

 ,   u   
Z ˆ×cv(β)0.025ˆe    ,                                 

and  similarly for the parameter . 

 


