The Two-Parameter Extreme-value Distribution

S. Maghsoodloo

Suppose the TTF (time to failure), T, of a component has a Weibull distribution with the cdf given by

$$
\begin{equation*}
F(t)=\mathbf{1}-\mathbf{e}^{-\left(\frac{\mathbf{t}-\delta}{\theta-\delta}\right)^{\beta}}, \quad 0 \leq t<\infty \tag{1}
\end{equation*}
$$

where δ is the minimum life, θ is the characteristic life, and β is the Weibull slope.
In equation (1), make the transformation $x=\beta \ln \left(\frac{\mathbf{t}-\boldsymbol{\delta}}{\theta-\delta}\right)$. Then the cdf of the rv X at point x is given by

$$
\begin{align*}
\mathrm{W}(\mathrm{x}) & =\mathrm{P}(\mathrm{X} \leq \mathrm{x})=\left[\boldsymbol{\beta} \ln \left(\frac{\mathbf{T}-\delta}{\theta-\delta}\right) \leq \mathrm{x}\right]=\mathrm{P}\left[\mathrm{~T} \leq \delta+(\theta-\delta) \mathrm{e}^{\mathrm{x} / \beta}\right]=\mathbf{1}-\mathbf{e}^{-\left(\frac{\delta+(\theta-\delta) \mathbf{e}^{\mathrm{x} / \beta}-\delta}{\theta-\delta}\right)^{\beta}} \\
& =1-\mathbf{e}^{-\left(\mathbf{e}^{\mathrm{x} / \beta}\right)^{\beta}=1-\mathbf{e}^{-\left(\mathbf{e}^{\mathbf{x}}\right)}, \quad-\infty<\mathrm{x}<\infty} \tag{2}
\end{align*}
$$

The cdf, $\mathrm{W}(\mathrm{x})$, is the standard distribution function for an extreme-value, where by extreme-value we mean the log base e of a component life-time. To obtain the pdf of the standard extreme-value distribution, differentiate Eq. (2) with respect to x.

$$
\begin{equation*}
\operatorname{pdf}(\mathrm{x})=\mathrm{w}(\mathrm{x})=\mathbf{e}^{-\left(\mathbf{e}^{\mathbf{x}}\right)} \mathbf{e}^{\mathbf{x}}, \quad-\infty<\mathrm{x}<\infty \tag{3}
\end{equation*}
$$

In order to convert the standard extreme-value density in (3) to the two-parameter case, let $x=(y-\xi) / \theta$ and $G(y)$ represent the cdf of Y at y. Then, by definition,

$$
\begin{align*}
\mathrm{G}(\mathrm{y}) & =\mathrm{P}(\mathrm{Y} \leq \mathrm{y})=\mathrm{P}[(\theta \mathrm{X}+\xi) \leq \mathrm{y}]=\mathrm{P}[\mathrm{X} \leq(\mathrm{y}-\xi) / \theta]=\mathrm{W}[(\mathrm{y}-\xi) / \theta]= \\
& =\mathbf{1}-\mathbf{e}^{-\mathbf{e}^{(\mathbf{y}-\xi) / \theta}}=\mathbf{1}-\mathbf{e}^{-\operatorname{Exp}[(\mathbf{y}-\xi) / \theta]},-\infty<\mathrm{y}<\infty \tag{4}
\end{align*}
$$

Equation (4) represents the cdf of the two-parameter extreme-value distribution. To obtain its density function $g(y)$, differentiate equation (4) wrt y.

$$
\begin{equation*}
g(y)=\frac{\mathbf{1}}{\boldsymbol{\theta}} \mathbf{e}^{-\mathbf{e}^{(\mathbf{y}-\xi) / \theta}} \mathbf{e}^{(\mathbf{y}-\xi) / \theta}, \quad-\infty<\mathrm{y}<\infty \tag{5}
\end{equation*}
$$

The parameter ξ is a measure of location and because at $y=\xi$ the value of the cdf in (4) becomes $G(\xi)=\mathbf{1}-\mathbf{e}^{-\mathbf{e}^{\mathbf{0}}}=\mathbf{1}-\mathbf{e}^{\mathbf{- 1}}=0.6321205588$, then $-\infty<\xi<\infty$ is the 63.21206 percentile
of the extreme-value pdf in (5). The parameter $\theta>0$ is related to the spread (or standard deviation) of the density function in (5).

To obtain the inverse (or percentile) function, solve y in terms of G from equation (4), which yields
$y=\xi+\theta \times \ln \left[\ln \left(\frac{1}{1-G}\right)\right] \rightarrow G^{-1}(y)=\xi+\theta \times \ln \left[\ln \left(\frac{1}{1-y}\right)\right], 0 \leq y \leq 1$, i.e., the percentile
function is given by $\quad \mathbf{y}_{\mathbf{p}}=\xi+\theta \times \ln \left[\ln \left(\frac{\mathbf{1}}{1-\mathbf{p}}\right)\right]$
For example, the median of the distribution is obtained by putting $p=0.50$ in equation (6), i.e.,
$\mathbf{y}_{\mathbf{0 . 5 0}}=\xi+\theta \times \ln \left(\boldsymbol{\operatorname { l n }} \frac{\mathbf{1}}{\mathbf{0 . 5}}\right)=\xi+\theta \times \ln (\boldsymbol{\operatorname { l n } 2})=\xi-0.366513 \theta$. The $25^{\text {th }}$ and $75^{\text {th }}$ percentiles are
$\mathbf{y}_{0.25}=\xi+\theta \times \ln \ln \left(\frac{\mathbf{1}}{\mathbf{1}-\mathbf{0 . 2 5}}\right)=\xi-1.2459 \theta$ and $\mathbf{y}_{0.75}=$
$\xi+\theta \times \ln \ln \left(\frac{\mathbf{1}}{\mathbf{1 - 0 . 7 5}}\right)=\xi+0.3266343 \theta \rightarrow \quad \mathrm{IQR}=1.5725336 \theta$.
The mean of Y is given by [after the transformation $u=e^{(y-\xi) / \theta}$]

$$
\begin{equation*}
\mathrm{E}(\mathrm{Y})=\int_{-\infty}^{\infty} \mathbf{y} \frac{1}{\theta} \mathbf{e}^{-\mathbf{e}^{(\mathbf{y}-\xi) / \theta} \mathbf{e}^{(\mathrm{y}-\xi) / \theta} \mathbf{d y}=\int_{0}^{\infty}(\xi+\theta \ln \mathbf{u}) \mathbf{e}^{-\mathbf{u}} \mathbf{d u}=\xi+\theta \int_{0}^{\infty}(\ln \mathbf{u}) \mathbf{e}^{-\mathbf{u}} \mathbf{d u}} \tag{7}
\end{equation*}
$$

This last integral apparently can be shown to become $\int_{0}^{\infty}(\ln \mathbf{u}) \mathbf{e}^{-\mathbf{u}} \mathbf{d u}=-\gamma$ so that $\mathrm{E}(\mathrm{Y})=\xi-$ $\theta \times \gamma$, where $\gamma=0.5772157$ is the Euler's constant. This proof is very difficult. Further, it can be shown that $\mathrm{V}(\mathrm{Y})=\frac{\pi^{2} \theta^{2}}{\mathbf{6}}$ so that $\sigma_{\mathrm{Y}}=\frac{\pi \theta}{\sqrt{\mathbf{6}}}=1.28255 \theta$ and the $\mathrm{CV}(\mathrm{y})=\frac{\mathbf{1 . 2 8 2 5 5 \theta}}{\xi-\mathbf{0 . 5 7 7 2 1 5 7 \theta}}$.

Setting the $1^{\text {st }}$ derivative of $g(y)$ in (5) equal to zero yields the modal point of the extreme-value distribution to be $\mathrm{MO}=\xi$. Since the distribution is negatively skewed ($\alpha_{3}<0$), then $\mathrm{MO}=\xi>\mathrm{y}_{0.50}$ $=\xi-0.366513 \theta>\mathrm{E}(\mathrm{Y})=\xi-0.5772157 \theta$. Finally, the hazard function (or failure rate function) is given by $\mathbf{h}(\mathbf{y})=\frac{\mathbf{f}(\mathbf{y})}{\mathbf{R}(\mathbf{y})}=\frac{\frac{1}{\theta} \mathbf{e}^{-\mathbf{e}^{(\mathbf{y}-\xi) / \theta} \mathbf{e}^{(\mathrm{y}-\xi) / \theta}}}{\mathbf{e}^{-\mathbf{e}^{(\mathbf{y}-\xi) / \theta}}}=\frac{\mathbf{1}}{\boldsymbol{\theta}} \mathbf{e}^{(\mathrm{y}-\xi) / \theta}$.

