
 

 

The  Two-Parameter  Extreme-value  Distribution                    S.  Maghsoodloo 

 Suppose the TTF (time to failure), T,  of a component has a Weibull distribution with the 

cdf given by 
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where  is the minimum life,  is the characteristic life, and  is the Weibull slope. 
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The cdf, W(x), is the standard distribution function for an extreme-value, where by extreme-value 

we mean the log base e of a component life-time.   To obtain the pdf of the standard extreme-value 

distribution, differentiate Eq. (2) with respect to x. 

  pdf (x) = w(x) = 
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In order to convert the standard extreme-value density in (3) to the two-parameter case, let  

x = (y )/ and G(y) represent the cdf of Y at y.  Then, by definition, 

   G(y) = P(Y  y) = P[( X + )  y]  = P[X   (y  )/] = W[(y  )/]  =  
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Equation (4) represents the cdf of the two-parameter extreme-value distribution.  To obtain its 

density function g(y), differentiate equation (4) wrt y. 

  g(y) = 
(y ) / (y ) /1
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The parameter  is a measure of location and because at y =  the value of the cdf in (4) 

becomes G() = 
0

1 e e  = 11 e =  0.6321205588, then    <  <  is the 63.21206 percentile  



 

 

of the extreme-value pdf in (5).  The parameter  > 0 is related to the spread (or standard deviation) 

of the density function in (5). 

 To obtain the inverse (or percentile) function, solve y in terms of G from equation (4), 

which yields 
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For example, the median of the distribution is obtained by putting p = 0.50 in equation (6), i.e.,  
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 = +  0.3266343      IQR = 1.5725336. 

 The mean of Y is given by [after the transformation u = e(y  )/ ] 
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This last integral apparently can be shown to become u
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Setting the 1st derivative of g(y) in (5) equal to zero yields the modal point of the extreme-value 

distribution to be MO = .  Since the distribution is negatively skewed (3 < 0 ), then MO =  > y0.50 

=    0.366513 >  E(Y) =     0.5772157 .  Finally, the hazard function (or failure rate function)  

is given by h(y) = 
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