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Renewal Processes  and Availability   Reference: Chapters 9  and  11  of Ebeling              

                                                                                                                               S.  Maghsoodloo                             

As an example, suppose a machine component is replaced ASA it fails.  Let N(t) be the 

number of replacements during the interval [0, t] of length t.  Then N(t) is called a renewal counting 

process, and the expected no. of failures is called the renewal function. The study of renewal 

processes focuses on the following topics: 

 (1) The pmf of N(t).   (2)  The expected number of renewals during [0, t], denoted by E[N(t)], 

where E[N(t)] = M(t) is called the renewal function.  Note that Ebeling uses the notation m(t) for 

E[N(t)].  (3) The occurrence Pr (mass) or density function of a renewal at specific epochs of time, 

and (4) The time needed for the occurrence of k events (such as failures) to occur.   [For more details 

See U. N. Bhat (1984), Elements of Applied Stochastic Processes, 2nd Ed. , Chapter 8.] 

 Suppose that failures occur at times Tk  (k = 1, 2, 3, 4, …) measured from zero and assuming 

for the time being that replacement (or restoration time) is negligible relative to operational time, 

then Tk represents the operating time (measured from zero) until the kth failure, where T0 = 0.  

Because the pdf of T1 may be different from the pdf of  intervening times X2 = (T2  T1), X3 = (T3  

T2), X4 = (T4  T3), ...,  we let f1(t) represent the pdf of the time to the 1st failure and f(t) represent the 

pdf of intervening times X2, X3, X4, … as depicted below.  
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  Note that X1, X2, X3, … represent intervening times between failures, while Ti represents time to the 

ith renewal measured from zero.   The above figure clearly shows that Tk (Time to the kth renewal from 

zero) = 
k

k
i

X
1
 = sum of the times to the 1st failure plus the intervening times of 2nd failure until the kth 

failure.  If k > 30, then the central theorem states that the distribution of Tk approaches normality with 

mean 1 + (k  1), where  = E(Xk)= mean time between successive renewals, k = 2, 3, 4, … and 

with variance 2σ
1

 + (k  1)2, where 2 = V(Xk), k = 2, 3, 4, … (see pp. 194-5 of Ebeling).  However, 
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if the pdf of Xk is highly skewed and/or k is not sufficiently large, then the pdf of Tk = 
k

k
i

X
1
 is given 

by the kth-fold convolution given below. 

    
kTf (t)  = 1 (k 1)f (t) * f (t)  

where (k 1)f (t)  is the (k  1) convolution of the failure density f(t) with itself. 

 The most common counting process is the Poisson process where the intervening times 

are exponentially distributed at the arrival (or failure) rate .  Because  is a constant and intervening 

times are iid, a Poisson process is also referred to as a homogeneous renewal process.  Then during 

the interval [0, t] the renewal function is E[N(t)] = t  and the pmf of N(t) is given by  P[N(t) = k] = 

k
t( t)

e
k!


.  For a homogeneous renewal process the pdf of X1 is given by 1f (t) = 

te , and 

because f(t) = 1f (t)  for i = 2, 3, 4, …, k then 
kTf (t)  = (k)f (t) , where (k)f (t)   is the k-fold 

convolution of the exponential with itself and hence (k)f (t)  = 
k 1 t( t) e

(k)
 




 (the Gamma 

density with parameters  and k).    

 

The Renewal function M(t) = E[N(t)] 

Because the two events {N(t)  k} and  {Tk  t} are equivalent, i.e., the 

                 P[N(t)  k] = P(Tk  t) = (k)F (t)  

where (k)F (t)  = (1) (k 1)F (t) * F (t)  is the kth-fold convolution representing the cdf of Tk = 
k

k

i=1

X .  

Thus, P[N(t) = k] = P[N(t)  k]    P[N(t)  k + 1] = (k)F (t)   (k 1)F (t) .  Then the renewal function 

is obtained as follows: 

M(t) = E[N(t)] = 
n 1

n P[N(t) n]




   = n
n 1

n P (t)




 , where Pn(t) = P[N(t) = n]. 

 M(t) = E[N(t)] = n
n 1

P (t)



  + n

n 2

P (t)



  + n

n 3

P (t)



  + n

n 4

P (t)



 + … 
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                              M(t) =  

n 1

P[N(t) n]



  = (n)

n 1

F (t)



                                                  (130)  

Note that Ebeling uses m(t) for M(t), where m stands for the mean.  You may wish to replace M(t) in 

Eq. (130) with N(t)  if this notation N(t)  would be less confusing. 

 As an example, if X1, X2, …, Xk are ii and exponentially distributed like f(x) = 
xe , then 

f(n)(t) = 
n 1 t( t) e

(n)
 




 which is the n-fold convolution of f(t) with itself, and from Eq. (130) we 

obtain  E[N(t)] = M(t) = (n)
n 1

F (t)



  = 

t
n 1 x

n 1 x 0

( x) e dx
(n)


 

 




   = 
t

n 1 x

n 1x 0

( x) e dx
(n)


 






 = 

t n 1
x

n 1x 0

( x)
e dx

(n 1)!









  = 
t

x x

x 0

e e dx 



 =
t

x 0

dx


 = λt = Mean number of Poisson occurrences 

(or failures) during an interval of length t, as expected.   

 Unfortunately, obtaining a closed-form expression for the renewal function is not as simple as 

the case of exponential interarrival times.  For the sake of illustration, consider, Examples 9.5 and 9.6 

on pp. 195 and 196 of Ebeling where a cutting tool has a N(5 hours, 1) TTF distribution.  The 

objective is to compute the renewal function E[N(12 hours)] = M(12 hours).  Then the P0= Pr[Nf(12 

hours)= 0] = Pr(TTF1 > 12) = Pr(Z > 7) = ( 7) =1.27981254388610 12; P1(12) = 

Pr[Nf(12 hours) =1] = Pr[Nf(12 hours)  1]   Pr[Nf(12 hours)2] = Pr(TTF1  12)  Pr(TTF2  12) = 

(7)   Pr(Z 
12 10

2


) = 0.99999999999872 0.92135039647486 = 0.07864960352386 

P2 = Pr[Nf(12 hours)= 2] = Pr[Nf(12 hours)  2]   Pr[Nf(12 hours)  3] =   

Pr(TTF2  12)  Pr(TTF3  12) = Pr(Z 
12 10

2


)   Pr(Z 

12 15

3


)  =0.92135039647486  

0.04163225833178 = 0.87971813814308; P3 = Pr[Nf(12 hours)= 3] = Pr[Nf(12 hours)  3]   

Pr[Nf(12 hours)  4] = Pr(TTF3  12)  Pr(TTF4  12) = Pr(Z 
12 15

3


)   Pr(Z 

12 20

4


) = 

0.04163225833178    0.00003167124183312 = 0.04160058708995; P4 = Pr[Nf(12 hours)=4] = 

Pr[Nf(12 hours)  4]   Pr[Nf(12 hours)  5] =  Pr(TTF4  12)  Pr(TTF5  12) = 
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Pr(Z 
12 20

4


)  Pr(Z 

12 25

5


) = 0.00003167124183312   3.05394317985477010 9 =  

0.00003166818789; P5 = Pr[Nf(12 hours)=5] = Pr[Nf(12 hours)  5]   Pr[Nf(12 hours)  6] =   

Pr(TTF5 12)  Pr(TTF6  12) = Pr(Z 
12 25

5


)  Pr(Z 

12 30

6


) = 3.05394317985477010 9   

1.00244804014015110 13 = 3.05384293505075610 9   E[Nf(12)] = M(12) = n
n 0

n P (12)




  = 

1.96301433, which agrees with Ebeling’s answer atop page 196 to 2 decimals  The approximate 

value of renewal intensity (12)  M(12)/12 =1.96301433/12 = 0.16358453 per hour [see Eqs. (9.11 

& 9.12) on page 196 of Ebeling].  In other words, the MTBF  12 hours/M(12) = 12/1.96301433 = 

6.1130476 hours, or M(12)  t/MTTF = 12/5 = 2.4 failures which is not close to 1.963014 because t 

= 12 hours is too short.  If we consider t = 24 hours of operations, then M(24) = 4.311779321 which 

much closer to 24/5 = 4.8.  Note that I am using the same notation (t) = dM(t)/dt as Ebeling for the 

renewal intensity function, while  some authors use m(t), both of which are common notation for 

renewal intensity.  As yet another good example, see Example 9.6 atop page 197 of Ebeling. 

 Suppose now that the 1st failure occurs at T1 = X1 = t1; then, the renewal function must satisfy 

the following relationship: 

        M(t) = E[N(t)] = 1 1 1 1
0

E[N(t) X t )f (t )dt


 ,           t1 < t 

Clearly, if t1 > t, then no failures have occurred by t and thus E[N(t)] = 0, as depicted below.  

Therefore,  1 1E[N(t) X = t )  = 1 + 1E[N(t t )]  and hence M(t) = E[N(t)] =  

t

1 1 1
0

{1 +E[N(t t )]}f (t )dt = F1(t) +
t

1 1 1
0

E[N(t t )]f (t )dt             

                                     M(t) = E[N(t)] = F1(t) +
t

1 1 1
0

M(t t )f (t )dt                                       (131)                              

t1

0 t1 t Time

t1

0 t1 t Time
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Eq. (131) is called the Renewal Equation and in simple cases (i.e., in cases when the integrand on the 

RHS can be made free of t) can be used to obtain the renewal function M(t).  For example, suppose 

the time to the 1st failure of a component is uniformly distributed over [500, 1000 hours], and the 

succeeding failure have the same pdf; then F1(t) = (t500)/500 and 1f(t ) = 1/500, 500  t1  1000 

hours.  Upon substitution into (131), we obtain 

M(t) = E[N(t)] = 
t 500

500


 + 

t

1 1
0

M(t t )dt / 500 ;  letting t  t1 = x yields 

                M(t) = 
t 500

500


 + 

0

t

1
M(x)( dx)

500
  = 

t 500

500


 + 

t

0

1
M(x)dx

500                              (132) 

The above Eq. (132) shows that the density of the Renewal Function, (t), is given by  

      (t) = 
M(t)

t




 = 
1

500
 + 

M(t)

500
     

dM(t)

dt
  

M(t)

500
= 

1

500
    

     
dM(t)

dt
t/500e  

M(t)

500
t/500e = 

1

500
t/500e      t /500d

[M(t)e ]
dt

  =
1

500
t/500e    t /500M(t)e  

= t /5001
e dt

500
   + C  M(t) = 

t/500 t/500( e ) e    + C 
t/500e  = C 

t/500e  1; applying the 

boundary condition M(t = 0) = 0  0 = C  1   C = 1  M(t) =
t/500e  1; for example, the 

expected number of renewals (or failures) during [600, 900 hours] is given by M(300) = 300/500e  1 = 

1.8221 1 = 0.8221, while the expected number of failures during the mission time [500, 1000 hours] 

is given by M(500) = e1  1 =1.7183.   Note that the renewal intensity (t) = t /5001
e

500
 is not a pdf; 

in fact its integral over [0, ) diverges in this case.  The renewal intensity, (t), gives the 

instantaneous renewal rate at time t, i.e., (t) = 
M(t t) M(t)

Lim
tt 0

  
 

  so that (t)t gives the Pr 

element of a renewal during the interval (t, t+t).  When M(t) = E[N(t)] = F1(t) + 

t

1 1 1
0

M(t t )f (t )dt depends on both t and t1 (where t1 is the TTFF), then the above procedure applied 

in the case of the uniform distribution for the time to the 1st failure (TTFF) will not work because the 
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renewal intensity, (t), will still have an integral on the RHS of the equation, and hence we will have 

to resort to Laplace Transforms described below.  In the case of the Poisson process (t) = .  

 Let f(t), not necessarily a pdf, be any function whose range space is [0, ); then the Laplace 

transform of f(t) is defined as  L{f(t)}= f(s)  = s t

0

e f (t)dt


 ,  s > 0.  For example, the Laplace 

transform of f(t) = 1 is given by L{1} = s t

0

e dt


  = 
s t

0

e

s

 
 
 

  =  
1

s
; note that some authors use  in 

lieu of s, while I may use them interchangeably.   Further,  L{t} = s t

0

e t dt


  = 
s t

0

te

s

 
 
 

  +  

1

s
s t

0

e dt


  = 
2

1

s
; L{tn} = s t n

0

e t dt


  =
n s t

0

t e

s

 
 
 

  + 
n

s
s t n 1

0

e t dt


   = … = 
n+1

n!

s
 

L{
te } = s t t

0

e e dt


   = 
t(s )

0

e

s

  
   

  =  
1

s + λ
,   > 0;  L{df(t)/dt} = s t

0

e f (t)dt


  = st

0
e f (t)

 
   

+ s t

0

s e f (t)dt


 =  f(0) +sf(s) = = sf*(s)  f(0);   L{eat f(t)} = (s a)t

0

e f (t)dt


   = f (s a) . 

L{
t

o

f(x)dx } = 
t

s t

0 0

e f (x)dx dt


   =
tst

0 0

e
f (x)dx

s


 

 
  

  +
1

s
 s t

0

e f (t)dt


  = 0 + f(s) /s = f(s) /s 

L{ bt at1
(e e )

a b
 


} = s t bt at

0

1
e (e e )dt

a b


  

  =  (b s)t (a s)t

0

1
[e e ]dt

a b


   

 = 

  
1 1 1

[ ]
a b (b s) (a s)


  

 = 
1

(s + a)(s + b)
; Table 7 gives a summary of basic Laplace transforms. 

 

Properties of Laplace Transforms 

(1) The Laplace transform  L  is a linear operator because if C1 and C2 are any constants, it can easily 

be verified that L{C1f1(t) + C2f2(t)} = C1 L{f1(t)} + C2 L{f2(t)} .  (2)  Let f*g = 
t

0

f (t x)g(x)dx  be 

the convolution of f(t) with g(t). Then it can be proven that L{f*g} = f(s)g(s) , where g(s) = L {g(t)}. 
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  Table 7.  A summary of L{f(t)}= f(s)  for different useful f(t). 

Function f(t), or  L 1{ f(s) }  Laplace Transform  L{f(t)} = f(s)  

 /s 

t 

tn 

te       

t1
(1 e )


 

t
2

1
(e t 1)   


 

  bt at1
(e e )

a b
 


 

bt at1
(be ae )

b a
 


 

n 1 tt e

(n 1)!

 


    

n 2 t(n 1) t
t e

(n 1)!
   


  

df/dt  

d2f/dt2       

f(at)   

at
2

1
(e at 1)

a
    

2 at
2

1
[(1 / a) t (at / 2) e / a]

a
    

at bt1 1
1 (be ae )

ab a b
[ ]  


 

te f (t)
                          

1/s2

n!/sn+1 

1

s  
 

1

s(s ) 
 

2

1

s (s ) 
 

1

(s a)(s b) 
 

s

(s a)(s b) 
 

n

1

(s ) 
 

n

s

(s ) 
 

s f(s)  f(0) 

s2 f(s)  sf(0)  df(0)/dt 

f(s / a) / a f 

1/[s2(s+a)] 

 

1/[s3(s+a)] 

1

s(s a)(s b) 
 

                                    f(s + )  
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Now let f1(t) be the pdf of the time to the 1st failure (TTFF) and f (s)1 be its Laplace transform, i.e., 

f (s)1 =L{f1(t)} = 
s t

1

0

e f (t)dt


  = The Laplace transform of the TTFF.  Similarly, let f(t) be the 

lifetime density between the 1st & 2nd, 2nd & 3rd, … renewals (or failures).  Then, f(s) = L{f(t)} = 

s t

0

e f (t)dt


 .  In the special case f1(t)= f(t), then  1f (s) = f(s)  .  Similarly, let L{M(t)} = 

s t

0

e M(t)dt


 = M(s)  and L{(t)} = s t

0

e (t)dt


  = (s) .   Thus, (s) = 

s t

0

e (t)dt


  = s t

0

e [dM(t) / dt]dt


  s t
(n)

n 10

d
e F (t)dt

dt

 



 s t

(n)
n 1 0

e f (t)dt





  (n)

n 1

f (s)



  

= 1 2 n(X X ... X )s

n 1

E[e ]


   


 n 1

1
n 1

f (s)f (s)





  = 

f (s)

1 f(s)
1


.  Because (t) = dM(t)/dt and M(t) =

t

0

(x)dx , 

then its Laplace transform (s)  =  M(0) +sM(s)  = 0 +sM(s) =sM(s) , as the expected number of 

renewals during an interval of length 0 must be zero  M(s) = 
(s)

s


 M(s) =

f (s)

s[1 f(s)]
1


. 

As an example, suppose f1(t)= f(t) = te ; then f (s) = s t t

0

e e dt


  = 
λ

s + λ
  M(s) = 

/ (s )

s[1 / (s )]

  
   

 = 
s[(s ) ]


   

 = 
2

λ

s
   M(t) = E[N(t)] = L 1{ M(s) } =  L 1{

2

λ

s
} = L 1{

2

1

s
} = 

t (which implies (t) = ), as expected.  As yet another example, suppose the TTF of a machine 

component has the gamma pdf at the rate of  = 0.003 and n = 2; we wish to obtain the expression 

for the renewal function M(t) and to compute the expected number of failures during t =1000 hours 

of operations. 

f (s)  = s t t

0

e ( t)e dt


   = 2 ( s)t

0

te dt


    = 2 ( s)t

0

e dt
s


 

 
   = 

( s)t
2

0

e

s s

  
     

= 

           2 1
[ ]

s s

 


  
   = 

2

2

λ

(λ + s)
   M(s) = 

2 2

2 2

/ (s )

s[1 / (s ) ]

  
   

 =
2

2 2s[(s ) ]


   

= 
2

2

λ

s [s + 2λ]
. 
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I will now use the partial fraction techniques to write this last M(s)  in such a manner that we can 

recognize its inverse Laplace transform (L 1) a bit easier.  M(s)  =
2

2

λ

s [s + 2λ]
= 2

2

a b c
λ ( + + )

s s + 2λs
 = 

2 2
2

2

1 / (4 ) 1 / (2 ) 1 / (4 )
[ ]

s s 2s

   
  

 
  M(s) = 

1

4s




2

1

4(s 2 )2s




 
  M(t) = E[N(t)] =  

L 1{ M(s) } = L 1{
2

1 1

4s 4(s 2 )2s

 
 

 
 = 

1

4
  + 

λ
t

2
 + 2 t1

e
4

  ; thus, during 1000 operating hours 

we expect M(1000) =
1

4
  + 

0.003
1000

2
 + 61

e
4

  = 1.2506 failures; note that if the above process 

lifetime were exponential at the rate  = 0.003, then M(1000) = t = 3.  The renewal intensity for the 

above gamma lifetime is (t) = dM/dt = 
λ

2
  2 te

2
 

. 

 As yet another example, suppose the time to the 1st failure of a new machine is exponential at 

the rate 1 = 0.0005/hour, but the succeeding renewals occur at the constant rate 2 = 0.001; this is 

called a modified renewal process because the TTFF(Time To first Failure) has a different 

distribution from succeeding failures.  We wish to compute the expected number of failures during t 

= 10,000 hours of operations. 

1f (s)  =  s t 0.0005t
1

0

e e dt


  = 1

1

λ

s + λ
; similarly, f (s)  = 2ts t

2
0

e e dt


  = 2

2

λ

s + λ
 M(s) = 

1 1

2 2

/ (s )

s[1 / (s )]

  
   

 = 1 2

1 2 2 1

(s )

s[(s )(s ) (s )]

  
       

= 1 2
2

1

λ (s + λ )

s (s + λ )
= 1 2

1s

  


 + 2
2

λ

s
 + 2 1

1 1(s )

  
  

 

   M(t) = E[N(t)] = L 1{ M(s) } =  L 1{ 1 2

1s

  


 + 2
2

λ

s
 + 2 1

1 1(s )

  
  

} = 1 2

1

  


+ 2λ t + 

1t2 1

1
e

  


 =  
0.0005 0.001

0.0005


 + 10 + e  5 = 9.00674 failures. 

 

Some Limiting Results For Renewal Processes 

The most important limiting result in renewal theory is the fact that  

                                      Lim (t) 1 /
t

  
  
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which states in the limit one cannot identify when the renewal process began so that over the long-

term the rate at which components are replaced is inversely proportional to the average time, , 

between renewals.  Further, because dM(t)/dt = (t) 
M(t t) M(t)

t

  



 M(t t) M(t)     

m(t) t    The expected number of renewals during (t, t+t) is approximately equal to ρ(t)Δt = 

Δt / μ .  This implies that the expected number of renewals during an interval of length t is roughly 

given by M(t)   t/, this approximation improving as t  .  For the example involving gamma pdf 

with  = 0.003 and n = 2, MTBF =  = 2/0.003 = 666.6667; thus during 1000 hours of operation, 

M(t)  t/ = 1000/666.6667 = 1.5000 (not very close to the exact M(t = 1000) = 1.2506 because 1000 

hours is too short).  However, at t = 10,000 hours, M(10000) = E[N(10000 hours)] = 
1

4
  + 

0.003
10000

2
 + 2 (10000)1

e
4

  = 14.7500 failures, and M(t)  t/ = 10000/666.6667 = 15 failures 

(much better approximation).  As yet another example, see Example 6.9 on page 197 of Ebeling. 

 

Section 9.5 of Ebeling (The Reliability function under preventive maintenance) 

  Ebeling (2nd Ed. pp. 237 to 241) has an excellent discussion as how preventive maintenance 

(PM) can improve system RE iff the hazard function h(t) is increasing.  Suppose PM is performed 

periodically every Tm  days.  We further assume that once preventive maintenance is performed on 

a system, then the system is practically as‐good‐as‐new.  There are two MUEX (mutually exclusive) 

possibilities:  

(1) The system fails by Tm, (2) the system survives beyond at least one cycle of length Tm.  These 

2 possibilities lead to the following RE function with PM: 

                      Rm(t) = 
m

n
m m m m

R(t), 0 t T

R(T ) R(t nT ), nT t (n 1)T

 

   





.                   (9.26 of Ebeling ) 

Note that Ebeling uses T for Tm in his Eq. (9.26) to represent the length of one PM cycle.  The 

argument for the above RE function is depicted in the following figure.  

   0                       Tm          t          2Tm                    3Tm                    4Tm                                       Time 

          R(t)               R(Tm)R(t‐Tm)    R2(Tm)R(t‐2Tm)    R3(Tm)R(t‐3Tm)      R4(Tm)R(t‐4Tm)                        

The MTTF of a PM system is given by (m standing for with maintenance) 
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MTTFPm =  m0
R (t)dt


 = 

m

m

(n 1)T
n

m m
n 0 nT

R(T ) R(t nT )dt




  = 
m

m

(n 1)T
n

m m
n 0 nT

R(T ) R(t nT )dt




   

In the above integral, put x = t nTm.  This leads to 

                    MTTFPm =
mT

n
m

n 0 0

R(T ) R(x)dx



   = 

mT

0

m

R(t)dt

1 R(T )


                      (Eq. 9.27 of Ebeling) 

Ebeling provides a good example of an exponential lifetime with PM in his Example 9.17 on p. 238 

in which he illustrates that PM does not alter R(t) iff h(t) =  is a constant.  Note that if we compute 

the MTTFPm using Eq. (9.27) under constant h(t), we obtain MTTFPM = 

m

m

T
t

0
T

e dt

1 e






 = 

m

m

Tt

0

T

1
e

1 e









  
 = 

m

m

T

T

1
e 1

1 e











  
 = 1/, i.e., for an exponential TTF the MTTF with and without PM are identically 

equal to 1/.  For another excellent example, see the Example 9.18 on p. 238 of Ebeling.  For this 

Example, I am changing the value of tc for the compressors from 100 days to 120 days so that now  

TTF ~ W(0,  =120 days, shape=  =2); further, I am changing the maintenance cycle to one month = 

30 days (25% of ).  Thus, the RE function with PM is given  

by Rm(t) = n

R(t), 0 t 30 days

R(30) R(t 30n), 30n t 30(n 1)

 

   





, n = 0, 1, 2, 3, 4, ….   The value of RE at 160 days 

from time zero is computed first by recognizing that n = 5 PM cycles and that 165 days lies within 

the interval (5×30, 6×30), and hence t = 10 days; thus, 

Rm(160) =  
5R(30) R(160 150), 150 t 180 days   .  That is, PM improves RE by 329.88%.  The 

MTTF(W/O PM) = 106.347 days versus MTTF(with PM) =MTTFPm=

mT

0

m

R(x)dx

1 R(T )


= 

2
30

(x /120)

0

e dx

1 0.9394131






=

2
2 /4

z /2

0

e (120dz / 2 )

0.0605869


 , where x/120 = z/ 2 .    Thus, MTTFPm 
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=

2
2 /4

z /2

0

120 e (dz / 2 )

0.0605869

 

 

=
120 [ ( 2 / 4) 0.50]

0.0605869

  
= 

120 π (0.1381632)

0.0605869
= 485.03136, 

which is an improvement of 356.083% in MTTF due to PM.  

Ebeling also discusses the case when PM induces failure into the system with a Pr, p, and the RE 
function with PM is given atop page 240 in his Eq. (9.28).  See his Example 9.19 on p. 
 

 

Alternating (or Cyclical) Renewal Processes (see pp. 234-235 of Ebeling) 

So far we have assumed that the repair time has been negligible compared to operating times so that 

E[N(t)] is simply (n)
n 1

F (t)



 , where F(n)(t) is the cdf of the time to the nth renewal measured from 

zero.  Or, E[N(t)] = M(t) = L 1{ M(s) } =L 1{ 1f (s)

s[1 f (s)]
}.  Suppose now active restoration times 

TTR1, TTR2,  TTR3,… (TTR = Time to Repair) are not negligible but are rvs with identical pdfs gr(t), 

r for repair.  Then time to the 1st cycle (or renewal) now is given by Y1 = X1 + TTR1; time to the 2nd 

cycle (measured from the last) now is given by Y2 = X2 + TTR2; time to the 3rd  renewal period is 

given by Y3 = X3 + TTR3, and so on, as depicted below.  A network exhibits such a cyclic behavior 

between up and down states, but generally down states include administrative and logistic times in 

addition to active repair time. 

 

 

 

 

Assuming that Xi’s and TTRi’s are each iid rvs with pdfs f(x) and gr(), then Yi’s are iid rvs with the 

cdf  W(t) = P(Yi t) and pdf wy(t).  Clearly wy(t) is the convolution of f(x) with gr(), i.e., wy(t) = 

f(x)*gr()= 
t

r
0

f (x)g (t x)dx = 
t

r
0

f (t )g ( )d    , where  = TTR stands for active repair time.  Then 

the Laplace transform of wy(t) is given by L{wy(t)} = L{f(x)}L{gr()} = f(s)g(s) .  Thus the 

Laplace transform of the renewal function and renewal density that involves maintenance are given 

by 

Time 

X1 TTR1

Y1 

X2 TTR2

Y2
0 
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                           M(s) = r

r

f (s)g (s)

s[1 f (s)g s)]
   and    ρ(s) = r

r

f (s)g (s)

1 f (s)g s)
                                    (133a)                             

As an example, suppose a machine component TTF is exponential at the rate  and its repair 

time is also exponential at the rate r, i.e., gr(t) = r t
re
 .  Thus, f (s)

λ
=

s + λ
 and rg (s) r

r

λ
=

s + λ
 

M(s) = r

r

f (s)g (s)

s[1 f (s)g s)]
  =  r

r rs[(s )(s ) ]


     

 =  r
2

r

λλ

s [s + (λ + λ )]
 = r

2
rs( )


  

 + r
2

r

λλ

s (λ + λ )
+ 

r
2

r r

λλ

(s + λ + λ )(λ + λ )
  M(t) = L 1{ M(s) } =  L 1{ r

2
rs( )


  

 + r
2

r

λλ

s (λ + λ )
  + 

r
2

r r

λλ

(s + λ + λ )(λ + λ )
} = r

2
r( )


  

  + r

r

λλ t

(λ + λ )
 + r( )tr

2
r

e
( )

 
  

                                      (133b)                            

 

For example, if  = 0.0005 and r = 0.05 per hour, then the expected number of cycles (or renewals) 

in 10000 hours from Eq. (133b) is equal to M(10000)  = 
2

(0.0005)(0.05)

(0.0505)


 + 

(0.000025)10000

0.0505
 

+ (0.0505)10000
2

0.25
e

(0.0505)
 = 4.9406920890.  The instantaneous renewal rate is given by (t) = 

r

r

λλ

(λ + λ )
  r( )tr

r
e

( )
 

  
, and its limiting behavior is r

r

λλ
Lim ρ(t) =

(λ + λ )t 
 = 

r

1

1 / λ +1/ λ
 = 

1

MTTR + MTTF
 , where MTTR stands for the component’s mean time to repair.  Thus, in the limit 

the mean time between cycles is given by MTBC = 1/  Lim (t)
t

   = MTTF + MTTR; for the above 

example, MTBC = 1/0.05+1/.0005= 2020 hours, while if the machine component were irreparable 

(was just merely replaced), then MTBC = MTBF = 1/0.0005 = 2000 hours.  Note that Eqs. (133a &b) 

are valid only for a single component, and in order to use them for a system, then f(s)  and 

rg (s) have to represent the Laplace transforms of fSys(t)  and system TTR density gSys(t).  In short, 

these Eqs. are either for a single component or a single system taken as an ensemble.  In general, 

obtaining the renewal function for a repairable system, i.e., E[no. of cycles during an interval of 

length t], is much more difficult than a single component or machine and sometimes only an 

approximation is possible. 
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Instantaneous (or Point) Availability of a component  

By (instantaneous) availability at time t, A(t), we mean the Pr that a component is functioning 

reliably at time t.  Thus, if there is no repair, the availability function is simply A(t) = R(t).  However, 

if the component is repairable, then there are two mutually exclusive possibilities: (1) The 

component is reliable at t, in which case A1(t) = R(t),  (2) the component fails at time x,  0 < x < t, 

gets renewed in the interval (x, x+x) with Pr element m(x)dx, and then is reliable from time x to t  

x (Trivedi, 1982).  This second Pr is given by A2(t) = 
t

0

(x)dx R(t x)  .  Because the above two 

cases are mutually exclusive, then  

     A(t) = A1(t) + A2(t) = R(t) + 
t

0

(x)dx R(t x)                                           (134a) 

Taking Laplace transform of Eq. (134a) yields A(s)  = R(s) + R(s) (s) = R(s) [1+ (s) ]    

                         A(s)  = R(s) [1 + r

r

f (s)g (s)

1 f (s)g (s)
]  = 

r

R(s)

1 f (s) g (s)
.                                       (134b) 

For the above example where TTF has a constant failure rate  and time to repair is also 

exponential at the rate r = r, R(s)  = t st

0

e e dt


   = 1/(+s); f (s)  = t st

0

e e dt


  = /(+s); rg (s)  = 

r t st
r

0

e e dt


  = r/(r+s).  Hence, from (134b) A(s) = 
r r

1 / ( s)

1 [ / ( s)][ / ( s)]

 
      

= 

r

r r

s

( s)( s)

 
     

 = r

r

λ + s

s[s + (λ + λ )]
 = r

r

λ

s(λ + λ )
 + r

r

λ / (λ + λ )

s + λ + λ
   A(t) =  L 1{ A(s) } =   

L 1{ r

r

λ

s(λ + λ )
 + r

r

λ / (λ + λ )

s + λ + λ
} = r

r

λ

(λ + λ )
 + r

r

λ

(λ + λ )
r( )te  .  For example, given that  = 0.0005  

and r = 0.05 per hour, then the Pr that the component is available (i.e., not under repair) at t = 1000 

hours is given by A(1000) = 
0.05

0.0505
 + 

0.0005

0.0505
0.0505(1000)e  =  0.990099009901. 

 

More Availability  Measures 

(1) Steady-State (Inherent or Intrinsic) Availability 

By intrinsic availability (AI) we mean the limiting value of A(t) as t  , i.e., availability over the  
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long  haul.  Thus AI = A() = Lim A(t)
t  .  For the case of constant failure and repair rates, AI = A() 

= Lim A(t)
t  = 

r( )tr

r r
Lim[ e ]

t

  


     


 = r

r


  

= r

r

1 / μ

1 / μ + 1 / μ
, where r = 1/r represents 

mean repair time , or MTTR.  Thus, AI = r

r

1 / μ

1 / μ + 1/ μ
 = 

r

μ

μ +μ
 =  

MTBF

MTTR + MTBF
, where 

MTTR includes only active repair time. 

 

(2)  By interval availability (IA) we mean the proportion of the time within the mission interval (t1, 

t2) the system is expected (on the average) to be in the success 

mode.  Thus, IA = A(t1,  t2) = 

2

1

t

t

2 1

A(t)dt

t t


  .  For the exponential failures and repairs the interval 

availability A(t1,  t2) = 
2

r

1

t
( )tr

2 1 r rt

1
[ e ]dt

t t
  


       = r

r


  

 + 

                                      2 1
2

r

/ (t t )

( )

 
  

[ r 1( )te   r 2( )te  ].                                             (135)                      

For the interval (100, 200 hours) availability from Eq. (135) we obtain A(100,  200) =   

r

200
( )tr

r r100

1
[ e ]dt

100
  


       = r

r


  

  + 
2

r

λ / (100)

(λ + λ )
[ r( )100e   r( )200e  ]; when  = 

0.0005 and the repair rate r = 0.05, then this IA becomes A(100,  200) = 0.99011149545. 

A special case of IA(t) is the average availability over the interval [0, T] given by  

                        A(T) = A(0,  T) = 

T

0

1
A(t)dt

T     

 For the example with  = 0.0005 and r = 0.05 per hour, the average availability over the interval [0, 

1000 hours] is given by A(1000) = r

1000
( )tr

r r0

1
[ e ]dt

1000
  


       = 0.99029506911. 

(3) By long-term availability, A , we mean the proportion of the times a system is available and 

considers only MTBF and MDT (mean down time) but excludes mean idle time.  Thus A  = 



 156

Limit
T  A(T) = 

MTBF

MTBF+ MDT
 AI  because MDT is generally larger than MTTR( mean active 

repair time).  Downtime involves both administrative (or logistic) time and active repair time. 

  

Achieved  Availability  

We mean the proportion of the times a system is available and considers only MTBM and MMDT 

(mean maintenance down time) but excludes mean idle time.  The time horizon is depicted atop the 

next page in Figure 20.  The achieved availability is defined in Eq. (11.6) on page 255 of Ebeling as   

   aA  = 
MTBM

MTBM MMDT
                                        (11.6Ep255) 

 

 

 

                 

 

 

 

 

where MMDT = M  stands for mean maintenance downtime that includes both corrective and 

preventive maintenance downtimes.  For example, suppose a certain maintenance on a car occurs 

every 5000 miles and the value of MMDT is 8 hours.  Then, assuming that the car averages 12000 

miles/year, then the MTBM = 
5000 miles

12000 / year
 = 0.4167 year = 0.4167year(36524 hours/year) =  

3650 hours  aA = 3650/(3650 +8) = 0.9978130126. 

 

 Example 19.   Suppose a system of 5 components fails a total of 6 times and goes under 

repair a total of 6 times in 300 days of operations.  The first failure occurs at TTF1 = 55.3 days and 

repair on it starts immediately with TTR1 = 1.3 days; the 2nd failure occurs at TTF2 = 85 days 

(measured from zero) with TTR2 = 0.90 days; the 3rd failure occurs at TTF3 = 165 days with TTR3 = 

1.4 days; the 4th failure occurs at 205 days with TTR4 = 1.5 days; the 5th failure occurs at 220 hours 

with TTR5 = 1.8, and the 6th failure occurs at 260 hours (from zero) with TTR6 = 1.6 days.   Note that  
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Our objective is to estimate the MTBF and MTTR.   

MTBF̂ = 
55.3 (85 55.3 1.3) (165 85 0.9) (205

165 1.4) (220 205 1.5) (260 220 1.8) / 6

[
]

       
      

 = 42.1833 days 

and MTTR̂ = (1.3+0.9+1.4+1.5+1.8+1.6)/6 = 1.4167 days.  Assuming roughly constant failure and 

repair rates, then fλ =ˆ 1/(42.1833*24) = 0.000987752/hour and r̂ = rλ =ˆ 1/(1.4167*24) = 

0.029411765/hour, and AI = r

r

λ

λ + λ
 0.96751. 

 To further illustrate the exact difference between R(t) and A(t), consider another system of N 

= 12 new components that are placed in service at time 0.  Table 8  shows their TTFs and TTRs and 

the corresponding estimates of R(t) and A(t).  Note that for a repairable system A(t)  R(t) for all t.  

Further, in Table 8 Ns(t) stands for number of components surviving at t and NA(t) stands for number 

of components available for service at time t, and the last two columns give ˆR̂(t) and A(t) .  

Table 8. [t = time; R̂(t) = Ns(t)/N; Â(t)= NA(t)/N] 

t  in days N TTFi TTRi Ns(t) NA(t) R̂(t)  Â(t)  

0 12   12 12 1 1 

200 12 250 days 3 days 12 12 1 1 

400 12 598 5 11 12 11/12 12/12 

600 11 795 8 10 11 10/12 11/12 

800 11 980 4 9 11 9/12 11/12 

1000 12 1130 6 8 12 8/12 12/12 

1200 12   7 12 7/12 12/12 

 

 

Section 9.6 of Ebeling  

Figure 9.5 on page 207 of Ebeling describes one cycle of a  2-component repairable pure-parallel 

system where state 3 is absorbing.  For convenience I have modified Ebeling’s Figure 9.5  as follows, 

where r represents repair rate and state 2 represents system failure.  From the modified Figure 9.5 

we can deduce that 
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0 0 1 r

1 0 1 r

2 1

P (t t) P (t)(1 2 t) P (t) t

P (t t) P (t)(2 t) P (t)(1 t t)

P (t t) P (t)( t)

       
          
    

 

 

 

0 failed 1 failed 2 Failed

2 

r

0 failed 1 failed 2 Failed

2 

r  

 

 

After transposing the pertinent pr functions from the RHS to the LHS, dividing by t and taking the 

limit as t  0 result in the following system of differential equations: 

0 0 r 1

1 0 r 1

2 1

dP (t) / dt 2 P (t) P (t)

dP (t) / dt 2 P (t) ( )P (t)

dP (t) / dt P (t)

    
      
  

  

Because P0(t) + P1(t) + P2(t) = 1, then dP2(t)/dt =  dP1(t)/dt   dP0(t)/dt   The above system of 

differential equations can be reduced to 

0 0 r 1

1 0 r 1

dP (t) / dt 2 P (t) P (t)

dP (t) / dt 2 P (t) ( )P (t)

    
      

   

Taking Laplace transforms, we obtain 

0 0 0 r 1

1 1 0 r 1

sP (s) P (0) 2 P (s) P (s)

sP (s) P (0) 2 P (s) ( )P (s)

     


      
 

Applying the boundary conditions P0(0) = 1 and P1(0) = 0, we obtain  

0 0 r 1

1 0 r 1

sP (s) 1 2 P (s) P (s)

sP (s) 2 P (s) ( )P (s)

     


     
  0 r 1

0 r 1

(s 2 )P (s) P (s) 1

2 P (s) (s )P (s) 0

    

      

 
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0P (s) = 

r

r

r

r

1

0 (s )

(s 2 )

2 (s )

 

    
   

     

 = r

r r

(s )

(s )(s 2 ) 2

   
       

 =  r

1 2

s

(s u )(s u )

   
 

=   
1

a

s u
+ 

2

b

s u
, where u1 and u2 are the roots of the quadratic 2 2

rs + (λ + 3λ)s + 2λ = 0 ,  

ui = 

2 2
r r( 3 ) ( 3 ) 8

2

         
  =  

2 2
r r r( 3 ) 6

2

         
   

a = r 1

2 2
r r

λ + λ + u

λ + 6λλ + λ
= r 1

1 2

u

u u

   


;  b = r 2

1 2

u

u u

   



; note that both u1 and u2 < 0.  

Thus, P0(t) = L 1{ 0P (s) }=  L 1{
1

a

s u
 + 

2

b

s u
} = a 1u te  + b 2u te  

dP0(t)/dt = a 1u t
1u e  + b 2u t

2u e ; because 0 0 r 1dP (t) / dt + 2λP (t)= λ P (t)    

a 1u t
1u e  + b 2u t

2u e 1 2u t u t
r 1+2λ(ae  + be ) = λ P (t) a( 1u t

1u + 2λ)e  + b 2u t
2(u + 2λ)e r 1λ P (t) ; but a  

=  
2 2

r r r

1 2

( 6 ) / 2

u u

        


 and 1u + 2λ = 

2 2
r r r

1 2

6 2

u u

( ) /        


  

a( 1u + 2λ ) = r

1 2

2

u u




 ; similarly, b 2(u + 2λ)=  r

2 1

2

u u




   

P1(t) = 
1 2

2

u u




1u te    
1 2

2

u u




2u te   R(t) = P0(t) + P1(t) = 2

2 1

u

u u
1u te   + 1

1 2

u

u u
2u te ;  Note that 

the intrinsic availability AI = A() = 0 because state 2 (i.e., 2 units failed) is absorbing and the system 

eventually has to transition to state 2 plus the fact that once we are in state 2 no repair is done.  The 

system MTTF can be obtained by integrating the RE function from 0 to , which Ebeling does near the 

bottom of page 208 in his Eq. (9.33) as MTTFSys = r
2

3λ + λ

2λ
.  If  = 0.0005 and r = 0.05 per hour, 

MTTFSys = 
2

0.0015 + 0.05

2(0.0005)
= 103000 hours so that the system’s effective failure rate is Sys = 1/MTTFSys 

= 0.00000970874 per hour.  It is clear that as a system becomes more complex, obtaining its transient 
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RE function is very difficult and time-consuming because nearly always one has to solve a system of 

differential equations simultaneously, as was done above.  Due to the fact that AI, MTTFSys and 

effective failure rate Sys provide nearly all the information about a system that is needed, we may obtain 

MTTFSys by using Markovian analysis as in Chapter 6.  To compute the MTTFSys for a 2-unit repairable 

system, we have to assume that the state 2 is absorbing so that we may obtain the fundamental matrix N.  

Figure 9.5E of Ebeling shows that the transition pr  P01 = (2) t and thus P00 = 1  (2) t.  Similarly, 

P10 = r (t), P12 =  (t), and hence P11 = 1   r (t)   (t) = 1  (r +  )t .  If we take t equal to 

1 unit of time, then our one-step transitional pr matrix for a duration t  is given by   

 

 

P  =               r r

1 2 2 0

1

0 0 1

   
       
  

.     

Making state 2 absorbing, this last matrix reduces to 

 

P   =             

r r

1 0 0

0 1 2 2

1

 
    
       

 = 1P 0

R Q

 
 
 

    Q = 
r r

1 2 2

1

   
      

   

  Thus, the matrix N =( I2   Q)  1 = 

1

r r

2 2
   

     
 = 

2

1

2
 

r

r

2

2

    
   

. 

Given that the system starts in state 0, then the mean time to failure is given by MTTF0 = 

r
2

(λ + λ ) + 2λ

2λ
 = r

2

3λ + λ

2λ
 =

2

3×0.0005 + 0.05

2(0.0005)
 = 103000 hours, and MTTF1 = r

2

2λ + λ

2λ
 = 102000 hours.  

The material on pages 104-105 of my notes may be used to compute the variance of TTF.  However, 

the process can be made a renewal one by either adding on-line or off-line restoration as depicted  

below.  The equilibrium (i.e., as t  ) TRS equations for the on-line restoration case are  20 = r 

1 1 = (2/ r) 0 ; 1 = r 2  2 = 1/r = 2(/ r)2 0 ; because 0 + 1 + 2 = 1, then0 + (2/ 

r) 0  + 2(/ r)2 0 = 1  0 =1/[1+(2/ r) + 2(/ r)2]  and  1 =  

(2/ r) /[1+(2/ r) + 2(/ r)2]  .  Thus the intrinsic availability is given by AI =0 + 1  =  

2 

0 

1 

2 0 1

0 

1 

2 

0                  1                 2 
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r
2

r r

1+ (2 λ / λ )
 

1+ (2 λ / λ ) + 2 (λ / λ )
= 

2
r r

2 2
r r

λ + 2 λλ

λ + 2 λλ + 2λ
.  For example, if  = 0.0005 and r = 0.05, then AI = 

2
r r

2 2
r r

λ + 2 λλ

λ + 2 λλ + 2λ
 =  

2

2

(0.05) + 2(0.000025)

0.0025 + 0.00005 + 2(0.0005)
 = 0.99980396001  this implies that the  

 

 

0 1 failed 2 failures

2 

r r

0 1 failed 2 failures

2 

r r

 

 

 

 

 

 

 

 

 

 

 

 

system intrinsic unavailability in the long run is roughly UI  0.0002 = 0.02%, i.e., the system spends  

roughly 0.02% of the time in state 2 under repair.   

 For the case of off-line system restoration (where there is appreciable system downtime), the 

same procedure will show that r
0

r

λ
π =

3λ + 2λ
 , r

1
r

2λ
π =

3λ + 2λ
 and hence, system availability is given by 

Figure 21.   Two-unit Parallel System with Off-line Restoration  

0 1 failure 2 failures 

r 

2 


The State-TRD for a Two-unit Parallel System with On-line one-unit-at-a-time Restoration 
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AI = 0 + 1 = r

r

3λ

3λ + 2λ
.   When  = 0.0005 and r = 0.05, AI =

0.15

0.15+0.001
 = 0.9933775  On the 

average the system will be down 0.6623% of the time with both units under repair. Ebeling obtains the 

transient solution for the 2-unit standby system (with perfect sensor and switching) using TRD 9.6 and 

9.7 on pp. 209 and 210 and quiescent failure rate of roughly zero.  Since the time-dependent solutions 

again require solving a system of differential equations, I will first provide the equilibrium solution 

using on-line and off-line restoration as depicted in the following figures, and then I will obtain the 

transient solution.   Ebeling’s Figure 9.7 atop his page 210 is somewhat vague.  Thus, I have modified it 

a bit given atop the next page. Proceeding as above we obtain 

 

0 1 failed 2 failures

 

r r

The TRD for a  2-unit standby system with on-line one-at-a-time repair

0 1 failed 2 failures

 

r r

The TRD for a  2-unit standby system with on-line one-at-a-time repair
 

 

0 =1/[1+(/ r) + (/ r)2]  , (/ r) /[1+(/ r) +(/ r)2]  and AI = r
2

r r

1+ (λ / λ )

1+ (λ / λ ) +(λ / λ )
 = 

2
r r

2 2
r r

λ + λλ

λ + λλ + λ
; When  = 0.0005 and r = 0.05, AI =

2

2

(0.05) + (0.000025)

0.0025 + 0.000025 + (0.0005)
=   0.999901 

 Thus, on the average the system is unavailable 0.01%  of the time when both units are down and only 

one is under repair.  For the 2-unit standby system with off-line restoration, the figure below shows that 

0 = r 2  2 = (/ r) 0 ; 0 = 1  1 = 0 ; because 0 + 1 + 2 =1, then 0 +  0  + (/ r)0 =  
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0

1 failed 2 failed

r

 

The TRD for a 2-unit Standby with off-line system repair rate r

0

1 failed 2 failed

r

 

The TRD for a 2-unit Standby with off-line system repair rate r
 

1  0 =1/[2 + (/ r)]  and  1 = 1/[2 + (/ r)]   AI = 2/[2 + (/ r)].  When  =0.0005 and r = 0 

0 = r 2  2 = (/ r) 0 ; 0 = 1  1 = 0 ; because 0 + 1 + 2 =1, then 0 +  0  + (/ r)0 = 

1  0 =1/[2 + (/ r)]  and  1 = 1/[2 + (/ r)]   AI = 2/[2 + (/ r)].  When  =0.0005 and r = 0 

0.05, AI = 2/[2 + 0.0005/0.05] = 0.995025  The system will down an average of roughly 0.50% of the 

time when both units are under repair.  To obtain the MTBFSys, we need the TRM (transition-rate 

matrix) for the above 2-unit standby system which is given by 

 

 

P  =             

r r

1 0

0 1

0 1

   
    
    

            P   =            

1 0 0

0 1

0 1

 
    
    

 

 

     Q = 
1

0 1

   
   

    N = (I2  Q)  1 = N = 

1

0

  
  

 =  2

1

 0

  
  

   

MTBF0 = 2/ and MTBF1 = 1/. 

 

 

The Transient Solution for a Single Unit 

By instantaneous (or point) component availability at time t, A(t), we mean the Pr that a 

component is functioning reliably at time t.  Thus, if there is no repair, the point availability function 

is simply A(t) = R(t).  However, if the component is repairable, then there are two mutually exclusive 

possibilities: (1) The component is reliable at t, in which case A1(t) = R(t),  (2) the component fails at 

0 

1 

2 

0 1 2

2

0

1

2 0 1
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time x,  0 < x < t, gets renewed in the interval (x, x+x) with pr element m(x)dx, and then is reliable 

from time x to t  x (Trivedi, 1982).  This second pr is given by A2(t) =
t

0

(x)dx R(t x)  .  Because  

the above two cases are mutually exclusive, then a component’s availability is  

         A(t) = A1(t) + A2(t) = R(t) + 
t

0

(x)dx R(t x)                                           (136a) 

Taking Laplace transform of the above Eq. (136a) yields A(s)  = R(s) + R(s) (s) = R(s) [1+ (s) ]   

                              A(s)  = R(s) [1 + r

r

f (s)g (s)

1 f (s)g (s)
]  = 

r

R(s)

f (s) g (s)1
.                                   (136b) 

If the component’s TTF has a constant failure rate  and time to repair is also exponential at the rate 

r, then A(s)  = 
t st

0

e e dt


   = 1/(+s); f(s) = t st

0

e e dt


  = /(+s); rg (s)  = r t st
r

0

e e dt


  = 

r/(r+s).  Hence, the L{A(t)} = A(s) = 
r r

1 / ( s)

1 [ / ( s)][ / ( s)]

 
      

 = r

r r

s

( s)( s)

 
     

 

= r

r

λ + s

s[s + (λ + λ )]
 = r

r

λ

s(λ + λ )
 + r

r

/ ( )

s

   
   

   A(t) = L 1{ A(s) } = L 1{ r

r

λ

s(λ + λ )
 + r

r

/ ( )

s

   
   

}          

                                  A(t)  = r

r

λ

(λ + λ )
 + 

r

λ

λ + λ
r( )te                                             (137) 

Eq. (137) gives the simplest availability function for M/M/1 queuing system where both arrival and 

repair rates are exponential and is identical to Eq. (11.10) on page 257 of Ebeling.  For example, 

given that a component has a constant failure rate f = 0.0005 and repair rate r = r = 0.05 per hour, 

then the pr that the component is available (i.e., not under repair) at t = 1000 hours is given by 

A(1000) = 
0.05

0.0505
 + 

0.0005

0.0505
0.0505(1000)e  =  0.990099009901, while R(1000) =  

e  0.5 = 0.60653066 < A(1000). 

 

System Availability (Section 11.3 of Ebeling) 

Because A(t) can stand for availability of a system, then the laws of Pr will prevail.  For example, for 

a serial system consisting of n units each with availability of Ai(t) and its own server, the system 

availability is given by 
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               ASys(t) = 
n

i
i 1

A (t)

   Minimum[Ai(t)]       (11.15E p. 259) 

Similarly, for a pure redundant parallel system, the system will be unavailable iff all n units are under  

repair and hence USys(t) = 
n

i
i 1

U (t)

  = 

n

i
i 1

[1 A (t)]


 . Therefore,  

          ASys(t) = 1  USys(t) = 1 
n

i
i 1

[1 A (t)]


   Maximum[Ai(t)]               (11.16E, p. 259) 

where the above Eq. (11.1E) is valid only if there are n servers.  If there is a single server, then 

ASys(t) < 1 
n

i
i 1

[1 A (t)]


 , as will be shown later (See Example 11.3 on page 259 of Ebeling).    

Note that we can easily use Markov analysis to obtain the long-term inherent availability of both a 

series and parallel system.  For the example 11.3 of Ebeling, the TRD for the 2-unit series system is 

given in Figure 22.  Figure 22 clearly shows that 2 0 = rλ 1  1 = (2/ rλ )0 ;   1 = 2 rλ 2   

 

 

 

 

 

 

 

 

 

 

 

2 =  1

r

λ π

2λ
   2 = (/ rλ )20  0 + (2/ rλ )0 + (/ rλ )20 = 1  0 = 2

r r

1

1+(2λ / λ )+ (λ / λ )
= 

2
r

2 2
r r

λ

λ + 2λλ +λ
 = 

2
r

2
r

λ

(λ + λ )
= [ rλ /( rλ +)]2.  Once 0 is computed, the other two steady-state prs can 

easily be obtained.  For the example 11.3 of Ebeling,  = 0.10 and rλ  = 0.20 per hour, then 0 = 

(0.2/0.3)2 = 0.4444 , which agrees with Ebeling’s answer to 3 decimals. Then for a series system the 

intrinsic system availability is AI = 0 = 0.4444 , and U = 0.5555 .   However, if the system is a pure 

0 1 2 

2 

2r

r

0 1 2 

2 

2r

r

         Figure 22.  The TRD for a 2-unit Serial system with 2 servers 
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parallel one, then AI = 0 + 1 = 0.4444  +  (0.2/0.2)0 = 0.8888  and UI = 0.111 1 , which again 

aggress with Ebeling’s answer on page 259 to 3 decimals.   

  

 The transient solution for availability of a 2-identical-unit serial system can be obtained also 

thru solving the following system of differential equations. 

0 0 1

1 0 1 2

dP (t) / dt 2 P (t) rP (t)

dP (t) / dt 2 P (t) (r )P (t) 2rP (t)

   
      

 

Because P2(t) = 1  P0(t)  P1(t) , the above system reduces to  

0 0 1

1 0 1

dP (t) / dt 2 P (t) rP (t)

dP (t) / dt (2 2r)P (t) (3r )P (t) 2r

   
       

 .   Taking the Laplace transform of this system 

results in  

0 0 1

1 0 1

sP (s) 1 2 P (s) rP (s)

sP (s) 0 (2 2r)P (s) (3r )P (s) 2r / s

    


       
     

0 1

0 1

(s 2 )P (s) r P (s) 1

(2r 2 )P (s) (s 3r )P (s) 2r / s

   


      
           

0P (s)  = 

1 r

2r / s (s 3r )

(s 2 ) r

2r 2 (s 3r )



  
  

    

 = 
2(s 3r ) 2r / s

(s 2 )(s 3r ) r(2r 2 )

   
       

 =   

2

2 2 2

s(s 3r ) 2r

s[s (3r 3 )s (2 2r 4 r)]

   

       
= 

2

1 2

s(s 3r ) 2r

s[(s u )(s u )]

   
 

 

where  

ui = 
2 2 2(3 3r) (3 3r) 4(2 2r 4 r)

2

          
 = 

2 2(3 3r) r 2 r

2

       
  

      = 
(3 3r) ( r)

2

     
     u1 =  (+r)  and  u2 =  2(+r)    

0P (s)  = 
s + 3r + λ

(s + λ + r)(s + 2λ + 2r)
 + 

22r

s(s + λ + r)(s + 2λ + 2r)
  
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0P (s)  = 
s

(s + λ + r)(s + 2λ + 2r)
 + 

3r + λ

(s + λ + r)(s + 2λ + 2r)
 + 

22r

s(s + λ + r)(s + 2λ + 2r)
         

P0(t) = L1{ 0P (s) } = 
2( r)t ( r )t1

[2( r)e ( r)e ]
r

       
 

 +
( r)t 2( r)t3r

[e e ]
r

    


 
+ 

2
2( r)t ( r)t

2

2r 1
1 [( r)e 2( r)e ]

r2( r)
{ }        

  
 

    ASys(t) = P0(t) = 
2

2

r

(λ + r)
 + 

( r)t
2

2 r
e

( r)

 

 
  + 

2
2( r)t

2
e

( r)

 

 
                         (138)                             

 

Eq. (138) gives ASys(10 hours) = 0.467674, which is in agreement with that of Ebeling’s on his page 

259 for ASys(10) = (0.684)2 = 0.468 to 3 decimals.  Further, Eq. (138) shows that the availability of a 

serial system is simply the product of the individual availabilities, i.e., ASys(t) = 
n

i
i 1

A (t)

  (see Eqs. 

(11.13) and (11.15) on pp. 258-259 of Ebeling. 

 

System Transient Availability For a 2-identical-unit Parallel System with a Single Server 

 It can easily be verified that the system of differential equations is given by  

0 0 1

1 0 1 2

dP (t) / dt 2 P (t) rP (t)

dP (t) / dt 2 P (t) (r )P (t) rP (t)

   
      

 

Because P2(t) = 1  P0(t)  P1(t) , the above system reduces to  

0 0 1

1 0 1

dP (t) / dt 2 P (t) rP (t)

dP (t) / dt (2 r)P (t) (2r )P (t) r

   
       

 .    Taking the Laplace transform of this system 

results in 

0 0 1

1 0 1

sP (s) 1 2 P (s) rP (s)

sP (s) 0 (2 r)P (s) (2r )P (s) r / s

    


       
         
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  0 1

0 1

(s 2 )P (s) r P (s) 1

(r 2 )P (s) (s 2r )P (s) r / s

   


      
       0P (s)  = 

1 r

r / s (s 2r )

(s 2 ) r

r 2 (s 2r )



  
  

    

=  

2(s 2r ) r / s

(s 2 )(s 2r ) r(r 2 )

   
       

 =   
2

2 2 2

s(s + 2r + λ) + r

s[s + (3λ + 2r)s + (2λ + r + 2λr)]
       0P (s) = 

2

1 2

s(s 2r ) r

s[(s u )(s u )]

   
 

,    where  ui = 
2 2 2(3 2r) (3 2r) 4(2 r 2 r)

2

          
 = 

2(3 2r) 4 r

2

      
 , u1  u2 =

2λ + 4λr   ,    and     u1u2 = 22 +2r + r2    

2
0P (s) b 4ac  = 

1 2

s 2r

(s u )(s u )

  
 

+
2

1 2

r

s(s u )(s u ) 
  0P (s)  =  

1 2

s

(s u )(s u ) 
 

+
1 2

2r

(s u )(s u )

 
 

+ 
2

1 2

r

s(s u )(s u ) 
           P0(t) = L1{ 0P (s)} = 1 2u t u t

1 2
1 2

1
u e u e

u u
( )


 + 

1 2u t u t

1 2

2r
e e

u u
( )

 



 + 1 2

2
u t u t

2 1
1 2 1 2

r 1
1 u e u e

u u u u
( )[ ] 


 = 

2

2 2

r

r + 2λ + 2λr
 + 

1

2 2
u t1 1

1 1 2

u u ( 2r) r
e

u (u u )

   


 + 2

2 2
u t2 2

2 2 1

u u ( 2r) r
e

u (u u )

   


   P0(t) = 
2

2 2

r

r + 2λ + 2λr
 + 

1

2 2
u t1 1

1 1 2

u u ( 2r) r
e

u (u u )

   


 + 2

2 2
u t2 2

2 2 1

u u ( 2r) r
e

u (u u )

   


                                                            (139a)                        

Similarly, P (s)1 = 
1 2

2r

s(s u )(s u )


 

 + 
1 2

2

(s u )(s u )


 

 , and  

                  P1(t) = 
2 2

2λr

r + 2λ + 2λr
 + 1u t1

1 1 2

2 u 2 r
e

u (u u )

  


 + 2u t2

2 2 1

2 r 2 u
e

u (u u )

  


                              (139b)

    

Combining Eqs. (139 a &b) yields 
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A(t) = P0(t) + P1(t) = 
2

2 2

r + 2λr

r + 2λ + 2λr
 + 1

2 2
u t1 1

1 1 2

u u (3 2r) (r 2 r)
e

u (u u )

     


  +                   

           2

2 2
u t2 2

2 2 1

u u (3 2r) (r 2 r)
e

u (u u )

     


,  u2 < u1 < 0.   

A(t) =
2

2 2

r + 2λr

r + 2λ + 2λr
  + 1

2
u t

1 2 1

2
e

u (u u )




 +  2

2
u t

2 1 2

2
e

u (u u )




= 
2

2 2

r + 2λr

r + 2λ + 2λr
 + 

          
1u t2

2 2

4 e

(3 2r) 4 r ( 4 r)



        
  

2u t2

2 2

4λ e

λ + 4λr + (3λ + 2r) λ + 4λr
                        (140)   

At  = f = 0.10 and r = r = 0.20, the value of A(10 hours) from Eq. (140) is A(10) = 0.844213368.  

This availability is less than As(10) = 0.900, as expected, given by Ebeling on his page 259 for the 

case of 2-identical parallel units with 2 servers because the system availability given in Eq. (11.16) 

on page 259 of Ebeling is valid only for the case of n servers, while availability function of Eq. (140) 

developed above is valid for a 2-uint parallel system with only one server. 

 

System Transient Availability For a 2-unit Standby System 

Figure 11.4 on page 259 of Ebeling describes one cycle of a 2-component repairable Standby 

system where the quiescent failure rate of the standby unit f
  is negligible relative to its active 

failure rate 2.  For convenience I have modified his Figure 11.4 as follows, where r = r represents 

repair rate and state 2 represents system failure.  From the modified Figure 11.4 we can deduce that 

0 1 0 1

1 1 0 2 1 2

dP (t) / dt P (t) rP (t)

dP (t) / dt P (t) (r )P (t) rP (t)

  
      

 

Because P0(t) + P1(t) + P2(t) = 1, then P2(t)= 1  P1(t)   P0(t)   the above system of differential 

equations  reduces to 

0 1 0 1

1 1 0 2 1

dP (t) / dt P (t) rP (t)

dP (t) / dt ( r)P (t) (2r )P (t) r

  
       

   

Taking Laplace transforms, we obtain 0 0 1 0 1

1 1 1 0 2 1

sP (s) P (0) P (s) rP (s)

sP (s) P (0) ( r)P (s) (2r )P (s) r / s

   


       
. 

Applying the boundary conditions P0(0) = 1 and P1(0) = 0, we obtain 
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0 1 0 1

1 1 0 2 1

sP (s) 1 P (s) rP (s)

sP (s) ( r)P (s) (2r )P (s) r / s

   


      
 1 0 1

1 0 2 1

(s )P (s) r P (s) 1

(r )P (s) (s 2r )P (s) r / s

   


      
    

0P (s) = 2

1

1 2

1 r

r / s (s 2r )

(s ) r

r (s 2r )


  

  

    

 =

2
2

2 1 1

(s 2r ) r / s

(s 2r )(s ) r(r )

   
       

 =   

        
2

2

2 1 1

s(s 2r ) r

s[(s 2r )(s ) r(r )]

   
       

  

 

 

 

 

 

 

 

 

 

 

 

 

            0P (s) = 
2

2
2 2

1 2 1 1 2

s(s 2r ) r

s[s ( 2r )s (r r )]

   
          

 =
2

2

1 2

s(s 2r ) r

s(s u )(s u )

   
 

,   

where u1 and u2 are the roots of the quadratic 2 2
1 2 1 1 2s + (λ + 2r + λ )s + (r + rλ + λ λ ) = 0 , i.e.,   

ui = 

2
1 2 2 1 2( 2r ) ( ) 4r

2

          
 ,  and  u1u2= 12 + r2+ r1. 

Thus, 0P (s)  = 2

1 2

s 2r

(s u )(s u )

  
 

+ 
2

1 2

r

s(s u )(s u ) 
=

1 2

s

(s u )(s u ) 
 + 2

1 2

2r

(s u )(s u )

 
 

 +  

2

1 2

r

s(s u )(s u ) 
; inverting this Laplace transform yields 

        A 2-unit standby system with on-Line Repair 
 

0 1 failed 2 

 

r 

-

0 1 failed          2 failed  

 

r 

-

r 
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P0(t) = = L1{ 0P (s) } = 1 2u t u t
1 2

1 2

1
u e u e

u u
( )


 + 1 2u t u t2

1 2

2r
e e

u u
( )

 



 +  

1 2
2

u t u t
2 1

1 2 1 2

r 1
1 u e u e

u u u u
( )[ ] 


 = 

2

2
1 2 1

r

r r    
 + 1

2 2
u t1 1 2

1 1 2

u u ( 2r) r
e

u (u u )

   


 + 

2
2 2

u t2 2 2

2 2 1

u u ( 2r) r
e

u (u u )

   


.                         (141) 

Similarly, 1P (s)  = 

1

1

1

1 2

(s ) 1

(r ) r / s

(s ) r

r (s 2r )

 

 
  

    

 = 1 1

2 1 1

(s )r / s (r )

(s 2r )(s ) r(r )

    
       

 =    

    =  1 1

2 1 1

r(s ) (r )s

s[(s 2r )(s ) r(r )]

    
       

 = 1 1
2 2

1 2 1 1 2

r s

s[s ( 2r )s (r r )]

  
          

=  

1 1

1 2

r s

s(s u )(s u )

  
 

 = 1

1 2

r

s(s u )(s u )


 

 + 1

1 2(s u )(s u )


 

     

P1(t) = L 1{
*
1P (s)} = 1 2u t u t1

2 1
1 2 1 2

r 1
1 u e u e

u u u u
( )[ ]

 


 + 1 2u t u t1

1 2
e e

u u
( )





  

P1(t) = 1
2

1 2 1

r

r r


    

+ 1u t1 1 1

1 1 2

r u
e

u (u u )

  


 + 2u t1 1 2

2 2 1

r u
e

u (u u )

  


                  (142) 

Combining Eqs. (141) and (142), the point (or instantaneous) availability for a 2-unit standby system is 

given by A(t) = 0 1P (t) + P (t) =
2

1
2

1 2 1

r + rλ

r + λ λ + λ r
+ 1

2 2
u t1 1 2 1 1

1 1 2

u + u (λ + 2r + λ ) + r + rλ
e

u (u - u )
 + 

2
2 2

u t2 2 2 1 1

2 2 1

u u ( 2r ) r r
e

u (u u )

       


.                                                                                         (143a)                       

                                             

Substituting ui =
2

1 2 2 1 2( 2r ) ( ) 4r

2

          
   into Eq. (143a) reduces the above availability 

function to  

           A(t) = 
2

1
2

1 2 1

r r

r r

 
    

+ 1u t2 1

1 2 1
e

u (u u )

 


 + 2u t2 1

2 1 2
e

u (u u )

 


     (143b) 
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The intrinsic availability is given by AI = 0 1Limit [P (t) P (t)]
t


  = 0 1π + π  

     AI = 1
2

1 1 2

r(r )

r r

 

    
                                                                  (144) 

Eq. (144) clearly shows that for an irreparable 2-unit standby system, i.e. r = 0, the value of AI  = 0 while 

for the same system the RE function from Eq. (143b) is given by  

      R(t) =  1u t2 1

1 2 1
e

u (u u )

 


+ 2u t2 1

2 1 2
e

u (u u )

 


                                           (145a) 

However, when r = 0, u1 = 1λ and u2 = λ 2  so that the Eq. (145a) reduces to  

   R(t) =  2

2 1


  

1te + 1

1 2


  

2te                                 (145b)                         

 

Eq. (145b) is identical to the RE function for a 2-unit standby system given in Eq. (6.27) on page 113 of 

Ebeling where we are assuming that the quiescent failure rate of the standby unit 2
  = 0.  For the 

Example 11.4 on page 260 of Ebeling, 1 = 0.002, 2 = 0.001, and r = 0.01 per hour.  Substituting these 

into Eq. (144) results in AI = 0.9836065574, which agrees with that of Ebeling’s to 3 decimals near the 

bottom of his page 260.  Ebeling’s failure rates in this example are unrealistic because the primary unit 

in a 2-unit standby should never (or hardly ever) have a failure rate twice that of the standby unit.  

Therefore, the more realistic failure rates are 1 = 0.001, 2 = 0.002, and r = 0.01 per hour.  Substituting 

these into Eq. (144) results in AI = 0.98214286, which should be a bit smaller than the case of 1 > 2.  

The value of RE at t = 500, 1 = 0.001, 2 = 0.002, and r = 0.01 from Eq. (145) is given by R(500) 

=
0.002

0.002 0.001
0.5e + 

0.001

0.001 0.002
1e = 1.21306131942527  0.36787944117144 = 

0.845181878254.  While the value of the point availability A(t) at t = 500 hours from Eq. (143b) is 

A(500) = 0.9830968, where u1 =  0.007000 and u2 =  0.01600000. 

 

 

Summary  

1.  Exponential Failures and Repairs of a Single unit (or Component) 
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(a) For the exponential failures and no repairs (MTTR = µr  0), the RE function is  R(t) = 

te . 

                                The renewal function is M(t) = E[Nf(t)] = t. 

 

(b)  For the exponential failures with exponential repairs (MTTR = µr  > 0), then  

 A(t) = r

r

λ

λ + λ
 + 

r


  

r( )te 
  

          A(t1,  t2) = r

r


  

 + 2 1
2

r

/ (t t )

( )

 
  

 [ r 1( )te   r 2( )te  ]            

                          AI =   r

r


  

       ; The renewal  function is 

               M(t) = E[NC(t)] = r
2

r( )


  

 + r

r

t

( )


  

 + r( )tr
2

r

e
( )

 
  

  . 

Note that the above expected number of cycles when r = r =  (i.e., MTTR = µr  0), its 

value does become equal to the mean number of failures M(t) = t for the case of W/O 

repair, as expected. E. A. Elsayed provides the same expression as above near the bottom 

of his page 426 W/O detailed proof.  

 

 2.  Two-Identical-Unit  Series  System 

(a)  No Repairs (r = r = 0): R(t) = 2 te             

The renewal function is M(t) = E[Nf(t)] = 2t 

(b) r > 0;  A(t) =[ r

r

λ

λ + λ
 + 

r


  

r( )te 
]2    AI = (

r

r 
)2        

  3.  Two-Identical-Unit  Active Redundant  System   

(a)   No Repairs (MTTR = µr  0):         R(t) = 2 te   2 te     
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In order to obtain the exact renewal function E[Nf(t)] = M(t), one must first derive the 

Laplace transform of the renewal function 
f (s)

M(s)
s[1 f (s)]




 iff f(t) =f1(t) , and then M(t) = 

L1{ M(s) }.   The approximate value of M(t) = E[Nf(t)]   t/MTTF ; MTTF = 
2 1

2


 
 = 1.5/   

         M(t) = E[Nf(t)]   t/1.5  

Because f(t) = 2 te    2 2 te  , then f (s) = 
2

s


 

  
2

s 2


 

 resulting in M(s) = 

2 2 2 2
( ) / s 1
s s 2 s s 2

{ [ ]}
   

  
       

 = 
2 (s 2 ) 2 (s )

s s )(s 2 ) 2 (s 2 ) 2 (s )[( ]
      

           
 

=
2

2

2

s s )(s 2 ) 2[( ]


     
 = 

2

2

2λ

s (s + 3λ)
  M(t) = 

2
3 t

2

2
(e 3 t 1)

(3 )
 

  


 = 3 t2(e 3 t 1) / 9     . 

To check the validity of this last expected number of failures for a length of time t, we note that 

E[Nf(t=0)] = 02(e 1) / 9 = 2(1 1) / 9  = 0, as expected.  Secondly, the value renewal density is (t) = 

dM(t)/dt = 
3 t2( 3 e 3 0) / 9       =

3 t2 / 3 e 2 / 3     .  Because  = 1.5/, then the 

Limit (t)
t


  = 1/ = 2λ / 3 .   

(b)  The case of MTTR = µr > 0.  A(t) = 1  [1  r

r

λ

λ + λ
    

r


  

r( )te 
]2 

assuming two servers, i.e., each unit has its own server. 

                  AI = r

r

2λ

λ + λ
  

2r

r

λ
( )
λ + λ

  (assuming two servers) 

 

For one server, A(t) =
2

2 2

r 2 r

r 2 2 r

 
   

  + 1
2

u t

1 2 1

2
e

u (u u )




 +  2
2

u t

2 1 2

2
e

u (u u )




 

where  ui = 
2(3 2r) 4 r

2

      
    and     AI = 

2

2 2

r + 2λr

r + 2λr + 2λ
  ,   
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In order to obtain M(t) = E[NC(t)], one must obtain  M(s) = r

r

f (s)g (s)

s[1 f (s)g (s)]
  , and then 

E[NC(t)] = L1{ M(s) }.  This is probably too difficult to accomplish because f (s) and g(s)  

now must represent the system Laplace transforms of TTF and TTR.  The system TTF 

distribution can easily be obtained, but the system TTR distribution, gSys(t), is difficult to 

obtain. The approximate value of  M(t) = E[NC(t)] is given by t/MTBC, where MTBC 

represents mean time between cycles.   

 

4.    Two-Unit  Standby Redundant  System   

(a) No Repair (µr  0, 1 = 2 = ). 

   R(t) = (1+ t) te  

   M(t)  t/(2/)= t/2 

(b) µr > 0  

A(t) = 
2

1
2

1 2 1

r r

r r

 
    

+ 1u t2 1

1 2 1
e

u (u u )

 


 + 2u t2 1

2 1 2
e

u (u u )

 


            

where  ui =

2
1 2 2 1 2( 2r ) ( ) 4r

2

          
  .  

AI =
1

2
1 1 2

r(r )

r r

 
    

  


