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Interference  Theory  for  Stress  and  Strength    Reference : Chapter 7  of 

Ebeling                  Maghsoodloo 

 

 Let the rv Y represent the strength of a component and the rv X represent the stress applied on 

the component.  Then the component reliability is given by 

        R = P(Y >  X) = 
P(Y X 0),

or P(Y / X 1)

 
 

 = 
P(Y X 0),

or P( 1)

 
  

                                          (89) 

where the random variable  = Y /X  is called the Factor of Safety (or Safety Factor).  We assume that 

both X and Y are independent continuous rvs with pdfs f(x) and g(y), respectively.  To obtain a general 

expression for RE, we can use any one of the following two approaches depending on the expressions 

for f(x) and g(y). 

1.  Suppose that the stress acting on a device is in the neighborhood of x0.  Then the device incremental 

RE is given by P[(x0dx  x  x0+dx)  (Y > x0 )] =  

P(x0dx  x  x0+dx)P(Y > x0 x0dx  x  x0+dx) = f(x0)dx
0x
g(y)dy



 . 

where P(Y > x0 x0dx  x  x0+dx) = P(Y > x0) because Y is independent of X.  Since the value of 

stress can range from  (in reality from 0)  to , we can remove the condition on x0 by integrating 

over all possible values of x0, i.e., the unconditional RE is given by 

R = 
0

0 x
f(x ) g(y)dy dx[ ]





   = 

x
f(x) g(y)dy dx[ ]





   = yG (x)f(x)dx




                    (90a)  

where Gy(x) =  1  Fy(x) and Fy(x) is the cdf of Y at the stress value x so that Gy(x) is the exceeding pr 

of strength at the stress value x. 

 

2.  Suppose the strength of a device is around the value y0.  Then the device will be RE iff the stress acting 

on it is less than y0.  Letting Fx(y) represent the cdf of stress at the strength y and applying similar logic as 

above, we deduce that  

    R = xF (y)g(y)dy



           (90b) 
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 Example 13.   Suppose a component’s strength, Y, ~ N(100 MPa, 100) and the stress acting on 

the component is exponentially distributed with mean x = 50 MPa.  Since the exponential cdf is 

directly invertible while the Gaussian is not, then it is best to use Eq. (90b) because the cdf of the 

exponential is given by Fx(y) = 1ey/50, while the normal cdf is an integral.  Hence, from (90b) 

R = - -y/50(1 e )g(y)dy



 = -

21 y-100
- ( )

2 10
-y/50 e

(1 e ) dy
10 2



  = 1 

2 44y y -200y+10
200 200e

dy
10 2

 

  =   

   1 

2 4y - 196y+10
200e

dy
10 2



  = 1 

2 4y - 196y+10
200e

dy
10 2



  =  1  

2 4y - 196y+10

2001
e dy

10 2

 

  =        

1  

2[(y 98) 396]

2001
e dy

10 2

  

  = 1  

21 y 981.98 ( )
2 10e

e dy
10 2

 

  = 1  1.98e = 0.861931. 

The central factor of safety is given by nc = y/x = E(Y)/E(X) = 2, while the mean factor of safety n = 

E(Y/X) = E() cannot be directly computed; however it can be shown that n  nc(1 + 
2
xCV ), where 

nc = y x/   is called the central factor of safety and CVx is the coefficient of variation of stress.  For 

our example, CVx = x x/  = 1 (or 100%) so that the expected factor of safety is approximately n  

2(1 +12) = 4. 

 Suppose now in the above problem the strength Y was deterministic at a constant value of 100 

MPa but stress was still exponential.  Then the component RE reduces to R = P(X < 100) = FX(100) = 

1 e100/50 = 0.864665.  Conversely, if stress were deterministic at the constant value of x = 50 MPa, 

then R = P(Y > 50) = P(Z > 
50 100

10


) = P(Z > 5) = 0.99999971334843. 

 

Normal Stress and Strength 

Suppose the strength of a device Y ~ N(y, 
2
y ) and is subject to the stress X which is also 

N(x, 
2
x ).  Then from Eq. (89), we deduce that R = P(Y > X) = P(Y  X > 0) = P(W > 0), where W = 
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Y  X is a LC of normally and independently distributed rvs and hence itself is Gaussian with  = 

E(W) = y  x and variance V(W) = V(Y) + V(X) = 
2
y +

2
x , depicted in Figure 18.   Figure 18 

shows that  

R = P(W > 0) = P(Y  X > 0) = P(Z > 
w

0 


) = P(Z > 
2 2
y x



  
) = = P(Z > 

y x

2 2
y x

( )   

  
) = 

P(Z>   Z0) = ( Z0), where Z0 = 
y x

2 2
y x

  

  
. 

 Example14.  The strength of a component is N(y, 400 MPa2)  and the stress acting on it is also 

Gaussian N(x, 625 MPa2).  Determine the value of central factor  

 

 

The SMD of W

mu

p
d

f(
w

)

 

   

  

of safety, nc= y/x, such that the component RE is at least 0.999 if CV(Y) = 0.10.    

Solution:  CV(Y) = 0.10  0.10 =y/y = 20/y   y  = 200 MPa.  
2 2

w y x      = 1025  =  

w 

  0 

R 

W 

Figure 18.  The SMD of W = Y  X 
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32.10562; (Z0) = 0.999  Z0.001 =
y x

2 2
y x

  

  
  3.090232 = x200

32.01562


  x =101.0643  nc=  

200/101.0643 =1.9789383 and CVx = 25/101.0643 = 0.2473673.  Thus, on the average the mean 

strength has to be nearly at least twice the mean stress to attain a RE of at least 0.999. 

In the normal case, the device RE can also be expressed in terms of CVy and  CVx as follows: 

Z0 = 
y x

2 2
y x

  

  
= 

y x

2 2 2 2
y x x x

/ 1

/ /

  

    
 = c

2 2 2 2 2 2
y y y x x x

n 1

( / )( / ) /



      
 = 

    = c

2 2 2
y c x

n 1

CV (n ) CV




   R = P(Z >   Z0) = ( Z0). 

 Further, it can be shown that given the values of n = E(Y/X) = E() and , the maximum 

UNRE value, regardless of the underlying distributions, is given by 

   Q = R   

2 2

2 2 2

(n) CV

(n) CV (n 1)



  
 

where CV = / n .  Conversely, if the desired value of R and the CV are given, then the minimum 

required mean factor of safety, n ,  is given by 

                    
1

n
1 CV R / Q




 

where Q = R  and CV = 

2 2
y x

2
x

CV CV

1 CV




 .  For example, if r = 0.999 is required and it is known 

that CV(Y/X) = 0.03, then the minimum required factor of safety is given by 

1
n

1 0.03 0.999 / 0.001
 


 19.3081.  Note that this required n 19.3081 makes no 

assumptions about f(x) and g(y); for example, if both underlying distributions are normal as in 

Example 14, then n  nc(1 + 
2
xCV ) =1.9789383(1 +0.24736732) = 2.100031. 
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On the other hand, if no assumptions are made about f(x) and g(y), and the design value of R is given 

along with CVy and CVx, then the minimum required value of central safety factor is given by 

  nc = 
y

x




  

2 2 2
x y x

1

1 CV R(CV CV ) / R  
 

For example, suppose the design value of R = 0.999, and it is known that CVy = 2.4% while CVx = 

1.8%, then the minimum central safety factor is given by nc  

2 2 2

1

1 (0.018) 0.999(0.024 0.018 ) / 0.001  
 = 19.1883. 

 

Exponential Strength and Uniform Stress 

As an example suppose Y ~ Exp(y = 1000 MPa) and stress acting on the device is U(200, 500 MPa).  

Our objective is to compute component RE. 

R = xg(y)dy F (y)




  = 
0.001y y 200

0.001e dy
300







 =  

0

0 0dy


 + 

200
0.001y

0

0.001e 0dy   + 

500
0.001y

200

y 200
0.001e dy

300
 

  +    
0.001y

500

0.001e (1)dy


  = 

          

500

200

500
0.001y 0.001y

200

1
(y 200)e e dy

300
] 

 
   
  

  + 
0.001y

500
e

    =
1

300
[

0.5300e  

 

0.20 0.50(e e ) / 0.001   ] + 0.60653066 = 0.100803 + 0.60653066 = 0.707333645. 

 

We could also arrive at the same RE as follows: R = yG (x)f(x)dx



  = 

-0.001xe dx/300



  

= 

500
-0.001x

200

e dx/300  = 
500

200

0.001x1
e

0.30
]

  = 
0.20 0.501

(e e )
0.30

   = 0.707333645, as before. 
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 Exercise 25.   Suppose stress acting on a component has an exponential distribution with mean 

x = 100 MPa and its strength is Weibull with minimum strength  = 600 MPa, characteristic strength 

 = 900 MPa and slope  = 2.00.  Compute the device RE.  ANS: R = R1+ R2 = P(X< 600)P(Y  600) 

+ P(X  600)P(Y  x)= 0.9996405635. 

 

Lognormal Stress and Strength 

Suppose X and Y are independent and lognormally distributed with parameters x0.50 = xe  , 

x,  y0.50 = ye


and y.  Then,  R = P(Y/X > 1 ) = P(lnY  lnX > 0) = P(W > 0), where W = lnY  lnX  

is normally distributed with mean E(W) = E(lnY)  E(lnX) = y  x = ln(y0.50)   ln(x0.50) = ln(y0.50/ 

x0.50) and V(W) = V(lnY  lnX) = 
2
y + 

2
x .  Hence,  R = P(W > 0) = P[Z > 0.50 0.50

2 2
y x

0 ln(y / x ) 

  
] 

= 1   0.50 0.50

2 2
y x

ln(y / x ) 
[ ]



  

= 0.50 0.50

2 2
y x

ln(y / x ) 
[ ]

  
. 

 As an example consider the Example 7.11 on page 134 of Ebeling where y0.50 = 8.1, y = 0.07, x0.50 = 

5.5, and x = 0.15. Then,  R = ln(8.1/ 5.5)/ 0.0049 0.0225[ ]   =  0.990323303, which 

match’s that of Ebeling’s to 2 decimal accuracy. 

 

RE Estimation from Strength/Stress Data 

Recall from Eq. (90a) that  R = yf (x)dxG (x)



 ; making the transformation f(x) = dFx(x)/dx in this 

integral results in f(x)dx = dFx(x) and  R = 

1

y x
0

G (x)dF ; thus, if we graph Gy(x) versus Fx(x), the  

area under Gy(x) and the abscissa Fx(x)-axis from zero to 1 will give the approximate reliability.  

As an example suppose that stress and strength analysis performed on a randomly selected component 

resulted in the following simulated data. 

     Stress (MPa): 8  15  12  13  14  17  15   

Strength (MPa): 14   10   17  18   20   19  23   22   25  19   
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We first tabulate the estimates of Fx(x) and Gy(x) as shown below. 

KPa 0 8 10 12 13 14 15 

Fx(x) 0 1/7 1/7 2/7 3/7 4/7 6/7 

Gy(x) 1 1 9/10 9/10 9/10 8/10 8/10 

KPa 17 18 19 20 22 23 25 

Fx(x) 7/7 1 1 1 1 1 1 

Gy(x) 7/10 6/10 4/10 3/10 2/10 1/10 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above Figure shows that the approximate value of RE is given by 

R̂  = 
1 1 0.95 0.95 0.90

0.90 3(0.8) 0.8 / 2
7 2 2

       
 = 0.80. 
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9/10

8/10
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GY(x) 

5/10 
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Random Loads (Section 7.3.2 on pp. 157-158 of Ebeling) 

 Because random loads represent realistic life situations, we will illustrate the use of the Poisson 

distribution through the Exercise 7.8 on p. 163 of Ebeling (2nd Ed.).  The stated parameters are 

maximum strength capacity of the dam at yU = 20feet, and the distribution of flood levels, when they 

do occur, is exp(x = 0.25/feet) so that the mean flood levels is 1/0.25 = 4 feet.  The Poisson 

occurrence rate, r, of floods is 0.50floods/year, i.e., r = 0.50/year.  In order to compute the RE over 10 

years, we first compute the µ = E(Nfloods) = 100.50 = 5floods.  Thus, the Pr that exactly i floods occur 

in the next 10 years is given by Pi = 
i

55
e

i!
 , i = 0, 1, 2, 3, 4, 5, 6, ….  Secondly, each time a flood 

occurs the Pr that its level does not exceed 20 feet is given by R = 1e(0.2520) = 0.993262053, and 

hence the collapse Pr is given by Q = 1R = 0.006737947.  Therefore, the system RE over t-years is 

given by 

RSys(t) = P0 + P1R + P2R2 + P3R3 + … = e + e R + 
2

e
2!


R2 +

3

e
3!


R3 + …. 

          = e [1 +µR + 
2( R)

2!


 +

3( R)

3!


 + …. ] = e

i

i 0

( R)

i!





 = Re e  = (1 R)e  = Qe , where Q =  

x Uye .  Hence, RSys(10 years) = rt Qe  = 5 0.006737947e   = 0.9668714445.  For a 20year-span, RSys(20) 

= 10 0.006737947e  = 0.9348404. 

 Suppose now we wish to have a Sys RE of least 99% at 20 years instead of 0.9348404. How 

much larger the dam’s maximum capacity must be in order to attain this Sys RE, i.e., RSys(20) 

= 20r Qe   0.99   20rQ  ln(0.99)   20 0.50Q   0.01005034  Q  0.10005034  U0.25ye   

0.10005034 yU = 27.611 feet.  

 

 


