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Review of Markov Models    Reference: Chapter  6  of Ebeling       Maghsoodloo                

 Definition.  A collection of random variables, Xt, that are indexed by a parameter (most 

often time) are called a stochastic process.  The word stochastic means pertaining to chance, or 

random.   A stochastic process is characterized by its state space (or location set), Rx, and its index set 

that is denoted by T. 

 Example 10.  (a) The growth of a population is more realistically modeled as a stochastic 

process, where Xt is the population size at time t.  In this example, the state space, Rx, is discrete while 

the index set, time, is continuous. Other examples with discrete state space and continuous index set 

are the number of units in stock (or inventory level) at time t, and the number of passengers waiting in 

queue for a bus at any time of the day.  (b)  Suppose we have a product that is not denumerable (such 

as gasoline, cloth, hazardous waste, etc) but the inventory level is observed only at discrete epochs of 

time.  Such a stochastic process has a continuous state space but a discrete index set T (or parameter 

space).    (c)  The content of a dam observed at any time t is an example of a stochastic process with 

both continuous state and parameter spaces.  (d)  Consider a component, such as a valve or a resistor, 

which is subject to failure but is inspected only one time per month (or perhaps per week, or even per 

day, but on an equal-interval basis).  Upon inspection it is classified as satisfactory (0), unsatisfactory 

or derated or degraded (state 1) perhaps needing preventative maintenance, and failed (state 2).  This 

represents an example of a stochastic process with discrete state (or location) space Rx = {0, 1, 2} and 

discrete index set T = {0, 1, 2, 3, 4, …}.  

 

 Definition.  A stochastic process is said to be Markovian if the future behavior of the system, 

Xt, depends only on the present state, tn, and not how the present state has been attained.  That is, the 

pr of any future event, when the present state is known, is not at all altered by extra information about 

the past behavior of  Xt.  In order to translate this definition into a pr statement, we say that X(t) is a 

Markov process iff 

Pr[X(t)  x  X(tn) = xn , X(tn  1) = xn  1 , …, X(t0) = x0] =  

     = Pr[X(t)  x  X(tn) = xn]. 

Whenever the parameter space, or the index set, T is discrete, we will call such a process a Markov 

chain, and as a result we have the classifications given in Table 3. 
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Table 3.   The Four Possible Types of Markov Processes 

                      State Space 

Parameter Set 

             Discrete (Location)        Continuous 

        (Location) 

Discrete  (Time)           Markov  Chain       Markov Chain 

Continuous  (Time)  Markov  Process (With most 

applications to Reliability Engr) 

     Markov  Process 

 

 In the Example 10 part (d), suppose when the component is in state 0 (satisfactory), the pr that 

it will be still satisfactory at the next month’s inspection is 0.65, i.e., P00 = 0.65.  Further, the transition 

pr in one month from 0 to unsatisfactory state is 0.27, i.e.,  P01 = 0.27, and thus by necessity P02 = 0.08.  

Finally, the rest of the one- step transition probabilities are P11 = 0.55, P12 = 0.45, and P22 = 1.0.   In the 

study of Markov chains, the one-step transition probabilities are summarized in the form of a one-step 

transition matrix P, which for this part (d) of Example10 is given below. 

 

     

  P  =         

0.65 0.27 0.08

0 0.55 0.45

0 0 1

 
 
 
  

                          (64) 

 

The state 2 in the above one-step transition matrix is called absorbing, which implies when the 

component fails, the process is stopped for either repair (if it is repairable) or renewal with an item 

with identical characteristics, and then the same transition matrix will prevail the following ongoing 

process.  The matrix  P above is said to be stochastic because all Pij values lie within the interval [0, 1], 

inclusive, and the sum of each row adds identically to 1.  In addition, if the transition probabilities for 

one step stay (roughly) the same for all times, then the process is said to be stationary (or time-

homogeneous).  In the present example we are assuming that the same matrix P governs the transition 

prs in months 1, 2,  3, 4, 5, 6, …, (i.e., P is time-homogeneous or stationary because the transition pr 

from time 1 to time 2 is the same as from month 2 to 3, and so forth ).  A transition matrix P is said to  

0 
 
1 
 
2 

0 1 2
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be doubly-stochastic iff both its rows and columns add exactly to 1 (or 100%). 

 The notation (2)
ijP  represents the pr of transition from state i to j in two steps (or time units), 

and the notation (n)
ijP  represents the n-step transition pr from state i to state j, for n = 2, 3, 4, 5,….  For 

the above example, (2)
00P  = P00P00 + P01P10 + P02P20 = 0.650.65 + 0.270 + 0.080 = 0.4225; 

similarly, (2)
01P  = P00P01 + P01P11 + P02P21 = 0.650.27 + 0.270.55 + 0.080 = 0.3240; (2)

02P  = 

P00P02 + P01P12 + P02P22 = 0.650.08 + 0.270.45 + 0.081 = 0.2535.  It can easily be verified that 

if we square the stochastic one-step transition matrix P, then we obtain the 2-step stochastic transition 

matrix, i.e.,  

 

P(2) = P2 = 

20.65 0.27 0.08

0 0.55 0.45

0 0 1

 
 
 
  

 =       

0.4225 0.3240 0.2535

0 0.3025 0.6975

0 0 1

 
 
 
  

. 

 

where the 1st row of the last matrix on the RHS is identical to the 2nd-step transition prs computed in 

the above paragraph.  The above matrix shows that the pr of going from a satisfactory state 0 to the 

failed absorbing state 2 in two steps is (2)
02P = 0.2535.  It can easily be verified, through induction, that 

the n-step transition pr for a time-homogeneous Markov chain is given by P(n) = nP .  For example, 

the 10-step transition matrix for the process (64) is given by 

        

P(10) = P10 = 

100.65 0.27 0.08

0 0.55 0.45

0 0 1

 
 
 
  

  =   

0.0135 0.0295 0.9570

0 0.0025 0.9975

0 0 1

 
 
 
  

. 

 

 In the study of Markov chains, we must 1st ascertain how many equivalence classes the chain 

has.  In the matrix of equation (64), we say that state 2 is accessible from 0 and also from 1 but states 0 

and 1 are not accessible from 2.  Further, state 1 is accessible from 0, but state 0 is not accessible from 

0

1

2

0 1 2

0 1 2
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1 because (n)
10P = 0 for all n. Hence, we say that states 0 and 1 do not communicate (because the 

transition 1  0 is impossible for any n) but only 0  2 and 1  2 simply because only (n)
i2P  > 0 for i 

= 0, 1,  while P2j = 0 for j = 0, 1, and n = 1, 2, 3, ….   Thus, the chain in equation (64) has two 

equivalence classes:  the location set {0, 1} is transient even if states 0 and 1 do not communicate, 

implying that the process eventually leaves these two locations with certainty, while state {2} is 

absorbing.  In the Markov chain (64), if we assume that the failed item is either repairable in much less 

than one step (or replaceable with a new unit, or renewable with pr of 0.80), then our Markov matrix 

may take the following form. 

 

    

  P  =         

0.65 0.27 0.08

0 0.55 0.45

0.80 0.20 0

 
 
 
  

                             (65) 

 

The chain in equation (65) now has only one equivalence class because every state communicates with 

all others (i.e., i  j, for all i, j = 0, 1, 2).  Note that although the 1-step transition pr from 1 to 0 is 

zero, the 2-step transfer probability (2)
10P  = 0.450.80 = 0.36, and the fact that P01 = 0.27 now shows 

that states 0 and 1 communicate (i.e., 01).  

  In the study of finite-state Markov chains, there are two possibilities: (1) exactly one 

equivalence class all of which communicate.  Such a chain is said to be irreducible.  Further, if such a 

chain is aperiodic, then it is called ergodic.  (2)  Markov chains with at least two equivalence classes.  

In case (2), the chain may contain transient, recurrent, and absorbing states.  In reliability engineering 

the absorbing state is always the failed state of the system.  In order to define these 3 types of 

equivalence classes, we need to define the recurrence time distribution. Definition.  Let (n)
iif  = P[Xn = 

i,  Xr  i ( r = 1, 2, …, n  1) X0
 = i]; in other words, (n)

iif is the Pr that, starting initially in state i, the 

Markov chain returns to i for the very 1st time in n steps (i.e., it avoids state i until the nth step).  Then 

*
iif  = (n)

ii
n 1

f



  gives the pr that, starting initially in i, the process eventually returns to i.  A state “i” is 

0 
 
1 
 
2 

0 1 2
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said to be recurrent iff, starting from i, the eventual return to i is certain, i.e.,  iff *
iif  = 1; state i is 

transient iff *
iif  < 1. 

Now, consider a recurrent state i; then the mean recurrence time is given by i = (n)
ii

n 1

n f



 , 

which is the average number of steps needed for the 1st return to i, having started in i.  If i is finite, 

then the location i is said to be positive recurrent; if i = , then the state i is said to be null recurrent. 

 Thus the Markov matrix in (65) has one equivalence positive recurrent class.  For example, 

(1)
11f  = 0.55,  (2)

11f  = 0.450.20 = 0.09, (3)
11f = 0.450.800.27 = 0.0972, ( )f 4

11 = 0.450.800.65 0.27 + 

0.450.800.08 0.20 = 0.06894, etc.  I am certain that if we compute more recurrence prs such as 

( )f 5
11 , ( )f 6

11 , ( )f 7
11 , …, then the sum (n)

ii
n 1

f



  = 1, showing that state 1 is recurrent.  As a class property, 

since states 0 and 2 communicate with state 1, then states 0 and 2 are also recurrent.  

 

 Definition.    The period of a Markov chain is the number of eigenvalues of P with modulus 

(or length ) equal to 1.  For example, the period of the chain 

  P =   

0 1 0

0 0 1

1 0 0

 
 
 
  

 

is d = 3 because the three eigenvalues of P are  1, and 
1 3 i

2

 
 = 

1 3 i

2

  
 , each of which is 

of unit modulus (or length). 

 In the study of ergodic Markov chains ( ergodic means irreducible, positive recurrent, and 

aperiodic), the analyst is generally interested to determine what proportion of the times the system 

spends in state i, i.e., the limiting distribution of prs over all the m states of a Markov chain (regardless 

of the initial state).  We define the limiting (or stationary, or long-term) distribution as 
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(n)LimP

n
 


nLim P

n


   
.

.

.

 
  
 
 
 
 
  

 

where  = [0    1   2 …   m  2    m  1]  is a probability row vector such that 
m 1

i
i 0




  1.  Because    

=
(n 1)LimP

n
 

   
n 1Lim P

n
 

    
(n)Lim P Pn

 
   

 = P , then in order to solve for the steady-state 

transition prs, we must require that  P    , which implies that P   .  Note that P  (the 

transpose of P) is not generally a stochastic matrix (unless P were doubly stochastic).  We now illustrate 

the procedure by obtaining the steady-state prs for the Markov matrix of equation (65).  We 1st write 

P   . 

 

   

0.65 0 0.80

0.27 0.55 0.20

0.08 0.45 0

 
 
 
  

 

0

1

2

 
  
  

  =  

0

1

2

 
  
  

 

We now make the observation that P    is the same system of equations as is 

P  3(P I )   0, where in this example I3  is the identity matrix in D3.  The homogeneous 

system 3(P I )   0 of 3 equations with 3 unknowns has no solution if the determinant of 

3(P I )  is different from zero because the system will be inconsistent, and it has an infinite number of 

solutions iff det( 3(P I )   0.   Since the  det( 3(P I )   

.35 0 0.80

0.27 .45 0.20

0.08 0.45 1





   0, then the 

homogeneous system 3(P I )   0 has an infinite number of solutions.   In order to obtain a unique 

solution we must impose the absolute required constraint that  0 +  1 +  2  1, and select any two of 
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the 3 equations 0.65 0 + 0.80 2 = 0,  0.27 0 + 0.55 1 + 0.20 2  =  1, and 0.08 0 + 0.45 1 = 2  plus the 

constraint 0 +  1 +  2  1 to solve simultaneously for the 3 unknowns.  We arbitrarily select 0.65 0 + 

0.80 2 = 0, and 0.08 0 + 0.45 1 = 2.  Then our system of equations become 

0 2

0 1 2

0 1 2

.35 0.80 0

0.08 0.45 0

1

     
      
      

           A  = b,                           (66) 

where the 33 matrix A = 

0.35 0 0.80

0.08 0.45 1

1 1 1

 
  
  

 = 3(P I )  , the 31 vector  = 
0

1

2

 
  
  

, and the 

31 column vector b = 

0

0

1

 
 
 
  

.   Equation (66) clearly shows that the unique solution   = A  1 b = 

1.8046 0.9956 0.4480

1.3441 1.4312 0.3559

0.4605 0.4356 0.1960

  
 
 
  

0

0

1

 
 
 
  

  =  

0.44804

0.35594

0.19602

 
 
 
  

.  Therefore, the process on the average 

spends 44.8% of the times in satisfactory state, 35.6 % of times in degraded state, and 19.6% of times in 

the failed state.  Note that if we raise the matrix P to the 20th power, we will practically obtain the 33 

matrix  , as shown below to 6 decimals ( I used Matlab which provides 14-decimal accuracy). 

 

             P(20)  =  P20  = 

0.448040 0.355943 0.196017

0.448040 0.355943 0.196017

0.448040 0.355943 0.196017

 
 
 
  

      

 

 We now return to Markov chains which have at least two equivalence classes, such as the chain 

given in equation (64).  We need this in reliability analysis because the failed state can be considered as 

absorbing.   In such a chain the 1st step is to write the one-step transition matrix in canonical form, which 

lists absorbing states 1st,  followed by recurrent classes, and last the transient classes.  The canonical 

representation of process (64) is given by 
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P  =           

1 0 0

0.08 0.65 0.27

0.45 0 0.55

 
 
 
  

 =  1P 0

R Q

 
 
 

                                       (67) 

 

where P1 is in general an rr submatrix with transition prs only among recurrent states (in this case r = 

1),  the (m  r)(m  r) submatrix Q (the truncated matrix) provides the transition prs among transient 

states with at least one row whose sum must be less than 1, the (m  r)r submatrix R gives the 

transition prs from transient to recurrent states, and 0 is an r(m  r) submatrix all of whose elements 

are identically equal to zero.  For our example, m = 3, Q is a 22 matrix of transitions among transient 

states, R is a 21 vector, and  0 is a 12 submatrix.  Note that if a Markov chain starts in a recurrent 

class, then return to a transient class will be impossible so that we have to make the assumption that the 

process starts in a transient class.  Then it follows that in many transitions we must have the expected 

number of visits from a transient state to transient states as given by the matrix  

            N = 1I + 1Q + 1Q2 + 1Q3 + 1Q4 + … = n

n 0

Q



                             (68) 

Further after (n  1) steps by simple multiplication we must have: 

 N(I  Q) =(I  Q)(I + Q + Q2 + … + Qn  1) = I   Qn                                                (69)                               

In equation (69) because the 
nLimitQ 0

n



 , then it follows that in the long run (i.e., over many time 

periods), N(I  Q) =(I  Q)(I + Q + Q2 + … + Qn  1)   I   n

n 0

Q



  = (I  Q)  1 .   Thus, 

combining equations (68) and (69) we obtain the fundamental matrix 

   N = n

n 0

Q



 = (I  Q)  1                                      (70)  

The Nij element of the matrix N gives the expected number of visits that (starting from a transient state 

i) the chain makes to the transient state j before finally leaving the transient states for a recurrent class.  

For the chain given in equation (67), the fundamental matrix is given by  

2 
 
0 
 
1

2 0 1
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N = n

n 0

Q



 = (I2  Q)  1 =     

1
0.35 0.27

0 0.45

 
 
 

  =          
2.8571 1.7143

0 2.2222

 
 
 

. 

 

The above fundamental matrix implies that if the component starts in the satisfactory state (0), then it 

will stay as satisfactory an average of 2.8571 months and it will stay 1.7143 months in the 

unsatisfactory (or derated) state before it eventually fails.  However, if the process starts in the 

unsatisfactory (or degraded) state, then it will stay as unsatisfactory an average of 2.2222 months 

before it fails.  The fundamental matrix, N, plays an essential role in RE analysis because it will be 

used to compute the MTBFSys of a repairable system.  It easily follows that the column vector (both i 

and j are transient states) 

 

Ni = NC  =  

m r

1j
j 1

m r

2j
j 1

m r

rj
j 1

N

N

.

.

.

N













 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







   [ The subscript C stands for summing over columns.]                    (71)            

gives the expected total number of visits the process makes to transient states before leaving for a 

recurrent state.  Thus, if the component starts as satisfactory, on the average it takes 4.5714 months 

before it fails, while if it starts as unsatisfactory (or derated), then on the average it will take 2.2222 

months before it fails, i.e., NC  = 
4.5714

2.2222

 
 
 

. 

It can be proven (see U. Narayan Bhat (1984),“ Elements of Applied Stochastic Processes”,  2nd 

Edition, John wiley & sons Inc., pp. 71-82, ISBN:0-471-87826-X) that  

   V(Nij) = N(2ND  I)   N2                 (72) 

where the matrix ND is an (m  r)(m  r) matrix with diagonal elements equal to those of  N and 

zeros elsewhere, and N2 is an (m  r)(m  r) matrix whose elements are equal to the square of 

0
 
1

0 1
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elements of N.  Thus, for the example under consideration ND = 
2.8571 0

0 2.2222

 
 
 

, and N2 = 

2 2

2 2

2.8571 1.7143

0 2.2222

 
 
  

  = 
2

8.1633 2.9388

0 4.9383

 
 
 

 

As a result, from equation (72) the variance matrix is given by 

V(Nij) = 
2.8571 1.7143

0 2.2222

 
 
 


4.7143 0

0 3.4444

 
 
 

   
2

8.1633 2.9388

0 4.9383

 
 
 

 = 

           = 
5.3061 2.9660

0 2.7160

 
 
 

     V(Ni) = V(NC) = 
8.2721

2.7160

 
 
 

. 

The above developments imply that if the component starts in state 0, then the expected  number of 

months that stays as satisfactory is 2.8571 with a standard deviation of 5.3061  = 2.3035, and the 

expected number of months spent in the unsatisfactory state is 1.7143 with a standard deviation of 

2.9660  = 1.7222, etc.  Further, having started as satisfactory, then on the average it will take 4.5714 

months before it eventually fails with a variance V(N0) = 8.2721. 

 Next we are interested in the 1st passage probabilities from a transient state to a recurrent state.  

As an example, we would be interested in computing the pr that if the component starts in state 0 (or 

satisfactory) or state 1 (derated), what is the pr that it will fail (state 2) for the 1st time in 3 months.  

This Pr distribution for one step is given by the vector R = 
0.08

0.45

 
 
 

; then for two months the 1st 

passage pr vector is given by F(2) = QR = 
0.65 0.27

0 0.55

 
 
 

  
0.08

0.45

 
 
 

 =
0.1735

0.2475

 
 
 

, and for 3-steps 

F(3) = Q2R = Q(QR) = Q F(2) = 
0.65 0.27

0 0.55

 
 
 


0.1735

0.2475

 
 
 

 = 
0.179600

0.136125

 
 
 

, and similarly 

F(4) = Q3R = 
0.274625 0.292275

0 0.166375

 
 
 

  
0.08

0.45

 
 
 

 = 
0.15349375

0.07486875

 
 
 

, etc.  Note that the sum of  

F(n)  over all n in this example will have to add up to a pr vector whose elements must equal to 1 

because the component will eventually have to fail and be absorbed in state 2.  This is illustrated 

below. 



 84

F = (n)

n 1

F



  = F(1)  + (n)

n 2

F



  = R + (n 1)

n 2

Q R





  = (n 1)

n 1

Q R





  = (n 1)

n 1

Q R[ ]





  

    = NR ;  for our example, this becomes F = 
2.8571 1.7143

0 2.2222

 
 
 


0.08

0.45

 
 
 

 = 
1

1

 
 
 

. 

 Example 11.    Consider a maintained system that contains three units in pure parallel 

redundancy (i.e., only one of the three energized units is needed for system success).  The system is 

checked once every hour and if a failure is detected on any component, repair starts on it immediately.  

For the sake of simplicity, we assume that within one hour the pr that a unit fails, gets repaired, and 

then fails again within the same hour is practically zero.  Thus, we have a Markov chain with one hour 

as one step and the number of working units as the states of the system, i.e., Rx = {0,  1,  2,  3} and the 

index parameter is given by T = {0, 1, 2, 3,  4, ……}.  By observing the system every hour for over a 

month, the following one-step transition matrix has been approximated. 

 

  P =          

0.15 0.50 0.25 0.10

0.02 0.25 0.55 0.18

0 0.08 0.70 0.22

0 0.02 0.l8 0.80

 
 
 
 
 
 

 

The above transition matrix tells us the pr that the system goes from 3 units working successfully to 2 

operational units in one hour is P32 = 0.18, while P20 = 0, etc.  Clearly all states communicate implying 

that the chain has only one equivalence class, and the fact that the 4 eigenvalues of  P are equal to 1 = 

1.00,  2 = 0.5868646,  3 = 0.2459071, and  4 = 0.0672283  shows that there is only one eigenvalue 

with modulus (or length) equal to 1 so that the period of the chain is equal to 1.  Note that the period of 

an irreducible Markov chain is always equal to number of eigenvalues with length (or modulus) equal 

to 1.  For example, the complex numbers 
3 i

2 2
  have length equal to 1.  Further, since all 4 states 

are positive recurrent and the chain period is equal to 1 (i.e., aperiodic), then the chain is said to be 

ergodic.  The fact that the smallest eigenvalue 4 = 0.0672283  is close to zero, then the chain 

approaches its steady-stare very rapidly.  To obtain the limiting distribution, we have to solve the 

system of equations P     for the pr vector   imposing the constraint 0 +  1 +  2  + 3   1.  

0 

1 

2 

3 

0 1 2 3
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We first check on the determinant of 4(P I ) .    Matlab computations gives 4P I   0.  We can 

now select any 3 of 4 equations from P    with 0 +  1 +  2  + 3   1 to obtain a unique 

simultaneous solution for  0,  1,  2, and  3.  The resulting system of equations is  

0 1 0

0 1 2 3 1

0 1 2 3 2

0 1 2 3

0.15 0.02

0.50 0.25 0.08 0.02

0.25 0.55 0.70 0.18

1

    
         
         
       

     = 

0.001404

0.059670

0.421200

0.517726

 
 
 
 
 
 

 

Thus, over one million hours, the system spends 1404 hours in state 0 (failed), 59670 hours with 

exactly one operational unit, 421200 hours with two operating units, and 517726 hours with all 3 units 

working successfully.  Further, because the smallest eigenvalue, 4 = 0.0672283, is close to zero, in 8 

transitional hours (from time 0) the system nearly reaches its steady-state as shown below. 

 P(8) = P8 = 

0.001495 0.061561 0.431560 0.505384

0.001465 0.060977 0.428451 0.509108

0.001452 0.060731 0.427132 0.510685

0.001357 0.058651 0.415511 0.524480

 
 
 
 
 
 

. 

Suppose now that we wish to ascertain if we presently are, say in state 1, on the average how many 

hours it takes to end up in the 0 state, where all units are down and need repair (or replacement).  To 

answer such a question, we first make the state zero as absorbing so that the chain will consist of 2 

equivalence classes as shown below.     

 

                                      0         1           2           3  

  P =            

1 0 0 0

0.02 0.25 0.55 0.18

0 0.08 0.70 0.22

0 0.02 0.l8 0.80

 
 
 
 
 
 

                                         (73) 

The truncated matrix associated with the transition matrix  P  given in (73) is given as  

0 

1 

2 

3 
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   Q = 

0.25 0.55 0.18

0.08 0.70 0.22

0.02 0.l8 0.80

 
 
 
  

. 

Note that Q must have at least one row whose Prs add to less than 1; otherwise something is wrong.  

As a result the fundamental matrix of the process is 

    

                  N = (I3   Q)  1  =         

50 349.0196 428.9216

50 358.8235 439.7059

50 357.8431 443.6275

 
 
 
  

 

 

The above fundamental matrix shows that given an initial state 1, then on the average the system 

spends 50 hours in state 1, on the average it will spend 349.02 hours in state 2 (due to repair or 

renewal), and on the average it will spend 428.92 hours in state 3 before it finally fails.  The vector  

E(Ni) = NC = 

827.9412

848.5294

851.4706

 
 
 
  

 gives the expected (or mean) amount of total time spent by the system in 

states 1, 2, and 3, respectively, before eventually getting absorbed by state 0.   We now use equation 

(72) to compute the variance of Nij and then sum the elements in order to compute the variance of  NC. 

 

V(Nij) = N(2 ND  I3)   N2= 
2450 128310 196160

2450 128400 196350

2450 128400 196360

 
 
 
  

  V(NC) = 
326920

327200

327210

 
 
 
  

 

Thus, given that the process starts in state 1, it will on the average stay in states 1, 2, or 3 a total of 

827.9412 hours with a standard deviation of 326920  571.7686 hours, and so forth. 

 

The  Mean  Recurrence  Time  of  a  Markov  Chain 

 Let  = [0   1    2 …  m  1]  = [0   1    2 …  m  1]T be the limiting distribution of an m-

state ergodic Markov chain  with the one-step transition pr matrix P. Let  Tij be the 1st passage time of 

the transition from state i to j, and let ij = E(Tij).  Then it can be proven that the mean recurrence time 

1 

2 

3 

1 2 3
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(MRT) is given by ii = 1/i.  We illustrate this below (for more details see U. N. Bhat (1984), 2nd Ed., 

pp. 103-104).  Suppose that the process starts in the state i at time 0.  Then after one step, it will either 

locate in the state j, in which case the value of  Tij will equal to 1 with transition pr Pij, or it will 

transfer to state k  j, in which case Tij =  1 + Tkj with transition pr Pik (k  j).  Hence the expected 1st 

passage time from i to j is given by 

ij = E(Tij) = 1 Pij + ik kj
k j

P E(1 + )


 Τ  = 
m-1

ik ik kj
k=0 k j

P P E( )


   Τ   

     = 1 + 
m-1

ik kj
k=0

P E( ) Τ    Pij E(Tjj) = 1 +
m-1

ik kj
k=0

P      Pij jj.                                                (74) 

Let  represent an mm matrix whose elements give the expected 1st passage time from state i to state 

j, and whose diagonal elements jj will represent the mean (or expected) recurrence time from j to the 

same state j.  Since equation (74) gives the element of  in the ith row and jth column, in matrix form we 

must have: 

    = 1 + P(   D)                                                                                  (75) 

where the matrix 1 is an mm matrix all of whose elements are equal to 1, and  D is a diagonal matrix 

whose diagonal elements are equal to those of the mm matrix .  Premultipling equation (75) by the 

row vector  = T (the transpose of the column vector ) results in 

 = 1 + P(   D) = 1 + (   D)   0 = 1 + (  D)      D  = 

1        i  ii = 1    ii = 1 /i                                                                            (76) 

 

Note that the same equation (76) would be arrived at if we 1st transpose equation (75), which gives  

= 1 + (   D)P, and 2nd  post-multiply this resulting transposed matrix equation by the column 

vector .   The result will be D = 1, which is not surprising because the transpose of    D  

= 1 will yield the same as before. 

Equation (76) shows that the MRT (mean recurrence time) for an ergodic Markov chain is simply 

given by 1/i.   For the example 11 above, we have  00 = 1/0.001404 = 712.2507 hours; this implies as 
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shown below. that given the system now is in state 0, then on the average it will take 712.2507 hours 

to return to state 0 for the very 1st time.  Similarly,  11 = 1/0.059670 =  16.7588 hours;  22 = 

1/0.421200 =  2.3742, and  33 = 1/0.517726 = 1.9315 hours.  Thus, if the system is in 3 operational 

state, then on the average it will take 1.9315 hours to return to state 3 for the very 1st time due to repair, 

etc.   In order to compute the off-diagonal elements of the expected recurrence time matrix , the 

procedure is not as simple as obtaining the diagonal elements.  If the ergodic chain has more than 5 

states, hand calculations will become very tedious, and for m > 10, a set of codes has to be written in 

order to solve the system of equations.  We 1st note that an inversion of  is impossible. 

  = 1 + P(   D)        (Im    P) =  1 + P ( D)          

 =  (Im    P)  1(1   P D)  ;  However, since P is a stochastic matrix (i.e., the sum of each row 

is identically equal to 1), then the sum of each row of the matrix  (Im  P) must identically equal to 

zero and hence the det(Im    P)  0, showing that (Im  P)  1 does not exist.   Hence, we can solve the 

system of equations  = 1 + P(   D) only through iterations.  I will now illustrate the procedure 

for the Markov chain of Example 11.  From equation (75), we have: 

 

 =  

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 
 
 
 
 
 

 + 

. . . .

. . . .

. . .

. .l .

0 15 0 50 0 25 0 10

0 02 0 25 0 55 0 18

0 0 08 0 70 0 22

0 0 02 0 8 0 80

 
 
 
 
 
 



01 02 03

10 12 13

20 21 23

30 31 32

0

0

0

0

 
 
 
 
 
  

  

  

  

  

                               (77) 

The above system shows that 00 = 1 + 0.50 10 + 0.25 20 + 0.10 30 = 712.2507;  10 =  

1 + 0.25 10 + 0.55 20 + 0.18 30, and  20 = 1 + 0.08 10 + 0.70 20 + 0.22 30. Thus, the system of 

equations that yield the average recurrence time to state 0 is given by 

 

10 20 30

10 20 30

10 20 30

0.50  + 0.25  + 0.10  = 711.2507

0.75 + 0.55  + 0.18 = 1

0.08 0.30  + 0.22 1

  
    
      

   
   10 = 827.9420 hours, 20 = 
848.5302, and 30 = 851.4714 
hours.
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Thus, if the system starts in state 1, then on the average it will take 827.9420 hours to return to state 0 for 

the 1st time, etc.  Similarly, from the matrix equation (77), we deduce that 01 = 1 + 0.15 01 + 0.25 21 + 

0.10 31,  11 = 16.7588 = 1 + 0.02 01 + 0.55 21 + 0.18 31, and 21 = 1 + 0.70 21 + 0.22 31.  Solving this 

system of 3 equations with 3 unknowns yields 01 = 10.00 hours, 21 = 20.5882, and 31 = 23.5294 hours.  

The remaining mean recurrence times are  02 = 3.3775 hours, 12 = 2.6879, 32 = 5.2689, 03 = 5.4071 

hours, 13 = 4.8754 and 23 = 4.6334 hours, which you may verify. 

 

 Exercise 21.    Show that the Markov chain with the one-step transition Pr matrix 

   

P =            

0 0 0.60 0.40

1 0 0 0

0 1 0 0

0 1 0 0

 
 
 
 
 
 

 has a period d = 3 and hence it is not ergodic.  (b)  A machine 

component is generally replaced as a rule every 5 months (as preventive maintenance).  However, it has 

been found that this replacement policy is not adequate because the component sometimes wears out in 

less than 5 months.  To ascertain whether to shorten the replacement cycle length, past history has shown 

that over many months, the lifetime distribution is as follows.  Roughly 10% of components were 

replaced at the end of the 1st month; 15% of one-month old components were replaced at the end of the 

2nd month; 35% of 2-month old components were replaced at the end of the 3rd month; and 40% of 3-

month old components were replaced at the end of the 4th month.  (i) Obtain the one-step transition pr 

matrix for the replacement policy.  (ii)  Obtain the age pr distribution for a component after the system 

has been in operation for a long time, where age = 0, 1, 2, 3, or 4 months.  (iii)  Obtain the expected 

replacement (or recurrence) time given that the system initially is in i = 0,1, 2, 3, 4 month old state.    

Answers:  0 = 0.288967,  1 = 0.26007, …, 22 = 4.52366 months,  33 =  6.95948, 30 = 1.60, 10 = 

2.734,  20 = 2.040, 23 = 2.87580,  13 = 4.24835, and 43 = 6.35943 months.   

 

Statistical  Inference  (SI)  for  Markov  Chains 

 This is a difficult topic and thus I will restrict discussions only to point  estimation for a 1st-order 

chain and test of hypothesis that a specific 1st-order transition matrix, P0, may provide an adequate 

model for the observed (or realized) data.  It will be best to explain SI through an example.   Suppose 

0 

1 

2 

3 

0 1 2 3
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that a system (such as a network) is observed once every day, and there are two possible states for the 

system.  When the network is working then it is in state 0 and when it is down it is in state 1.   Assume 

that the system is observed for a total of 50 days (this probably is not long enough time but will have to 

do in order to shorten the length of discussion).  Initially we assume that the network is in state 0 (up).  

The 50-day observations have led to the following data :  0   0   0   0  1   0   0   0   1  1   0   0    0   1   0    

0   0  0  0  0   0   1   1    1   0    0   0    0    0    0    0    0     0    1    0     0    0     0     0    0   1    1     0    0    0      

0     0   1    0    0   0.  Note that there were in fact 51 epochs of time because the system was observed 

initially to be in operating state, but there were 50 one-step transitions.  The 50 transitions are 

summarized in Table 4.  Thus the point ML estimates of P00 is given by 00P̂  =  32/39;  01P̂  =  7/39;  10P̂  

=  7/11;  11P̂  =  4/11 so that the ML estimate of the transition matrix P is given by  P̂  = 

32/ 39 7 / 39

7 /11 4/11

 
 
 

.  The SI we would like to make is that “can we reasonably assume that the 

observed data is a realization of a Markov chain with the one-step transition matrix, say,  

P0   
. .

. .

0 80 0 20

0 50 0 50

 
 
 

.   Thus, we wish to test H0 : P = 
0.80 0.20

0.50 0.50

 
 
 

  versus  the 

 

Table 4. 

Initial    

State    

Final 

State 

0 1 ni. 

0 (up) 32   (31.2) 7   (7.8) 39 

1  (down) 7     (5.5) 4    (5.5) 11 

n.j   n = 50 

 

alternative  H1 :  P  P0 at the pre-assigned  LOS  = 0.05, i.e., we are  willing to tolerate a 5% type I 

error.  We use the 2 Goodness-of-Fit statistic to conduct this test, which is given by  
0

2  = 

2m m
ij ij

iji 1 j 1

(n E )

E 


 , where nij is the observed frequency in the (ij) cell, and Eij is the corresponding 

expected frequency computed under the null hypothesis.  For our example, n11 = 32, n12 = 7, n21 = 7, and 

n22 = 4.  In order to compute E11 we note that under H0 the transition pr P00 is hypothesized to be 0.80, 
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and since there are a total of n1.= 39 transitions out of 0, then E00 = 39 P00 = 31.2;  however, we do not 

have another degree of freedom to compute E01 because E00 + E01 = n1. = 39; this gives E01 = 39  31.2 = 

7.8.   Similarly, E21 = 5.5 and E22 = 5.5;  these expected frequencies are provided in Table 6 in 

parentheses.  Since our contingency Table 4 has 4 cells, then the net degrees of freedom (df) for our 2 

Goodness-of-Fit statistic is  = 4  (the number of row constraints).  Because the sum of each row prs in 

a Markov matrix must add to 1, then for a 22 Markov matrix we have 2 row constraints and hence our 

net df is equal to 4  2 = 2.   The value of Chi-square statistic is 
0

2  = 
2(32 31.2)

31.2


  +  

2(7 7.8)

7.8


  + 

( . )

.

27 5 5

5 5


  + 

( . )

.

24 5 5

5 5


  = 0.9207.   The critical value of 

2

2  at the 5% LOS is given by the inverse 

function of 
2

2  at a cumulative pr of 0.95, i.e., 
. ;0 05 2

2  = 5.9915; thus, the data does not provide sufficient 

evidence to reject H0 at the 5% level of significance.  The pr level of the test (P-Value) is given by 

2

2ˆ P( 0.9207)   =  0.6310 >>  = 0.05, as expected because the test statistic did not reject H0. 

It is worth noting that the 2 Goodness-of-Fit statistic is simply the weighted sum of squares of 

0
ij ij

0
ij

ˆ(P P )

P


 as shown below (this part is only fun reading that I conjured up!). 

0

2  = 
2m m

ij ij

iji 1 j 1

(n E )

E 


   =  

2m m
ij i. ij i.

2
i 1 j 1 ij i.

(n / n E / n )

E / n 


   = 

0 2m m
i. ij ij

ij i.i 1 j 1

ˆn (P P )

E / n 


  

 

 =  
0 2m m

i. ij ij
0

i 1 j 1 ij

ˆn (P P )

P 


   =  

20m m
ij ij

i. 0
i 1 j 1 ij

P̂ P
n

P
[ ]

 


 .   I hope that the reader will not be confused by the 

subscripts in this example because by cell (1, 1) we actually mean transition from state 0 to 0, and by cell 

(2, 1) we mean the transition from the system being down to being up in the next day.   If we expand the 

expression for the 
0

2  = 
0 2m m

i. ij ij
0

i 1 j 1 ij

ˆn (P P )

P 


   we will have the following terms from rows 1 and 2: 

0

2  = 
0 2 0 2

00 00 01 01
1. 0 0

00 01

ˆ ˆ(P P ) (P P )
n

P P
[ ] 

   + 
0 2 0 2

10 10 11 11
2. 0 0

10 11

ˆ ˆ(P P ) (P P )
n

P P
[ ] 

                   (78) 

Substituting  01 00
ˆ ˆP 1 P   and  11 10

ˆ ˆP 1 P   into equation (78), we obtain: 
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0

2  = 
0 2 0 2

00 00 00 00
1. 0 0

00 00

ˆ ˆ(P P ) (P P )
n

P 1 P
[ ] 




  + 
0 2 0 2

10 10 10 10
2. 0 0

10 10

ˆ ˆ(P P ) (P P )
n

P 1 P
[ ] 




 

       = 0 2
1. 00 00 0 0

00 00

1 1ˆn (P P )
P 1 P

[ ] 


  + 0 2
2. 10 10 0 0

10 10

1 1ˆn (P P )
P 1 P

[ ] 


 

      = 0 2
1. 00 00 0 0

00 00

1ˆn (P P )
P (1 P )

[ ]


  + 0 2
2. 10 10 0 0

10 10

1ˆn (P P )
P (1 P )

[ ]


 

      =
0 2

00 00
0 0
00 00 1.

ˆ(P P )

P (1 P ) / n
[ ]


  + 

0 2
10 10

0 0
10 10 2.

ˆ(P P )

P (1 P ) / n
[ ]


 =    

     =
0

00 00
0 0
00 00 1.

2ˆ(P P )

P (1 P ) / n
[ ]


  + 

0
10 10

0 0
10 10 2.

2ˆ(P P )

P (1 P ) / n
[ ]


 =  2

1Z    + 2
2Z  = 

1

2  + 
1

2  = 
2

2  

The above developments, again, clearly show that the SMD of the statistic 
0 2m 2 2

i. ij ij
0

i 1 j 1 ij

ˆn (P P )

P



 


    

follows a Chi-square with 2 degrees of freedom.  For a 33 Markov chain the df is equal to m(m  1) = 

6. 

 Exercise 22.    A reliability system contains 2 components in pure parallel redundancy.  Let Xn = 

The number of working components at time n, n = 0, 1, 2, 3 hours,  …. and Rx ={0, 1, 2}. The system 

has been observed every hour, a total of 81 times with the following results.  Initially the system was in 

state 2 (i.e., both units operating reliably) as shown by the data.   2212200122;  2211121222;   

2110001211;  1222212210;   2002121122;   2212112222;  0221112221;   1101010122;  1 

(a)  Obtain the MLE (maximum likelihood estimates) of  Pij ( i, j  = 0, 1, 2).  (b) Test the null hypothesis 

that  P  =  

0.2 0.30 0.50

0.40 0.40 0.20

0.25 0.40 0.35

 
 
 
  

.  Note that Xn could have just as well been defined as the number of 

failed units. 

 

Markov  Chains  With  Countably  Infinite  States 

 There are many stochastic processes where the states of the system can grow indefinitely such 

that the state space of the process is given by Rx = {0, 1, 2, 3, 4, ….}.  One example, is a simple 

queueing system where the arrival rate (or birth rate), , is larger than departure rate (or death rate, or 
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service rate) and the waiting room is unlimited.  Under such a condition external factors have to be 

brought in to control the queue length (such as turning some customers away, or speeding up service so 

that r  = service rate  >  = arrival rate, or add another server).  In general, for a stochastic process if the 

traffic intensity (or utilization factor)  = / = 
arrival rate

service rate
> 1, then the birth-and-death process will 

grow unbounded.  Thus, for a system to be stable, we must require that  0 <  = / < 1;  If we allow the 

case  = /r = 1, then the average recurrence time to state zero (i.e., empty system) may become 

infinite.  To illustrate the concepts for a denumerable state simple birth-death (read as birth & death) 

process, consider a small shop with only one mechanic who adopts the policy of accepting new repair 

jobs on at most 2 cars (in queue) while he is working on one.  Let Xn represent the number of jobs 

actually waiting in queue excluding the one under repair, i.e., state 0 represent the case where either one 

car is under repair and none is waiting , or also the facility is completely empty.  For the sake of 

simplicity, we assume that the arrival distribution during one service period is given by 

 

Number of 

arrivals 

0 1 2 or more 

Probability d = 0.15 0.75 b = 0.10 

  

The transition Pr matrix can be obtained from the arguments: P00 = Pr(0 or exactly one new job arrival) = 

0.15 + 0.75 = 0.90;  P01 = Pr(2 or more job arrivals) = 0.10.  This leads to     

     

  P =          

0.9 0.1 0 0 0 0 ...

0.15 0.75 0.1 0 0 0 ...

0 0.15 0.75 0.1 0 0...

0 0 0.15 0.75 0.1 0 0...

0 0 0 0.15 0.75 0.1 0 0...

. . . . . .

. . . . . .

. . . . . .

 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 

0 

1 

2 

3 

4 

0 1 2 3 4 5
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Our primary objective is to determine what proportion of the times there are no jobs waiting for repair, 

i.e., we wish to compute 0, which is also the proportion of the times the queue length is zero.  To this 

end, we define a pr generating function (pgf) as G(z) = n
n

n 0

z



 , z 1 .  The constraint z 1  

dictates that all the roots in the denominator of  G(z)  must lie outside of a unit circle, or else G(z)  

will not qualify to be a pgf (you will observe this later).  Note that G(z) is a pgf  because G(z = 0) = 

0;  
z 0

dG(z)

dz 
 =  

z 0

n 1
n

n 1

n z






 = 1;     

z 0

2

2

d G(z)

dz 
= 

z 0

n 2
n

n 2

n(n 1) z






  = 2! 2;   

similarly,  
z 0

3

3

d G(z)

dz 
= 3! 3, etc. In other words, G(z) generates probabilities through different 

powers of z, and it is constrained to the fact that  G(at z =1)  n
n

n 0

(1)



  = 1.  In order to solve for 

G(z) we use  P = , where  = [0      1     2      3      4 …..]  is a 1  row vector.   The 1st four 

of these infinite equations with infinite unknowns are given below: 

 

 0.9 0    + 0.15 1                                              =  0       

 0.1 0    + 0.75 1  + 0.15 2                              = 1      

     0.1 1    + 0.75 2  + 0.15 3                = 2 

                               0.1 2    + 0.75 3  + 0.15 4 = 3,  etc. 

   The above system can be solved recursively, but we choose a more elegant procedure that will be 

more general and will work when recursion is impossible.  We multiply the above 4 equations by the 

proper powers of z as dictated by the RHS. 

(0.9 0    + 0.15 1                                               = 0) z0
     

(0.1 0    + 0.75 1  + 0.15 2                               = 1) z1
    

(     0.1 1    + 0.75 2  + 0.15 3                  = 2 )z2 

(                              0.1 2    + 0.75 3  + 0.15 4  = 3) z3 ,  etc., which upon summing both sides reduces 

into the following equation: 

0.9 0   + 0.15 (1 +  2 z + 3 z2 +  4 z3 + … )  + 0.1 (0 z +  1 z2 + 2 z3 +  3 z4 + … )   
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+ 0.75 (1 z +  2 z2 + 3 z3 +  4 z4 + … ) = G(z)   

0.9 0   + 
0.15

z
(1z +  2 z2 + 3 z3 +  4 z4 + … ) + 0.1 z (0  +  1 z + 2 z2 +  3 z3 +…)  

+  0.75 [G(z)    0 ] =  G(z)    

         0.9 0   + 
0.15

z
 [G(z)   0 ] + 0.1 z G(z) + 0.75 [G(z)    0 ] =  G(z)   

To simplify this last equation we multiply thru by z and collect terms of the same powers of z: 

 0.9 0  z  + 0.15 [G(z)   0 ] + 0.1 z2 G(z) + 0.75z [G(z)    0 ] =  z G(z)    

0.10 z2 G(z)   0.25 z G(z) + 0.15 G(z)  = 0.15 0    0.15 0 z       Thus, 

G(z) = 0
2

0.15 (1 z)

0.10z 0.25z 0.15

 

 
 = 0

2

15 (1 z)

10z 25z 15

 

 
  = 0

2

3 (1 z)

2z 5z 3

 

 
 =   

       = 03 (1 z)

(1 z)(3 2z)

 
 

 = 03

3 2z




 = 0

1 2z / 3




 ;  Since G(z = 1) = 1, then it follows that  1 = 

0

1 2 / 3




  0 = 1/3   G(z) = 
1/ 3

1 2z / 3
 = 

1

3
 [ 1 + 

2

3
 z + 22

( )
3

 z2 + …] 

 1 = 
1

3
(

2

3
), 2 = 

1

3
(

2

3
)2,  3 = 

1

3
(

2

3
)3 …   n = 

1

3
(

2

3
)n,  n = 0, 1, 2, 3, 4, … 

Therefore, in the long run the proportion of times that the number of jobs waiting is zero (i.e., the 

queue length is zero) is 1/3, and the proportion of the times that the queue length is 1 is equal to 2/9; 

the proportion of the times that the queue length is 2 is equal to 4/27, etc.   Note that in the above 

example, if the transition pr P01 (= pr 2 or more arrivals = 0.10 = b) were larger than P10(= 0.15 = d), 

then the above system would become unstable.  This is due to the fact that for a time-stationary simple 

birth-death process with a birth pr in a single period equaling b and a death pr equaling d, it can be 

shown that in general   

   n =  0 (
b

d
)n,  n = 0, 1, 2, 3, 4, ….                 (79) 

In equation (79) when b  d, then the queue length (or the population size) will grow unboundedly 

(i.e., Lim n as n   will tend to infinity).  In fact the reader may verify thru the same procedure as I 

illustrated above that if we let b = 0.30 and d = 0.10, then the pgf will become G(z) = 0 / (1 3z)   
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and n = 
1

3
(3)n

.   Note immediately that G(z) = 0

1 3z




 does not even qualify as a pgf  because 

G(1) =  n
n

n 0

(1)



  = n

n 0




 =  0 /2 < 0, which is impossible because the n

n 0




  1.  

Furthermore, the reader should observe that the simple (or 1st-order) pole of G(z) = 0

1 3z




  is given 

by z = 1/3 which is inside a circle of radius 1 and not permissible.  Finally, G(z) = 0 [ 1 + 3 z + 9 z2 

+ (3z)3 + 81 z4 + …]  shows that the queue length grows unlimitedly.   

 

 

Markov  Processes  with  Discrete  State  Space  (or Location Set) Rx  and  

Continuous  Index  Set  T (Applications to RE Engineering) 

 From a reliability engineering standpoint a continuous index parameter Markov process amounts 

to practically observing the system on a continual basis (i.e., not at discrete epochs of time).   We lay 

down the foundation by first discussing the general birth-death model on a continuous time scale, where 

X(t) represents the number of units failing by time t measured from zero (i.e., measured from the instant 

that the system has been put in service).  In general, X(t) may represent the number of events (such as 

failures, or arrivals) occurring in the interval [0, t].  Please note that some authors refer to such a 

stochastic process as a chain because the state space is discrete, but we will use the terminology Markov 

process when the index parameter T is continuous.  For starters, we must recognize that no longer we 

will be dealing with one-step, 2-step (etc) transition matrix because time is continuous and our one-step 

from a chain now changes to an infinitesimal length of time t for a continuous-time Markov process.   

Furthermore, since we will eventually take the limit as t  0, then we will assume that t is 

sufficiently small such that it will be impossible for two events to occur within the infinitesimal time 

interval [t,  t + t].  Furthermore, (t)2 < < t so that all terms containing (t)2 will be ignored.  We will 

now state the assumptions of a B-D (birth & death, or failure & repair, arrival & departure) process as 

follows: 

(i) Birth:  When the population size at time t is n, then the birth rate is given by n (= instantaneous  
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occurrence pr per time unit, i.e., n = 
n,n 1P ( t)Limit

tt 0
 

 
).  This implies that the pr of a 

single birth or failure during [t, t + t] is given by n t, and because we are not allowing 

two or more failures during any interval of length t, then the Pr of no birth during [t,  t + 

t] is given by 1  n t.  That is, P[X(t +t) = n + 1 X(t) = n] = n t, and P[X(t +t) = n 

X(t) = n] = 1  n t.  Further, births (or failures) occurring during [t, t + t] are 

independent of when the last birth occurred (the memoryless or Markovian property). 

(ii)  Death:  Given that the population size at time t is n (> 0), then the infinitesimal Pr of death (or 

repair, or departure) is given by rnt, and the Pr that a repair is not completed in the interval  [t,  t + t] is 

given by 1  rnt.  The value of t is sufficiently small such that the occurrence Pr of two or more 

repairs (or departures) during any interval of length t is zero.  The death rate, rn , when the population 

size is n (> 0), is the infinitesimal death-rate per unit of time.  Further, repairs occurring during  [t,  t + 

t] are independent of when the last death occurred.  The Pr of a death when X(t) = 0 is zero.  Finally, 

birth and death of components (or arrivals/departures) in a system occur independently of each other. 

 We are now in a position to write the Chapman-Kolmogorov equations for the time intervals 

depicted below.  

Time

0 t t t

 

Pn(t + t) = Pn(t)[ 1  nt][ 1  rn t] + Pn  1(t)[n1 t][1  rn1t] +  

                    + Pn+1(t) [rn+1 t]  [ 1  n+1 t]                       (80a) 

 

In other words, the above equation (80a) tells us that the Pr of finding n individuals (or n failed units) in 

the system at time t + t (the LHS) is equal to the Pr of  finding the system in state n and no birth or 

death during [t,  t + t] , plus the Pr of system being in state n  1 (failed units) followed by exactly one 

birth during [t,  t + t]  and no death during [t,  t + t] , plus the mutually-exclusive Pr of process being 

in the state n+1 (failed units) followed by exactly one death (or one repair) and no birth during the 

interval [t,  t + t].   Since products such as ntrnt =  n rn(t)2 are assumed to be practically zero 

relative to n t (or rn t), equation (80a) reduces to 
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      Pn (t + t) = Pn(t)[ 1  n t  rn t] + Pn  1(t)(n 1 t) + Pn+1(t)(rn+1 t) 

Transposing Pn(t) to the LHS, dividing by t, and then taking the limit as t  0, this last equation 

becomes 

n nP (t t) P (t)
Limit

tt 0

  
 

   =  Pn(t)[  n   rn] + n  1 Pn  1(t)  + rn+1 Pn+1(t)     

 ndP (t)

dt
 = nP (t)  =  (n + rn )Pn(t) + n1Pn  1(t)  + rn+1Pn+1(t)                                   (80b)         

                             0P (t)  =  0 P0(t)  + r1 P1(t)                                   (80c) 

The relations in (80a & b) are called the difference differential (Chapman-Kolmogorov) equations (ddes) 

with the initial conditions: Pn(0) = 
0

0

1, if n n

0, if n n


 

, i.e., we assume that the systems starts initially with n0 

 0 units (or generators) at time zero, and the Pr of finding the system in any other state but n0 at time 0 

is zero.  Solving the above system of equations for general n > 2 is a formidable task and is well way 

beyond the objectives of this course.  The most general solution will have, I am sure, a very terribly ugly 

expression, which I have not been able to find in the literature when n  m and rn  rm for all n  m.  

Note that this most general case pertains to the situation that the transition rates n and rn out of state n 

are actually state dependent and hence very difficult to solve.  I do not know where this most general 

solution is provided in the literature (I am fairly sure the solution is probably given somewhere).  The 

special case when n and rn are not state dependent (i.e., the stationary case) and are constant such that n 

=  (for all n = 0, 1, 2, 3, 4, ….) and rn = r (for all n = 1, 2, 3, 4, …) and (80b) reduces to  

ndP (t)

dt
 = nP (t)  =  ( +  r) Pn(t) +  Pn  1(t)  + r Pn+1(t)                                                 (80d) 

                             0P (t)  =   P0(t)  + r P1(t)                               (80e) 

The system of ddes in (80 d &e) assumes a single-channel Poisson input (i.e., number of failures 

occurring is Poisson distributed) and service time (or restoration time, or death-rate) is exponentially 

distributed.  In Queueing theory this is referred to as the Markovian queue M/M/1, i.e., (M for Markov), 

where the interarrival times and services times are exponentially distributed with a single server.  Again 

the time-dependent (or transient  solutions) for the system of dde in (80 d &e) are very difficult to obtain 

and will involve the sum of modified Bessel functions.  [The curious soul is referred to the “Elements of 



 99

Queueing Theory with Applications, by T. L. Saaty, Office of Naval Research, McGraw-Hill Book 

Company, ISBN: 54370, pp. 88-96”; or, “The Theory of Stochastic Processes, by Cox and Miller, Wiley 

Publications, 1968, pp. 192-196; or “ Queueing Systems, Volume 1: Theory, by L. Kleinrock, John Wiley 

& sons, Inc., pp. 53-78; the solutions provided by Saaty in his equation (4-24) atop page 93 and by 

Kleinrock at the bottom of his page 77 are easier to swallow than any other solution I have seen in the 

literature, where their i = n0 = the number of generators at initial time zero, but these solutions seem  to 

contain an infinite sum of Bessel functions instead of a finite sum as reported by others in the literature; I 

do not understand the discrepancies.  The modified 1st-kind Bessel function of order k is given by Ik(x) = 

2j k

j 0

(x / 2)

j! (j k)!



   ; I hope this definition will help in understanding the general solution provided by the 

authors Saaty and Kleinrock.].  Just to satisfy the reader’s curiosity, I will provide the general transient 

solution to the system of ddes (80 d &e) given by Leonard Kleinrock at the bottom of his page 77 (with 

his equation number 2.163). 

Pn(t) = ( )te  [ 0(n n ) / 2
0n nI (a t)  + 0(n n 1) / 2 

0n n 1I (a t)   +  

    + (1  )n 
0

j / 2
j

j n n 2

I (a t)[ ]




  
 ]                    (81) 

where the traffic intensity  = /, a = 2  1/2, and Ik(x) is the modified 1st-kind Bessel function of order 

k defined above.   I hope that I have satisfied your curiosity about the complexity of obtaining general 

solutions to any transient (i.e., time- dependent) stochastic process.  Eq. (81) of Kleinrock provides the 

time-dependent solution to the most elementary queueing system, namely M/M/1.  Note that when (81) 

represents the solution to a queueing system, then state n represents the total number of customers in the 

system including the one who is being served. 

 The reader should now be cognizant of the fact that we will not try to solve the difference 

differential equations (ddes) in (80) for the most general case, but I will try to solve them for the more 

special cases that arise in real-life reliability engineering.  The good news in regard to applications to 

Reliability engineering is that in almost all cases the state space (or location set) in reliability models is 

finite (not infinite).  Thus I will take up the cases one by one, but before we continue to take up the 

special cases, we would like to make a remarkable observation about (80 b&c) so that in future you 

could almost write down these ddes in matter of 2 minutes for a specific system.  To do so, we 
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concentrate only on nodes n (i.e., the system is either in state n items under repair), n  1, or n+1 as 

depicted below. 

 

 

n
n+1n-1

 

 

 

 

Figure 6 clearly shows that the flow rate into the state n is given by n  1Pn-1(t) + rn+1Pn+1(t)  and the 

rate of transition out of state n is given by  n Pn(t) + rn Pn(t).  Since ndP (t)

dt
  by definition is the rate of 

change of  Pn at time t, then this derivative must equal to 

ndP (t)

dt
 = [n  1Pn-1(t) + rn+1Pn+1(t)]    [n Pn(t) + rn Pn(t)]             (82)            

where flow rate into n is positive and flow rate out of n is taken as negative, as it should.  But, the dde in 

(82) is identical to the dde given in (80d) once Pn(t) is factored out of the last term on the RHS.  Further 

if we just concentrate on the node n = 0, where there can be no death (because of zero no. of failed units)  

then the flow rate out of n = 0 must equal to 0P0(t) and the transition rate into state n = 0 must equal to 

r1P1(t)  because the population size (or queue length) cannot equal to  1.   Hence, the differential 

equation for node 0 must be 0P (t)  = 1 P1(t)  0 P0(t), which is identical to (80e).  Before we consider 

different special cases of  B&D processes, we will 1st discuss the steady-state long term solution to the 

system of equations in (80 d & e).  By steady-state (or equilibrium) solution we mean as t  , what 

proportion of the times the system spends in state n = 0, 1, 2 3, 4, ….?  Let n(t)  = nLimit P (t)
t  .   

Then there are two possibilities:  (1) n(t)  will continue to be a function of time in which case the 

system will never reach equilibrium (or steady-state) and the corresponding limit will be very difficult to 

      
     n-1 n 

       rn 
      rn+1 

Figure 6.  Transition -Rate Flow Diagram for a B&D Process 
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compute and may not exist.  (2) n(t)  will approach a constant n as t   , in which case the  

nLimit P (t)
t   will be independent of time, and as a result n nd (t) d

dt dt

 
  = 

d(constant)

dt
= 0 in the 

limit because n as t   will be a constant.  Assuming that the system of ddes eventually reaches 

equilibrium, then as t  , equation (80e) must become:  0 =  0 0  + r1 1  1  0
0

1





;  Equation 

(80d) for n = 1 now yields: 0 =   (1 + r1 ) 1 + 0 0  + r2 2          0 =   (1 + r1 ) 0
0

1r


   + 0 0 + 

r2 2  0 =   (1) 0
0

1r


  + r2 2    2  0 1

0
1 2r r

 
  = 1

1
2r


  ;  putting n = 2 in (80d) and letting t  

 gives:  0 =   (2 + r2 ) 2+ 1 1  + r3 3      0 =   (2 + r2 ) 1
1

2r


 + 1 1  + r3 3   

0 =   (2 ) 1
1

2r


  + r3 3   3  1 2

1
2 3r r

 
  = 2

2
3r


 = 0 1 2

0
1 2 3r r r

  
 ;  similarly, by putting n = 3 in 

(80d) and letting t  , one will obtain 4   3
3

4r


 = 0 1 2 3

0
1 2 3 4r r r r

   
 , etc.  Thus the most general 

steady-state solution for a B&D process is given by 

 

n   n 1
n 1

nr





 = 0 1 2 3 n 1
0

1 2 3 4 n

...

r r r r ...r
    
  = 

n
i 1

0
ii 1 r





   ,   n = 1 ,2,  3,  ….                             (83a)           

In order to solve for 0, we must satisfy the stability constraint n
n 0




  1.   Applying (83a) to this 

constraint we obtain: 

    0  + 
n

i 1
0

in 1 i 1 r




 


   =  0  (1 + 

n
i 1

in 1 i 1 r




 

 )  =  1    

  0 = 
n

i-1

in=1 i=1

1

1 +  
r

 
 = 

0 0 1 0 1 2

1 1 2 1 2 3

1

1 +  ...
r r r r r r

     
  

                                       (83b) 
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In equation (83a) if the sum 
n

i 1

in 1 i 1

( )
r




 

  is not a finite quantity and does not converge, then  0 =1/ 

= 0 so that the system will never become empty and will grow unboundedly and will become unstable.  

Then for the system to be stable there must exist an integer k for which n

n 1r 


 < 1 for all n  k, or else the 

number of individuals in the system will approach infinity.  Therefore, a strong sufficient condition for a 

B&D process to be ergodic is that  n

n 1r 


 < 1 for all n = 1, 2, 3, …..  If  n

n 1r 


 = 1 for all n  k, then all 

states become null recurrent; n

n 1r 


 > 1 all states become transient.  For the case of identical exponential 

arrival and departure times, i.e., when all n =  (a constant arrival or failure rate) for all n = 0, 1, 2, 3, 

…,  and rn =  r (a constant service or repair rate) for all n = 1, 2, 3, …, equations (80a &b) reduce to 

n  n
0

r

( )



 = n0, n  = 0, 1, 2, 3, 4 ,  and  n

n 0




 = n

0
n 0




  = 0

n

n 0




  = 0

1


 

 = 1 iff 0   < 

1  0 = 1.  Therefore, for this special case the pmf of number of members in the system (if 0   < 

1) is given by  

    n  (1) n,  n = 0, 1, 2, 3 ….                                                 (83c) 

which is a geometric process at a traffic intensity 0 <  = /r < 1.  The Pr of finding the system empty in 

the long run is given by 0 = 1.  The average number of customers (or failed units) in the system in the 

long run is given by the geometric mean E(N) = n

n 0

n(1 )



   = 

1


 

 and the variance of the 

geometric pmf in (83c) is given by V(N) = E(N2)  (
1


 

)2 = 2 n

n 0

n (1 )



     (

1


 

)2 = 
2(1 )


 

.   

The average total time (both queueing and service times) spent in the system can easily be obtained from 

J. D. C. Little’s  Result (1961): E(N) =  E(TSys), which so simply states that the average number of 

customers in a any queueing system is directly proportional with the average arrival rate times the 

average amount of time spent in the system per customer.  Applying the Little’s result to the most 

fundamental system M/M/1, we obtain 
1


 

 =  E(TSys)    E(TSys) = 
(1 )


  

= r

r

/

(1 / )

 
   

 = 
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r

1

  
 = r

r

1/

(1 / )


  

 = 
0

Average service time


.    This last relationship states that the average 

system time is inversely proportional to proportion of the times that the system is empty but directly 

proportional to average service time.  Again the reader must observe that since E(TSys) = 
r

1

  
 > 0, 

this again shows that the mean repair (or service rate) for any system has to exceed the mean arrival rate 

for system to remain ergodic, or else it will become unstable.   

Now that we have laid down the foundation for simple queueing systems, specific cases follow. 

 

Repairable  Systems 

 Chapter 5 of Ebeling dealt only with system RE W/O repair and maintenance, and therefore, 

system availability at time t, A(t), was simply the same as system RE at time t.  Examples of 

irreparable components are light bulbs, resistors, batteries and computer chips, while complex systems 

such as airplanes, cars and air conditioning systems have many repairable components.  If a system is 

repairable (either on-line or off-line, where by on-line we mean operations will not be interrupted), 

then there are three important performance criteria: MTBF (Mean Time Between Failures), and steady-

state intrinsic availability AI, and dependability D(t) = AIR(t).  By renewal we mean that a system 

fails but upon failure the failed component is either replaced with a brand new unit or is repaired to its 

original condition.  This is called a renewal process.  A renewal process is the generalization of a 

Poisson process where the interarrival (or intervening) times between two successive events (failures) 

can have any pdf instead of just the exponential. 

  If the failed component is immediately replaced with a new one (or if its Time-to-Repair, TTR, 

is negligible), then the long-term availability of the system is almost 100%, and its time-dependent 

availability, A(t), is equal to RSys(t).  Otherwise, if the TTR has a specified distribution, such as 

exponential with repair rate r or lognormal, then the steady-state (i.e., as t   ) intrinsic availability 

was shown to equal the expression given below. 

    AI = 
MTBF

MTBF MTTR
                                                (84a)  

If the system failure rate is a constant  and its restoration rate is also a constant r, then (84a) reduces 

to 
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      AI = 
r

1 /

1 / 1 /


  

 = r

r

 
  

 .                         (84b)  

Further, by on-line restoration we mean that component failure does not interrupt system functioning.  

If on-line restoration is not possible, then the entire system has to fail first before system restoration is 

performed off-line at the system restoration rate r .  Note that in the case of off-line restoration r = r 

represents the restoration rate of the entire system (not individual components). 

 

The  Two-State  Markov  Process 

 For the sake of specificity, consider the network system example given on pages 109-110 of 

these notes but assume that now time is continuous (i.e., the system is monitored on a continual basis).  

The average failure rate (downtime rate) of the network is  = 0.004 per hour and a repair rate r = 

0.08/hour.  Thus the MTBF = 1/  = 250 hours and MTBR = 1/ r  = 12.5 hours.  The C-K dde for node 

0 is 

        P00(t + t) = P00(t)[ 1   t] + P01(t) ( r t) [1  t]  

After transposing P00(t) to the LHS, dividing by t, and then letting t  o, we obtain 

00dP (t)

dt
 =  P00(t) + r  P01(t)   00P (t)  +  P00(t) = r  P01(t) = r  [1 P00(t)]   

00P (t)  + (+ r ) P00(t) =  r     00P (t) r( )te   + (+ r ) r( )te   P00(t) =  

r r( )te    r( )t
00

d
P (t)e

dt
[ ]  =  r( )te     r( )t

00P (t)ed[ ]  =  r( )te  dt   

r( )t
00d[P e ]= r( )te dt  + C   r( )t

00P (t)e   = r

r


  

r( )te   + C    

P00(t) = r

r


  

 + C r( )te                       (85a) 

                

Applying the boundary condition P00(t = 0) = 1 to the solution in (85a) results in 1 =  

r

r


  

 + C    C = 1  r

r


  

 = 
r


  

 and the final solution 
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P00(t) = r

r


  

 +  
r


  

r( )te   ,  and  P01(t) = 
r


  

   
r


  

r( )te     

                                                 (85b)              

If the network starts in state 1 (down), then 

P10(t + t) = P10(t)[ 1   t] + P11(t) ( r  t)   10P (t)  +  P10(t) = r  P11(t) = r [1 P10(t)]   

10P (t)  + (+ r )P10(t)  = r    P10(t) = r

r


  

 + C r( )te  ;  applying the boundary condition 

P10(t = 0) = 0, we obtain 0 = r

r


  

 + C   C =  r

r


  

  

P10(t) = r

r


  

  r

r


  

r( )te  ,  and   P11(t) = 
r


  

 + r

r


  

r( )te                  (85c)          

                                                                                                                                         

Thus,  0 = 00Limit P (t)
t    =  10Limit P (t)

t   = r

r


  

,  and 1 = 01Limit P (t)
t    =  11Limit P (t)

t   = 

r


  

.    The reader must observe that P00(t) is equal to system reliability at time t given that the 

network is initially in an operational state, and P10(t) is the reliability function at time t given that the 

system starts in the failed state. 

 Substituting  = 0.004 per hour and a repair rate r  = 0.08/hour for our specific example, we 

obtain  0 = r

r


  

 =
.

. .

0 08

0 004 0 08
 = 80/84 = 20/21 and 1 = 1/21.  Thus, on the average the network is 

down one hour every 21 hours, and the long-term availability is given by AI = 0 = r

r


  

 = 20/21.  The 

Pr that the network will be under maintenance in 3 days given that presently is in state 0 is given by 

P01(t = 72 hours) = 
r


  

   
r


  

r( )te  = 
.

. .

0 004

0 004 0 08
  

.

. .

0 004

0 004 0 08
(0.084)72e  = 

1

21
   

1

21
.e 6 048 = 0.0475065   P00(t = 72) = 1 0.04751 = 0.9524935.  Similarly, P10( t =72 ) = 

.

. .

0 08

0 004 0 08
  

.

.

0 08

0 084
.e 6 048  = 0.950131.  
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Note that our system reliability with maintenance at 72 hours, given that initially the system is in the up 

state, is equal to R00(72) = 0.9524935.  Without maintenance the same system reliability would be equal 

to R(72) = te  = 0.004(72)e  =  0.7497616.  For this reason when a system includes maintenance, the 

functions P00(t) and P10(t) yield much higher system reliability.  The expected length of time the network 

would be under repair in 72 hours, given that initially it is in state 0, is given by  

MTTR(01) = r

72
( )t

r r0

 [  e ]dt  


      = 
r

72
  

 + 
2

r( )


  

 [ .e 6 048  1] = 2.86302 hours, 

while the value of MTTR11 =14.7397 hours. 

 

 

Deriving  the Transition  Rate  Matrix  for a  2-State  Markov  Chain 

 In the context of the above network example, let us assume that our time zero is always an epoch 

of time when the system is in state 0 (or operating reliably), i.e., in this section we assume that the P0(t = 

0) = 1.  Then our C-K ddes become 

0 0 r 1

1 0 r 1

P (t) P (t) P (t)

P (t) P (t) P (t)

   
    

.   Note that the sum of these ddes must add to zero because  

0 1
d

P (t) P (t)
dt

[ ] =  
d

dt
[1.0000]  0.  We may now write this last system of the two dde in matrix 

form as follows: 

0

1

P (t)

P (t)

 
  

  =  
r

r

  
   

 0

1

P (t)

P (t)

 
 
 

    P (t) = BP(t)                     (86) 

where B =  r

r

  
    

 is called the transition rate matrix (TRM) and different authors use different 

notations for the TRM.  The definition of the 21 vectors P (t) and P(t) should be self-explanatory in 

equation (86).  Solving the system of ddes in (86) as before we obtain 

A(t) = P0(t) = r

r


  

 +  
r


  

r( )te   ,  and  Q(t) = U(t) =  P1(t) = 
r


  

   
r


  

r( )te  , 

where U(t) is called the system unavailability at time t.  
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 We now solve the dde (86) using matrix manipulations.  We first observe that the infinite 

Maclaurin series of matrices Bte  = 
2 3

2 3B B
I Bt t t

2! 3!
    +  … = 

n(Bt)
n!

n 0




 , called the state 

transition matrix, actually satisfy the matrix differential equations in (86), if  we adopt the initial 

condition P(t = 0) = 0e  = I = 
0(Bt)

0!
.  It can also be shown that almost any square matrix can be 

diagonalized thru B = MM  1, where  is a diagonal matrix consisting of eigenvalues of B and the 

matrix M may be an oblique (i.e., nonorthogonal) matrix whose columns are the matrix B’s 

eigenvectors.  Thus, the general solution is  P(t)   = M te M  1, where te   = 
1

2

t

t

e 0

0 e





 
 
  

 and i 

(i =1, 2) are the eigenvalues of B, i.e.,    =  
1

2

0

0

 
  

.  Using matrix manipulations, our transient 

solution at t = 72 hours is given by P(72)  = M te M  1 = 

 0.99875234  0.70710678

0.04993762   0.70710678

 
 
 


1 0

0 0.0023626

 
 
 


0.95357107   0.953571

0.0673435   1.346870

 
  

 

= 
0.95249346   0.950130874

0.04750654   0.049869126

 
 
 

.   Note that if we formally write the matrix ddes  P (t) = BP(t) in 

the form dP/P(t) = B dt, then we would recognize that the solution has to be of the form ln[P(t)] = B 

t + ln(c).  However, these operations are disallowed because we are dealing with matrix differential 

equations. 

 

 Example 12.   To further illustrate the applications of the above procedures to a chain with more 

than two states, consider the Markovian system in a small airport which handles a fleet of 4 aircrafts (as I 

made up this example I had to limit the fleet size to 4 just for illustrative purposes).  The fleet is 

maintained by a crew of 2 servicemen on a FCFS (first-come, first-serve) priority basis.  The mean time 

between downtimes for each aircraft is MTBF = 30 hours and the mean time to repair (MTTR) for a 

single aircraft worked on both servicemen is MTTR = 2.5 hours.  The following TRD describes the 
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system behavior, where X(t) represents the number of aircrafts that are down (i.e., either being repaired 

or waiting in queue).   

Figure 7 clearly shows that  0P (t)  =   (4/30) P0(t)  + (2/5) P1(t); 1P (t)  =  (3/30+ 2/5) P1(t) + 4/30  

P0(t)  + 2/5 P2(t); 2P (t)  =  (2/30+ 2/5) P2(t) + 3/30 P1(t)  + 2/5 P3(t);  3P (t)  =  (1/30+ 2/5) P3(t) + 

2/30 P2(t)  + 2/5 P4(t);  4P (t)  =  (2/5) P4(t) + 1/30 P3(t);  The transient (or time-dependent) solution for 

this 5-state ddes is very difficult to obtain.  I will take a stab at it for just a short while, but henceforth we 

will concentrate more on the steady-state solution n (n = 0, 1, 2, 3, 4), i.e., as t  

0
1 2 3 4

 

 

 

                  

.   Before starting the discussion about obtaining the transient solution, the reader should observe that 

the average death (or repair) rate in figure 7 is clearly  = 2/5 per aircraft, but the average arrival rate   

will be determined later.  

 

The  Transient  (or Time-Dependent)  Solution 

 As stated earlier the general solution as a function of time is given by P(t) =   

M te M  1,  where   

  =  

1

2

3

4

5

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
  
 
 

 
  

,  and i (i =1, 2, 3, 4, 5) are the eigenvalues  of   

4/30 3/30 2/30 1/30

2/52/5
2/5 

2/5 

Figure 7.  The TRD for the fleet of 4 aircrafts 
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the transition rate matrix B = 

4 / 30 2 / 5 0 0 0

4 / 30 1/ 2 2 / 5 0 0

0 3 / 30 14/ 30 2/ 5 0

0 0 2 / 30 13/ 30 2/ 5

0 0 0 1/ 30 2 / 5

 
  
 
  
  

. 

 

Note that the way I have defined the TRM (transition rate matrix), it does satisfy P (t) = BP(t), where 

P(t) = 

0

1

2

3

4

P (t)

P (t)

P (t)

P (t)

P (t)

 
 
 
 
 
 
  

; further, the columns of the TRM must always add to exactly zero, and it should be read 

from column to rows (unlike the transition pr matrix P).  The eigenvalues of the matrix B are (from Matlab) 

0 = 0.00,  1 =   0.7700597,   2 =   0.2230742,   3  =   0.3827541, 5 =   0.5574453, and the 

eigenvector matrix pertaining to these 5 eigenvalues is M =  

 

0.94565 0.49322 0.86082 0.77477 0.66595

0.31522 0.78511 0.19313 0.48311 0.70608

0.07881 0.36566 0.42065 0.39986 0.12058

0.01314 0.08107 0.20788 0.03689 0.20389

0.00110 0.00730 0.03917 0.07131 0.04317

  
   
   
  
     






.  Thus the transient (or time-dependent) 

solution is given by 

P(t) = M te M  1 = M 

0.77006t

0.22308t

0.38276t

0.55745t

1 0 0 0 0

0 e 0 0 0

0 0 e 0 0

0 0 0 e 0

0 0 0 0 e









 
 
 
 
 
 
 
  

M  1 . 
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Note that you may not reverse the order of the M matrix in the above solution, i.e., P(t)  M1 te M , 

where this last expression is completely erroneous.   The time-dependent solution for 20 hours is given by 

 

  P(20) = 

 0.6997    0.6976    0.6915    0.6785   0.6560

 0.2325    0.2330    0.2345    0.2372   0.2412

 0.0576    0.0586    0.0616    0.0679   0.0789

 0.0094    0.0099    0.0113    0.0146   0.0208

 0.0008    0.0008    0.0011    0.0017    0.0031

 
 
 
 
 
 
  

. 

The 1st row of the above matrix gives the pr of finding the system in state 0 at t = 20; the 2nd row of the 

matrix gives the pr of finding the system in state 1; the 3rd row of the above matrix gives the pr of finding 

the system in state 2 at time t = 20, etc. 

 I hope the reader now appreciates the complexity of obtaining the transient solutions to a set of 

ddes.  Thus, we obtain the steady-state (i.e., as t  ) for the fleet of 4 aircrafts.  We have to 

solve the system of B = 0 imposing the constraint 
4

n
n 0

  1.  

/ /

/ / /

/ / /

/ / /

/ /

4 30 2 5 0 0 0

4 30 1 2 2 5 0 0

0 3 30 14 30 2 5 0

0 0 2 30 13 30 2 5

0 0 0 1 30 2 5

 
  
 
  
  

0

1

2

3

4

 
  
 
 
 
  

 = 

0

0

0

0

0

 
 
 
 
 
 
  

        

 

0 1

0 1 2

1 2 3

2 3 4

0 1 2 3 4

3 0

4 15 12 0

3 14 12 0

2 13 12 0

1

   
            
      
         

         =   

0.69846402586904

0.23282134195635

0.05820533548909

0.00970088924818

0.00080840743735

 
 
 
 
 
 
  
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The average number of aircrafts in the system (being down) in the long-run is given by E(N) = 

4

n
n 0

n


 =  0.38157 aircrafts.   The average arrival rate for repair is given by   = 
4

n n
n 0

  = 

0
4

30
   +  1

3

30
   + 2

2

30
   + 3

1

30
   + 40   = 0.1206144  units/hour    N  = E(N) = 

  SysT  (Little’s  Result)    SysT = N /  = 0.38157/0.1206144 = 3.1635389 hours.    Since in 

general SysT  = W  +  MTTR = Average Waiting Time + Average Service Time, then in follows that 

the average queueing time per aircraft is given by W  = SysT   MTTR = 3.1635389   2.5 = 0.6635389 

hours. 

 

 Exercise23.    As a generalization of the above fleet of 4 aircrafts problem, consider an air force 

base where aircrafts arrive at a rate of  (say  = 1.20 per hour) and the Pr that a landed aircraft needs an 

un-routine maintenance is p (say p = 1/3).  The base maintenance shop can repair an airplane at the 

following rates r : r1 = 0.35 per hour, or r2 = 0.50 per hour.  Draw the TRD and model this situation as a 

B&D process.  If the shop manager adopts  = 0.35 per hour, would he be considered a competent 

supervisor? Answers:   n = 
r

p n( )


 0 ; n
n 0




  1  0 = 1  

r

p


 = 1     Traffic Intensity in the 

repair facility =  =  
r

p


 = 
r

1.20 1/ 3


 = 
r

0.40


  The supervisor is making the wrong decision to set 

 = 0.35 because then  =  1.1429 > 1 implying that the queue length, Qn, will grow unlimitedly and will 

lead to a very unstable situation.  Therefore, the manager must adopt r  = 0.5 per hour in which case  

= 0.80, and the pr of system being empty will equal to 0 = 0.20.  When r = 0.50, the steady-state 

solution is n = (0.80n ) 0, and the average number of aircrafts in the system is given by  E(N) = N = 

n
n 0

n



 =  .20 n

n 1

n(0.8)



  = 00.16 n 1

n 1

n(0.8)





  = 0.16 n 1

n 1

n( )





  = 0.16 n

n 1

d

d






  = 
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0.16 
d

( )
d 1


  

= 0.16/(1  )2 = 4 aircrafts.   Using Little’s result, we obtain N =    SysT  4 = 0.4 

SysT   SysT = 10.00 hours; since the mean repair time is MTTR = 1/ r  = 2 hours, then the average 

queueing time is given by W = 8 hours.  If we consider the queue length itself, then the average queue 

length is given by qN  =  W = 0.408 = 3.2 aircrafts in the repair facility. 

  

Reliability  Analysis  of  a  Repairable  Two-Component  System 

 Such a system can be either a series or a pure parallel system.  We work out the Markov analysis 

in general and will obtain the availability functions for the two possibilities.  The TRD will be given 

below.   I have borrowed this example from the text by R. Ramakumar, “Engineering Reliability”, 

Prentice Hall, ISBN: 0-13-276759-7, pp. 264-266, but my analysis does not follow the same path as the 

author as I found the presentation in that book not quite sufficiently specific.  We must state up front 

whether there is a single repairman (single server) or two repairmen because when both units are down 

(or are in the failed state DD), we have to decide if the repair (or death) rate is either r , or  r1 + r2, 

where the former pertains to one serviceman while the latter pertains to two service facility.  I will work 

out the details of the former case with a single server first, then followed by the latter, assuming that 

when both units are down (state DD), unit 1 is repaired first.  My state TRD for the 1-server case is given 

Figure 8, where there are 4 possible states of the system: State 1 = both units are up = UU,  State 2 = unit 

1 is down but unit 2 is up = DU,  State 3 = unit 1 is up but unit 2 is down = UD,  State 4 = both units are 

down = DD.  As I have illustrated above obtaining transient solutions to such systems is extremely 

difficult, and even if we obtain them, then we would want to let t    to obtain the steady –state (or 

equilibrium) solution.  Therefore, we may as well assume that iP (t)  = 0, for all  i =1, 2, 3, 4  and equate 

the flow rate into a state to the flow rate out of the same state, as given below.  The transition rate out of 

state 1 is 1 + 2 and the corresponding transition rate into state 1 is equal to either r1 or  r2 (not both 

because during t it is impossible for two repairs to occur).  Weighing each of these transition rates by 

the corresponding i, and equating the corresponding flow rates we obtain (1 + 2) 1 = r1 2 + r2 3.  

Similarly, equating the flow rates in and out of state 2 leads to (2 + r1) 2 = 1 1+ r2 4.  For the state 4 

we have: (r1 + r2) 4 = 1 3 + 2 2.  These lead to the following system of 4 equations with 4 unknowns. 
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UU =1 DU =2
DD =4

UD=3

 

 

 

  

1 2 1 1 2 2 3

1 1 2 1 2 2 4

2 2 1 3 1 2 4

1 2 3 4

( ) r r 0

( r ) r 0

(r r ) 0

1

         
        
         
        

                                                              (87) 

The above system of equations can be solved in general using Cramer’s Rule, which is somewhat 

painful.  So, I will make up some transition rates and provide the corresponding solution.  Suppose that 

1 = 0.01 per hour, 2 = 0.015 per hour, r1 = 0.50 per hour, and r2 = 0.40 per hour.  Substituting these 

transition rates into equation (87) and solving the resulting system of equations yields   = A  1b, 

where A = 

-0.025   0.5000   0.4000       0

0.01  0.51500       0   0.40

   0   0.0150    0.01    0.90

1.000    1.00    1.00    1.00

 
  
 
 
 

,  b  = 

0

0

0

1

 
 
 
 
 
 

, and  

 

 

1 2 
r1 

1 
r2 

r1 

2 

    r2 

Figure 8.  State Transition  Rate diagram for a 2-unit  On-line Repairable System 
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 = [0.944956296       0.018899126       0.0354358611       0.0007087172].  If the repairable 2-unit 

system is in series, then the system long-term average availability is given by AI = 1  0.9449563, but if 

it is a pure parallel system, then  A = 1 + 2 + 3 = 0.999291283, and its U = 4 = 0.000708717.     

 Now consider the special case of a 2-unit on-line repairable system, where the two units are 

identical so that 1 = 2 = , and  r1 =  r2 = r   with 2 servers;  let X(t) represent the number of units 

that are down (or are in the failed state) at time t.  Then the state TRD in figure 8 reduces to the one in 

figure 9.  From the TRD in Figure 9 we can easily deduce that 20 = r 1  1 = (2/ r )0 ;  

 ( + r  )1 = 2 0 + 2 r  2   ( + r ) 
r

2


0 = 2 0 + 2 r 2   
2

r

2


0 = 2 r 2    2 = 

(/ r )20  0 + (2/ r )0 + (/ r )20 = 1  0 = 2
r r

1

1 (2 / ) ( / )     
 = 

2
r

2 2
r r2



   
 = 

2
r

2
r( )



  
= [ r /( r +)]2.  Once 0 is computed, the other two steady-state prs 

can easily be obtained.  For example, if  = 0.015 and r  = 0.50 per hour, then 0 = 0.94259590913, 

1 = 0.05655575455, and  2 = 0.00084833632.  Then for a series system the average system 

availability is A = 0 = 0.94259590913, and U = 0.05740409087.   However, if the system is a pure 

parallel one, then AI = 0.99915166368 and U = 0.00084833632 = [/( r +)]2.  The special case of the 

above is a 2-unit series system with only one server, i.e., the transition rate out of state 2 back to 1 is 

given by r21 = r (not 2 r ).  Then,  20 =  r  1  1 = (2/ r )0 ;  ( + r )1 = 2 0 + r 2   

 

 

 

             

 

 

             

             

            

   0      1 
    2 =failed 

     2 
         

       2 r          r  

Figure 9.  Two-Unit On-Line  Repairable  System 
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  ( + r ) 
r

2


0 = 2 0 + r 2   
2

r

2


0 = r 2   2 = (22/ 2
r )0 

 0 + (2/ r )0 + 2(/ r )2 0 = 1  0 = 
2

r r

1

1 (2 / ) 2( / )     
=

2
r

2 2
r r2 2



    
.  Thus, 

the average availability in the long run for a 2-unit repairable series system is given by A = 0
  = 

2
r

2 2
r r2 2



    
.   

 To compute the MTTFSys for a 2-unit parallel repairable system, we have to assume that the 

state 2 in figure 9 is absorbing so that we may obtain the fundamental matrix N.  Figure 9 shows that 

the transition Pr P01 = (2) t and thus P00 = 1  (2) t.  Similarly, P10 =  r (t), P12 =  (t), and 

hence P11 = 1  r (t)   (t) = 1  ( r  +  )t .  If we take t equal to 1 unit of time, then our one-

step transitional pr matrix for a duration t is given by   

 

 

  P  =               r r

r r

1 2 2 0

1

0 2 1 2

   
       
    

.    Making state 2 absorbing, this last matrix 

reduces to 

 

 

  P   =             

r r

1 0 0

0 1 2 2

1

 
    
       

 = 1P 0

R Q

 
 
 

    Q = 
r r

1 2 2

1

   
      

   The 

fundamental matrix N = ( I2   Q)  1  =  

1

r r

2 2
   

     
  = 

2

1

2
 

r

r

2

2

   
   

.  Thus, 

given that the system starts in state 0, then the mean time to failure is given by MTTF0 = 

2 

0 

1 

2 0 1

0 

1 

2 

 
    0                1                    2 
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r
2

( ) 2

2

    


 = r

2

3

2

  


 =

2

3 0.015 0.5

2(0.015)

 
 = 1211.111hours, and MTTF1 = r

2

2

2

  


 = 

1177.77778 hours.  The material on pages 101-104 of these notes may be used to compute the variance 

of TTF.  It seems that for a 2-unit serial system we have to make both states (1, 2) absorbing so that the 

MTTFSys = 1/ (2) = 1/ (0.03) = 33.3333 hours. 

 

Ternary  Model  For  a  Single  Repairable  Component  

 Consider a system that consists of a single component but the component can be in perfect 

(i.e., reliable) state 0, it can be in a derated (needing attention and or easier to repair) state 1, or 

in a completely failed state 2.  As an example, a pump may deliver only a fraction of its rated 

output if one of its parts is not functioning perfectly.  A multi-engine aircraft may experience 

problems with only one engine. The state TRD is given below.  The state TRD Figure 10 shows 

that (0 + ) 0 = r1 1 + r 2 ; (1 +r1) 1 = 00 + r2 2, and 0 + 1 + 2 = 1.  These lead to the 

following nonhomogeneous system of equations. 

 

 

 

             

 

 

 

 

             

             

             

             

             

             

      

 

0 =up 
1 2=failed



0 1

r1 r2

       r 

          Figure 10.  The TRD for a 3-state Repairable Component 
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0 0 1 1 2

0 0 1 1 1 2 2

0 1 2

( ) r r 0

(r ) r 0

1

        
        
      

     The determinants of this system are given by 

 

A  = 

0 1

0 1 1 2

( ) r r

(r ) r

1 1 1

    

     = (1 + r1 +  r2) + 0(1 + r2 + r) + r(1 +r1) + r1r2, 0A  = 

 

=
1

1 1 2

0 r r

0 (r ) r

1 1 1

 

     = r(r1+ 1) + r1r2, and  1A  = 

0

0 2

( ) 0 r

0 r

1 1 1

   

   = (0 +)r2  + r 0.   

 

Thus, the system mean availability in the long-term is given by AI = 0 + 1 = 0 1A A

A


 .   For 

example, if 0 = 0.01 per hour, 1 = 0.02,  = 0.005, r1 = 0.55, r2 = 0.45, and  r = 0.35 per hour, then A 

= 0 1A A

A


 = 

0.4470 0.01025

0.46030


 = 0.9933738866, and the outage rate U = 0.0066261134. 

 Again to compute the MTTF given that we are either in state 0 or 1, we have to assume that 

state 2 is absorbing and hence our one-step (= t = 1 unit) transition pr matrix is given by 

   

       

                  2           0                 1 

P  =       0 0

1 1 1 1

1 0 0

1

r 1 r

 
       
     

     Q = 0 0

1 0 1

1

r 1 r

     
    

   The fundamental matrix 

N =( I2   Q)  1  =  

1
0 0

1 1 1r r

     
    

  = 
1 0 1 1

1

r     
1 1 0

1 0

r

r

   
    

 .   Thus, 

given that the system starts in state 0, then the mean time to failure is given by MTTF0 = 

2 

0 

1 
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1 1 0

1 0 1 1

( r )

r

   
     

.  For example, if 0 = 0.01 per hour, 1 = 0.02,  = 0.005, r1 = 0.55 per hour, then 

MTTF0 = 1 1 0

1 0 1 1

( r )

r

   
     

  = 
0.03 0.55

0.0002 0.0001 0.00275


 

 = 190.16394, and similarly,  MTTF1 = 

0 1

1 0 1 1

r

r

   
     

 = 
0.015 0.55

0.0002 0.0001 0.002750


 

 = 185.24590 hours.  The material on pages 109-

110 of these notes may be used to compute the variance of TTF.  Something is amiss in the above 

MTT failures because it seems that maintenance has not much added to the length of MTTF due to the 

fact that the MTTF W/O maintenance is roughly 1/ = 200 > 190.16394.  I am not certain where my 

error in the above Markov analysis is, but a glance at the TRD verifies the fact that my Markov 

analysis ignores the repair rates r2 and r.  In order to incorporate these two maintenance rates in 

computing the MTTF, it seems that there is no option but to create a 3rd auxiliary state 3 wherein the 

unit is no longer repairable and has to be replaced with a brand new unit.  Thus state 3 is now in fact 

absorbing because the transitions 3  i (i = 0, 1, or 2) are no longer accessible.  Let us assume that the 

transition rate from state 2 to 3 is given by, say 2 = 0.025, and hence  

   

       3          0                 1                2 

P  =        0 0

1 1 1 1

2 2 2 2

1 0 0 0

0 1

0 r 1 r

r r 1 r r

 
       
    
 
     

     Q = 
0 0

1 1 1 1

2 2 2

1

r 1 r

r r 1 r r

      
     
     

   

The fundamental matrix for our specific example with 0 = 0.01 per hour, 1 = 0.02,  = 0.005, r1 = 

0.55, r2 = 0.45, r = 0.35 and 2 = 0.025 per hour becomes N = ( I3   Q)  1  =  

1
0.9850    0.0100    0.0050

 0.5500   0.4300    0.0200

0.3500    0.4500    0.1750


 
 
 
  

  = 

6049.18033   137.70492   40

6042.62295   139.34426  40

5862.29508   134.42623   40

 
 
 
  

  MTTF0 = 6049.18033+137.70492+ 40 = 6226.885245 hours, and 

MTTF1 = 6042.62295+139.34426+ 40 = 6221.967213 hours.  These MTTF’s make more sense than the 

3 

0 

1

2 
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previous ones as the component is repairable, and thus its MTTF that includes repair should exceed that 

of the case W/O restoration. 

 

Series-Parallel  System  with  Restoration 

 Consider a series-parallel system with failure rate a, b, and  c, where units A & B are in 

parallel redundancy in series with unit C, and from a design standpoint we assume that c < a and  b.  

We first apply the Markov-Model approach to obtain the reliability function at time t assuming that all 3 

components are irreparable (or non-restorable).  To this end, we define 3 state spaces: State 1 = all 3 

units are actively reliable, State 2 = only B & C are up and A is down (or failed), State 3 = only A & C 

are up and B is down, and State 4 = System has failed, which is an absorbing state.  The TRD in Figure 

11 shows that  

P1(t+t) = P1(t)(1  ct)(1  bt)(1  at)                                             

P2(t+t) = P1(t) (at) + P2(t) (1  bt) (1  ct)              (88) 

P3(t+t) = P1(t) (bt) + P3(t) (1  at) (1  ct) 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11.  The TRD for a 3-unit S-P non-restorable System 

1=all 3 
are RE AC 4= 

Failed 

c
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b
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Note that the Pr equation for finding the system in the state 4 = “Failed” is duplicative to the above 3 

equations because R(t) = P1(t) + P2(t) + P3(t) = 1  F(t).  Transposing Pi(t), i = 1, 2, 3 to the LHS of 

equation (95), dividing by t, and taking the limit as t  0 results in the following system of ddes.   

 

1 c b a 1

2 a 1 b c 2

3 b 1 c a 3

P (t) ( )P (t)

P (t) P (t) ( )P (t)

P (t) P (t) ( )P (t)

        

       
       

 

The above system can be easily solved for any failure rates , but to facilitate understanding of the 

procedure, we assume that a = b= 0.0001 and c = 0.00005.  Inserting these into the above system of 

ddes yields  

 

1
1

2
1 2

3
1 3

dP (t)
0.00025P (t)

dt
dP (t)

0.0001P (t) 0.00015P (t)
dt

dP (t)
0.0001P (t) 0.00015P (t)

dt

  

  



 

        1

1

dP (t)
0.00025dt

P (t)
      

ln[P1(t)] =  0.00025 t + lnC    P1(t) = 0.00025t lnCe     P1(t) = 0.00025tCe . 

We now apply the boundary condition P1(t = 0) = 1, P2(t = 0) = 0, P3(t = 0) = 0, and  

PF(t = 0) = P4(t = 0) = 0.  This gives C = 1 so that P1(t) = 0.00025te .  Inserting this function into the 2nd 

dde yields 0.00025 t2
2

dP (t)
0.0001e 0.00015 P (t)

dt
    0.00025 t2

2

dP (t)
0.00015P (t) 0.0001e

dt
  .   This 

last is a first-order differential equation with an integrating factor (IF) equal to e0.00015 t.  Multiplying 

both sides by this IF yields 0.00015t 0.00015t 0.0001t2
2

dP (t)
e 0.00015e P (t) 0.0001e

dt
    

0.00015t
2

d
[P (t)e ]

dt
 =  0.0001t0.0001e   0.00015t

2P (t)e  = 0.0001te   + C  2P (t)  = 0.00025 te  + 

C e-0.00015 t. Applying the boundary condition P2(t = 0) = 0 yields C = 1.  Hence, P2(t) = e  0.00015t 
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0.00025te .  Similar procedure yields P3(t) = e  0.00015 t 0.00025 te .  Hence, R(t) = P1(t) + P2(t) + P3(t) 

= 2 e  0.00015 t 0.00025 te .  For example, the system reliability for a 2000-hr mission is equal to 

RSys(2000) = 2 e  0.30  0.5e = 0.875105782.  To verify that the above Markov-Model procedure to 

system reliability has given the correct result for this non-restorable system, we clearly observe that the 

system is reliable iff both subsystems 1 (consisting of the pure-parallel units A and B) & component C 

are reliable.  The reliability of the pure-parallel subsystem 1 is given by R1(t) = 1  (1 0.0001 te )2 =  

2 0.0001 te   0.0002 te .   Hence, RSys(t) = (2 0.0001 te   0.0002 te ) c te  =  

(2 0.0001 te   0.0002 te ) 0.00005 te  = 2 e 0.00015 t 0.00025 te  as before!  Applying the Markov 

procedure to an irreparable system, as you can see, is totally unnecessary and was done here only for 

illustrative purposes.  Because, obtaining the RSys(t) for a repairable system is far more complicated 

and requires the use of Markovian procedure, which I will do after finishing the analysis of our non-

repairable system.  From the reliability function the MTTF for the non-restorable system is given by 

MTTFSys = 2/0.00015   1/0.00025 = 9333.333333 hours.  Since the this system is irreparable, then its 

availability at time t is  given by A(t)  = R(t) (it may be even more appropriate to argue that the 

definition of availability is not applicable to non-restorable systems), and its dependability is given by 

D(t) = R(t); thus D(2000 hours) =  87.5105782%. 

 We now add on-line restoration to the above system by assuming that when unit A fails it can 

be restored at the rate of ra = 0.40/hr and similarly when B fails it can be restored at the rate rb = 0.40 

per hour.  Note that when unit C fails the entire system fails, and thus we have to assume that when the 

system is in the failed state (which can also happen by combinations AC down, BC down, and all 3 

down), two units can be repaired on-line at the same time by 2 different servers at either the rate ra + rc, 

or  rb + rc.  I must alert you to the fact that this assumption violates that of a B&D process because two 

transitions (i.e., two repairs) during t is disallowed.  We are making this assumption for the sake of 

simplicity and have to further assume that when only unit C is down, then because there are two 

servers C will get repaired at the rate of 2r, where ra = rc =  rb = r, and  a = b = .  Therefore, the 

following analysis will lead to only a rough approximation to the exact solution having 8 different 

states.  Then, the TRD 11 modifies to the TRD given in Figure 12.  From Figure 12 we obtain 
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1 1 2 3 4

2 1 2 c 4

3 1 3 c 4

4 1 c 2 c

cP (t t) P (t)(1 t 2 t) P (t)r t P (t)r t P (t)2r t

P (t t) P (t)( t) P (t)(1 r t)(1 t t) P (t)(2r) t

P (t t) P (t)( t) P (t)(1 r t)(1 t t) P (t)(2r) t

P (t t) P (t)( t) P (t)( t

             

             

             

          3 c 4t) P (t)( t t)P (t)(1 4r t)






        

 

The above system leads to the following system of ddes which is given below Figure 12, where for 

simplicity we are assuming  r = ra = rc = rb, and   = a = b.   

c

3=AC2=BC
1

Figure 12.  The TRD for a 3-unit  S-P On-line restorable System
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1 1 c 2 3 4

2 1 2 c 4

3 1 3 c 4

4 1 c 2 c 3 c 4

P (t) P (t)( 2 ) P (t)r P (t)r 2rP (t)

P (t) P (t) P (t)( r ) 2rP (t)

P (t) P (t) P (t)( r ) 2rP (t)

P (t) P (t) P (t)( ) P (t)( ) 6rP (t)

        

          


         


           

  P(t) = B P(t), where the  

 

Note that I have done a complete Markov analysis of the renewal system under S-P On-Line 

System which is listed on my website. 

TRM (transition rate matrix) is given by B = 

c

c

c

c c c

(2 ) r r 2r

(r ) 0 2r

0 (r ) 2r

6r

    
       
      
 

         

.  

Obtaining the most general transient (i.e., time-dependent) solution to this last system of ddes is not an 

easy task (I am not sure that is worth the time and effort required).  However, before obtaining the 

steady-state solution that will yield the long-term availability A = 1+ 2 + 3, we may obtain the 

MTBF by obtaining the fundamental matrix  N = (I3 Q)  1.  In order to obtain N, we must obtain 

the transition pr matrix, which is given below for the case ra = rb = rc =r. 

 

 

          P =           
c c

c c

c c

1 6r 2r 2r 2r

1 (2 )

r 1 (r ) 0

r 0 1 (r )

 
        
        
 
         

 

 

Since dRSys(t)/dt =  1 2 3
d

[P (t) P (t) P (t)]
dt

   = 1 2 3P (t) P (t) P (t)     = 4P (t) = c P1(t)  ( + 

c)P2(t) (+ c)P3(t) + 6rP4(t), then making the location 4 = “Failed” = { AB, C, AC, BC, ABC },  

an absorbing state, we obtain the one-step 44 canonical transition Pr matrix as shown below.   

 

 

4 

1 

2 

3 

4 1 2 3
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          P   =           
c c

c c

c c

1 0 0 0

1 (2 )

r 1 (r ) 0

r 0 1 (r )

 
        
        
 
         

 

Note that 1 2 3 4
d

[P (t) P (t) P (t) P (t)]
dt

   = 
d

[1]
dt

 = 0 shows that once we have information about 

states 1, 2, and 3, then we also have complete information on state 4. The truncated matrix Q 

corresponding to the above stochastic matrix is given by 

 

 Q =            

c

c

c

1 (2 )

r 1 (r ) 0

r 0 1 (r )

      
      
      

                 

 

I3  Q = 
a b c a b

a a b c

b b a c

( )

r (r ) 0

r 0 (r )

         
      
      

.  Obtaining the inverse of  (I3  Q) for 

the general case is at best very messy, although it can be done using determinants and adjoint matrices, 

which is the transpose of matrix C consisting of cofactors.  However, we limit discussion to the case a 

= b = 0.0001, c = 0.00005 and r = ra = rb = 0.40 per hour.  Then, the fundamental matrix is given by  

N = (I3  Q)  1 = 
. . .

. .

. .

1
0 00025 0 0001 0 0001

0 40 0 40115 0

0 40 0 0 40015

  
  
  

=  
19970.05615   0.00050   0.00050

19962.57018   0.00075   0.00050

19962.57018   0.00050   0.00075

 
 
 
  

         

The above matrix N shows that given we are in state 1, then the MTBFSys is equal to MTBFSys1 = 

19970.05615 + 0.00050 + 0.00050 = 19970.05715 hours, but when we are in state 2 or 3, then the 

MTBFSys2(3) = 19962.57018 + 0.00125 = 19962.57143 hours.  Thus, restoration has more than doubled 

our MTBFSys from 9333.33333 hours to roughly 19970 hours.  To obtain the steady-state solutions, the 

TRD 12 shows that (2  + c)1 = r 2 + r 3 ,  1 + 2r4 =  (r +  + c)2 ,  1 + 2r4 = (r+ + c )3, 

and 1 + 2 + 3 + 4 = 1.  Solving this system of 4 equations with 4 unknowns simultaneously for the 

4 

1 

2 

3 

4 1 2 3

1 

2 

3 

1 2 3
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specific values of   = 0.0001, c = 0.00005 and  = 0.40 yields 1 = 0.99934412186471, 2 =  3 = 

0.00031229503808, and  4 = 0.00003128805913.  Thus the value of long-term system availability is 

given by  AI = 1 + 2 + 3 = 0.99996871194087, and its long-term average MTBFSys = 19970.05715 

0.99934412186471 + 19962.5714320.00031229503808 + 00.00003128805913 = 19969.4276502 

hours, using the fact that MTTFSys(4) = 0. 

 

The  2-Unit  Pure  Parallel  System  with  no  On-Line  Restoration  but  with  

System  Restoration  Rate  r (or r)  

 Since there is no on-line restoration, then the entire system gets repaired after both units have 

failed, and as a result  represents the rate at which the system gets restored.  We can define the sates 

as either X(t) = number of operational units, or number of units that are down (it makes no difference 

as long as one is consistent with their definition).  To be consistent, let X(t) = number of  units that are 

down or in the failed state.  Then, Rx = {0, 1, 2}.  The TRD for the system is given in figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 clearly shows that 20 = r 2  and  2 0  =   1 , and using the fact that 0 + 1 + 2  1,  

we obtain 0
r

3r 2
 

 
 , 1

2r

3r 2
 

 
 and hence system availability is given by A = 0 + 1 =  

Figure 13.   2-uint  Pure Parallel  with  Off-line  Restoration  

0 1 failed 2 failed 

r

 2 
   



 126

3r

3r 2 
.   It can be easily shown that MTBF0 = 3/(2) and MTBF1 = 1/. 

 

The  2-out-of-3  System with  Off-Line  Restoration  Rate  r 

 Again we define 0 as no failures, state 1 as exactly one unit failed, and state D = 2 or more 

units failed leading to system being down.  The TRD is given in figure 14. As in the case of the 2-unit 

Parallel system it can easily be shown from Figure 14 that the system availability is given by AI =  0 + 

1 = r

r

2

5 6


  

+ r

r

3

5 6


  

 = r

r

5

5 6


  

.   

Exercise24.   Specifically consider a 2-out-of-3 redundant system with on-line restoration of r 

per time unit and only one restoration at a time, i.e., only one server or repair facility.  By on-line 

restoration we mean that system operations will not be totally interrupted while repair is ongoing.  The 

TRD diagram is given below.   Let Xt represent  the number of failed units at time t, where one step is 

equal to t. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

3  

2  

r = r  

0
  1     D 

Figure 14.  The TRD for the 2-out-of-3 System with off-line Restoration 
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From the TRD 15 we can easily write the following system of  ddes  
 

0 1 1 r

1 0 r 2 r 1

2 1 r 3 r 2

3 2 r 3

P (t) P (t)( 3 ) P (t)

P (t) P (t)(3 ) P (t) (2 )P (t)

P (t) 2 P (t) P (t) ( )P (t)

P (t) P (t) P (t)

      

         


        


    

       P(t) = B P(t),  where the TRM is given by  B =  

 

r

r r

r r

r

3 0 0

3 ( 2 ) 0

0 2 ( )

0 0

   
       
      
 

   

, and hence the time-dependent solution is given by P(t) =  M 

te M  1,  where   

    =   

1

2

3

4

0 0 0

0 0 0

0 0 0

0 0 0

 
  
 
 

 

. 
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Figure 15.   The TRD for a 2-out-of-3 System with on-line restoration 
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Use the TRD 15 to show that   0 = 
2 3

r r r

1

1 (3 / ) 6( / ) 6( / )        
=  

3
r

Den


, where Den = 3

r  

+ 3  2
r  + 6 2 r + 63.   Further, 1 = (3/ r )0 = 

2
r3

Den


. Thus, the average availability in the 

long-run is given by AI = 0 + 1 = 
3 2
r r

3 2 2 3
r r r

3

  + 3  + 6 + 6 

  

    
.    Further, obtain the MTBF0 = 

r
2

5

6

  


 and   MTBF1 = r
2

3

6

  


.  

 

 

Table  C.16  on Page  384  of  Paul Kales (Reliability For Technology, Engineering, 

and Management, Prentice Hall, ISBN:0-13-485822-0) 

 Paul Kales (1998) tabulates the results of k-out-n standby redundant systems with on-line 

restoration and exactly one repair at a time.  I will specifically work out the analysis for a 3-unit 

standby system where one unit is needed for operational success at any time t.  In standby systems it is 

generally best to define Xt  to represent the number of failed units at time t (instead of number of 

operating units at time t).   The TRD is given in figure 16. 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

0
  1      2 

3

     
    



r  r  

Figure 16.  The TRD for a  3-unit  repairable  Standby  System 
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The TRD 16  shows that  0 =  r  1  1 = (/ r )0 ;  ( + r )1 =  0 +  r 2    

( + r ) 
r




0 =  0 + r 2   
2

r




0 = r 2   2 = (2/ 2
r )0 .  In a similar fashion 3 =  

(3/ 3
r )0   0 + (/ r )0 +  (/ r )20 + (/ r )3 0

 = 1    

0 = 
2 3

r r r

1

1 ( / ) ( / ) ( / )        
=  

3
r

Den


, where Den = 3

r +  2
r +  2

r + 3. 

Further, 1 = (/ r )0 = 
2
r

Den


.   Thus, the average availability in the long-run is given by  

AI = 0 + 1 + 2 = 
3 2 2
r r r

3 2 2 3
r r r  +  + + 

   

    
, which is identical to row 4 of Table C.16 on page 384 

of Paul Kales.  Therefore, the system outage rate is given by  U = 1   AI  =  

3

3 2 2 3
r r r  +  + + 


    

.  Although, Kales does not provide the MTBFSys, I will work out the details 

below. 

 To obtain the MTBFSys of the above 3-unit standby system, we must first write the one-step (= 

t) transitional pr matrix, P. 

 

P = r r

r r

r r

1 0 0

1 ( ) 0

0 1 ( )

0 0 1

   
       
      
 

    

.   Since state {3} is the only failed (or down = {D}) 

state, then we will make it absorbing.  This leads to the following matrix in canonical form.  

 

P  =             
r r

r r

1 0 0 0

0 1 0

0 1

0 1

 
    
      
 
      

   Q = r r

r r

1 0

1

0 1

   
       
      

  

    

D 

0 

1 

2 

D 0 1 2
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(I3   Q) = r r

r r

0

0

   
       
      

.  Thus the fundamental matrix is given by 

 

N = (I3   Q)  1 = 3

3

Adj(I Q)

det(I Q)




 = 

2 2 2
r

2
r r r

2 2
r

3

r r ( )

( ) ( )

r

         
 
         
 

   


 . 

This last fundamental matrix shows that MTBF0 = 
2 2

r
3

r 3 2   


,  MTBF1 = 

2 2
r

3

r 2 2   


,  and MTBF2 = 
2 2

r
3

r   


, where r2 = 2
r . 

 

Examples  10.15  Through  10.18  on Pages 223-226 of  Paul Kales (1998) 

 From the Figure 17 (the state-TRD) on my website, the equilibrium equation from node 1 is 

obtained by equating the flow rate into node 1 to the flow rate out node 1. 

ra 2 + rb 3 + rc 4 = (a + b + c) 1    0.0000321    2    23    4 = 0.  

Node 2:   a 1 + rc 6 = (ra + b + c) 2     0.0000051   1.000027 2   +  6 = 0.  

Node 3:  b 1 + ra 5 + rc 7 = (a + rb + c) 3      

     0.0000251   2.000007 3  + 5 +  7 = 0. 

Node 4:   c 1 = (a + rc + b) 4     0.0000021   1.000030 4 = 0. 

Node 5:  b 2 + a 3 + rc 8 = (ra + c) 5       

   0.0000252  + 0.000005 3    1.000002 5 +  8 = 0. 

 

Node 6:  c 2 + a 4  = (rc + b) 6          

   0.0000022  + 0.000005 4    1.000025 6  = 0. 
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Node 7:  c 3 + b 4  = (rc + a) 7          

   0.0000023  + 0.000025 4    1.000005 7  = 0. 

Constraint:  1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 1. 

Note that if you write the equilibrium steady-state equation for node 8, it will not generate another 

independent equation and thus we could not obtain a unique solution unless we impose the above 

constraint.  Solving the above system of 8 equations with 8 unknowns yields 

 = [0.99998050018525   0.00000499978751   0.00001249984375   0.00000199990100 

0.00000000018749   0.00000000002000   0.00000000007500   0.00000000000000].   

 

Thus, the long-term availability is given by AI = 1 + 2 + 3 = 0.99999799981651, which is consistent 

with Kales answer near the bottom of his page 226.  The outage rate is given by 

U = 1  0.99999799981651 = 0.000002000183494943464. 

In order to obtain the MTBFSys, we let D = {4, 5, 6, 7, 8} and make this down state as absorbing 

resulting in 

 

 

P  =             
c a b c a b

b c a a b c

a c b b a c

1 0 0 0

1

r 1 r 0

r 0 1 r

 
          
        
 
         

    

 

       P  =     

6 6 6

6 6

6

1 0 0 0

2 10 0.999968 5 10 25 10

27 10 1 27 10 0

7 10 2 0 1.000007

  

 



 
 

   
    
   

    

 

D 

1 

2 

3 

D 1 2 3
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Q = 

6 6

6

0.999968 5 10 25 10

1 27 10 0

2 0 1.000007

 



  
 
  
   

      

 

(I3   Q) = 

6 60.000032 5 10 25 10

1 1.000027 0

2 0 2.000007

     
 

 
  

  

Thus, the fundamental matrix is given by 

N = (I3   Q)  1 = 

4.99944382167162   0.00002499654420   0.00006249282905

4.99930884033293   0.00003499559932   0.00006249114179

4.99942632367949   0.00002499645671   0.00006749259282

 
 
 
  

 105  

 

MTBFSys1 = 499953.131104487 hours, MTBFSys2 = 499940.632707404, and MTBFSys3 = 

499951.881272903 hours. 

 

 Finally, the TRD for a 2-out-of-4 parallel system (i.e., all 4 units get energized at time zero) 

where two units can be repaired at a time is given by  

 

 

 

 

 

 

  

  

Note that in the above diagram Xt = number of failed units at time t.  Further, when we are in the state 
{2 failed}, the transition 2  0 during t has a Pr of (2 r t)2 and thus in the limit as t  0 it drops 

out the C-K ddes.  

4 
    3 

2

0 
1

2 3 4



r  2 r  

2 r  
2 r  


