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INSY 7380          System Reliability (Static Models)             Maghsoodloo 

Reference: Chapter 5 of C. E. Ebeling     

Throughout this chapter, it is assumed that the reliability of all system components (or 

subsystems) practically stays constant (or static) for the duration of mission time t (i.e., the 

length of mission-time t is short enough so that such an assumption is tenable).  In part (2) 

of this chapter we will consider dynamic models where, in general, there will be reliability 

degradation of subcomponents with respect to time.  

 

The Series Static (or Serial) System 

 Such a system is reliable only if all subsystems are reliable.  ASA one subsystem 

fails, the system fails.  For the sake of illustration, consider a series system with n = 4 

components (or subsystems) each with a RE = 0.995 (such as the system of 4 tires on a 

passenger car with trip duration of t = 500 miles).  The RE block diagram is shown below. 

 

 

     RSys = (0.995)4 = 0.98015 

In the above RE computation, we are assuming that the 4 tire failures are independent. 

In general, if the series system has n units with independent failures, then 

                                      RSys =  
n

i
i 1

R

 ,                    (29) 

where Ri is the RE of the its subsystem.  It is clear that Rsys < Min{Ri}, i = 1, 2,..., n  

because each Ri in Eq. (29) is less than 1. 

 

The  Pure  Parallel  Systems (Static Models) 

       Such a system is reliable only if at least one component is reliable (i.e., n hot spares  in 

parallel redundancy).  The RE (reliability) block diagram for a pure parallel system with n = 4 units 

is given below, where Ri = 0.95 for i = 1, 2, 3, 4.  The system reliability RSys = 1  QSys, where QSys 

represents system unreliability SysR .  A pure-parallel system is reliable only if at least one unit is 

0.995 0.995Unit 2 Unit 3 



 
37

reliable.  Or, the system is unreliable only if all n = 4 components fail.  Hence, system unreliability 

is given by:  QSys = System Failure Pr = (0.05)4 = 0.00000625 = SysR  

RSys = 1  QSys = 1  SysR = 1  0.05625 = 0.95375 = 0.99999375, in contrast to 0.81451 = 

(0.95)4 for a 4-unit static series system.  In general, for a pure parallel system with n hot 

spares, first the system unreliability is obtained followed by system RE as shown below: 

                                                

QSys = 
n

i
i 1

Q

 = 

n

i
i 1

(1 R )


 = SysR         

  

RSys = 1  QSys = 1  
n

i
i 1

(1 R )


 . 

In a pure parallel system, RSys   

Max(R1, R2, ..., Rn).   

                                          The RE  Block  Diagram  for a  4-unit  Pure-Parallel  System 

 

In Exercise 5.2 on page 117 of Ebeling, by common-mode failure it is meant that the n 

components of the pure-parallel system do not operate independently of each other but 

share one common source of failure so that RSys = [1  
n

i
i 1

(1 R )


 ]RC, where C denotes 

common. 

 Exercise 8.   (a) Consider a system with n components in series with REs:  R1, R2,..., 

Rn.  Assuming that it is possible to increase the RE of only one of the n components, 

determine which design component you would select to improve in order to optimally 

increase RSys.  Repeat for a pure parallel system.  In both cases provide a proof.  [Hint: 

Examine the partial derivative of RSys wrt Ri].  (c)  Estimate the failure rate of a component 

with approximately a constant RE during mission interval (0, t). 

 Next, consider the above 4-unit parallel system where Ri = 0.95, i = 1, 2, 3, 4, but 

suppose that at least 2 components must survive for the system to be reliable.  Let P(i) = 

R1=.95

R2 = .95 

R3 =.95 

R4 =.95 
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the Pr that exactly i (i = 1, 2, 3, 4) units will be reliable.  Then RSys = R(2; 4, 0.95) = 1  P(0) 

 P(1) = 1  (0.05)4  4C1(0.95)(0.05)3 = 0.99951875, as compared to 0.99999375 for a 

pure-parallel system.  Note that this problem can also be solved directly by summing P(2), 

P(3), and P(4) because these are 3 mutually exclusive possibilities.  As a review of the 

binomial pmf, the reader should verify R(2; 4, 0.95) = 
4

i 2

P(i)

 .  This example represents a 2-

out-4 parallel system (no longer a pure-parallel system) redundancy. 

 

 Exercise 9.   Compute the reliability for a 3-out-of-5 redundant system, where Ri = R 

= 0.95 for all 5 units (see p. 104 of Ebeling).  ANS: 0.998842 

Generalizing recall that the binomial Pr mass function (pmf) as b(x; n, p) = nCx pxqnx  

gives the Pr of exactly x successes in n Bernoulli (independent) trials.  The cdf of the 

binomial is given by B(x; n, p) = 
x

i n i
n i

i 0

C p (q )


 .  For the sake of illustration, consider a 3-

out-of-4 parallel system each unit with success Pr Ri = p, and failure Pr qi = 1  p.  

Assuming that the units failure modes are independent, the system RE is obtained from b(3; 

4, p) + b(4; 4, p) = 4C3p3q43 + p4 = 4p3(1  p) + p4 = 4p3  3p4 = 1  B(2; 4, p).  In general, 

the RE of a k-out-of-n redundant System is given by 

      R(k; n, p) = 
n

r n-r
n r

r=k

C p (q ) = 1  B(k1; n, p)                (30)       

    

As yet another example, consider a 3-out-of-7 parallel redundant system, where each hot 

spare has a RE of R = p = 0.975.  Then from equation (30), we have  R(3; 7, 0.975) = 1  

B(2; 7, 0.975) = 1  binocdf(2,7,0.975) = 1  0.0000001966247558593755 = 

0.99999980337524, where I have invoked the Matlab function binocdf(x, n, p).  The Excel 

function for B(k1; n, p) is BINOMDIST(k  1, n, p, True).  The False option will give the 

point mass probability. 

  

Reliability  Computation  For  Mixed  Parallel  Systems 

 Ebeling gives a good discussion of Series –Parallel (low-level redundancy), Parallel-



 
39

Series (high-level), and Mixed-Parallel systems on pp. 102-105 (Section 5.3).  To illustrate 

RE computations, consider Figure 5.3 at the bottom of his page 102 of Ebeling, where the 

six units in the combined Series-Parallel system have R1 = R2 = 0.90, R3 = R6 = 0.98 and the 

2-unit series subsystem has R4 = R5 = 0.99.  We wish to compute the system reliability 

denoted by RSys, where Ebeling uses the notation Rs for system reliability. 

Step 1:  Reduce the subsystem-B to a 2-unit series subsystem, where R1 = R2 = 0.90.   

Then QSubsysA = (0.10)2 = 0.01  RSubsysB =  (1  0.01)0.98 = 0.97020. 

Step 2:  Reduce the RE of the 2-unit series subsystem-C to a single unit RE in pure parallel 

redundancy with subsystem B.  

      RSubsysC = (0.99)2 = 0.98010 

Step 3: We now have a 2-unit pure-parallel subsystem consisting of B and C.  The UNRE 

(unreliability) of this subsystem in parallel redundancy is QSubSys1  = (1  0.97020)(1  

0.98010) = 0.00059302.   RSubSys1 = 1  QSubSys1 = 0.9994069800   RSys = 

0.9994069800R6 = 0.979419 = Rs, where R6 = 0.98. 

 Ebeling covers low-level (see Figure 5.4 p. 103) and high-level redundancy (see 

Figure 5.5, at the bottom of p. 103), where the low-level redundancy always yields larger RE 

than high-level redundancy, which is counterintuitive.  To illustrate this fact and as an 

exercise, draw the diagram for a 3-unit (A, B, and C) low-level and high-level redundancy 

and show that indeed this is the case, where all units have RE = p.  

 

RE  Analysis  For  Complex  Systems 

 For the sake of illustration, consider the RE block diagram of Figure 5.6(a) on 

page 105 of Ebeling.  The block diagram shows that the system is reliable thru a total of six 

paths AC, AEC, AED, BD, B ED or B EC, where RA = RB = 0.90, RC = RD = 

0.95 and RE = 0.80. We present two methods of computing RSys: (1) The Decomposition, (2) 

The Path-Tracing Method where duplications are eliminated using the least number of 

components so that the six paths are reduced to the four distinct paths AC,  AED, 

BD, or B EC. 

The  Decomposition  Method 

 This method begins with selecting a keystone component, and for Figure 5.6 on page 

115 of Ebeling the most logical keystone component is E which links the RE structure of the 
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system.  From the law of Conditional Total Probability, we have 

             RSys = RER(SysE is reliable) + QER(SysE )        (31)     

where the event E  implies the failure of component  E so that F(E) = Q(E) = 0.20 = Pr( E ).  

From now on, I am invoking the notation AC = RAC, BD = RBD, RABCD = ABCD, etc only 

for convenience and less writing.  

R(SysE) = AC + AD + BC + BD  ABCD   ACD  ABD  ABC  BCD  ABCD + 4ABCD  

ABCD =  0.98752500. R(SysE ) = RAC + RBD – RABCD = (0.9)(0.95) +(0.9)(0.95)  

(0.9)2(0.95)2 = 0.97897500    RSys = 0.800.98752500 + 0.200.97897500 = 0.98581500. 

 Ebeling’s  answer  at the bottom of Table 5.2 on his page 106 is accurate only to 4 

decimals, while mine is accurate to 6 decimals.  

 

The  Path-Tracing  Method  

As stated earlier for Figure 5.6a (p. 105) there are 4 minimal paths AC, AED, BD, or 

B EC (with least number of components) thru which the complex system in Figure 5.6 

can be reliable.  Of the 25 = 32 total paths listed in Ebeling’s Table 5.2, p.106, only 16 are 

RE paths but they lead to duplications.  Recall from STAT3600 that if Ei (i = 1, 2, 3, 4 are 

four events, then    

Pr(
4

i
i 1

E

 ) = 

4

i
i 1

Pr(E )

   

4

i j
i j

Pr(E E )


  +
4

i j k
i j k

Pr(E E E )
 

   1 2 3 4Pr(E E E E )  

                                                                                                       (32)       

                    

      Exercise 10.    Use the above formula (32) to recompute RSys for the Figure 5.6 of 

Ebeling.  Again to minimize the amount of writing, you should use the notation AD=  

R(AD), CE = R(CE), etc.   ANS: 0.985815. 

  

Tie-Set  and  Cut-Set  Methods  for Complex  System  RE  Computations 

 A tie-set (T) is a complete path that leads to system RE thru the RE block diagram.  

The minimum tie-set contains no duplications within the set, i.e., all the RE paths in the 

minimum tie-set contain the minimum number of components for system RE.  As an 
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example, again consider Figure 5.6(a) on page 105 of Ebeling.  As stated above, this 

system has 4 tie-sets T1 = AC, T2 =   AED, T3 = BD,  and T4 = B EC (using the 

least number of components), where  RSys = Pr(T1 T2T3T4) and Ti = Ei as in Eq. (32). 

             A (minimal) cut-set (C), on the other hand, consists of the minimum number of 

components whose unreliabilities, R,  lead to system failure.  For the Figure 5.6 of Ebeling 

the minimum cut-sets are C1 = A B  (i.e., both A and B do not work), C2 = C D , C3 = 

A E D  , and  C4 = B E C  .  Hence, the system UNRE is given by  

SysR  = QSys = Pr(
4

i
i 1

C

 )= 

4

i
i 1

P(C )

   

4

i j
i j

Pr(C C )


  +
4

i j k
i j k

Pr(C C C )
 
    

1 2 3 4Pr(C C C C )     = (0.10)2 + (0.05)2 +(0.1)(0.20)(0.05) + (0.1)(0.20)(0.05)  

(0.10)2(0.05)2  (0.10)2(0.20)(0.05)  (0.10)2(0.20)(0.05)  (0.10)(0.20)(0.052)  

(0.10)(0.20)(0.052)  (0.102)(0.20)(0.052) + 4(0.102)(0.20)(0.052)  (0.102)(0.20)(0.052) = 

0.01418500  RSys = 1  SysR = 1  0.01418500 = 0.98581500 as before! 

 Ebeling provides a good example of the minimum tie-sets and cut-sets on page 109 

in his Example 5.8.  You should study Example 5.8 and verify RSys = 0.79760 using both Ti’s 

and Ci’s. 

 

Bounds on System Reliability 

Ebeling covers this topic in section 5.4.3 (pp. 110-112).  To obtain the greatest lower bound 

(glb) on  RSys, it follows that the system unreliability, QSys, can never be larger than putting 

all its cut-sets in serial configuration [see Figure 5.9 (a) atop page 111 of Ebeling].  Thus,  

QSys  Pr(at least one cut-set occurs) = 1  Pr(zero cut-set occurs)  

1  RSys   1  Pr(zero cut-set occurs)      RSys    Pr(zero cut-set occurs)  

  RSys  Pr(zero cut-set occurs) = glb(on RSys) = RL  

The above inequality gives the glb on RSys and is the wording version of Eq. (5.18) on page 

111 of Ebeling.  As an example, consider the mixed series-parallel system in low-level  

redundancy of figure 5.8 atop page 109 of Ebeling.  Clearly the cut-sets are C1 = AC, C2 = 

AD, C3 = BC, and C4 = BD with Prs Pr(C1) = 0.100.20 = 0.02, Pr(C2) = 0.100.30 = 0.03, 

Pr(C3) = 0.200.40 = 0.08, and Pr(C4) = 0.400.30 = 0.12  Pr(zero cut-set occurs) = 
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0.980.970.920.88 = 0.7696057600  0.7696057600 = glb(RSys) = RL  RSys  = 0.7976 

To obtain the least upper bound (lub) on RSys, we first put all the minimal tie- sets 

in pure-parallel redundancy (see Figure 5.9 (b), p. 111). Thus,  RSys   R(at least one 

minimal tie-set, or minimal path) = 1  Q(all tie-sets) = Ru.  The inequality RSys   1  Q(all 

tie-sets) is basically the Eq. (5.19) on page 111 of Ebeling.  Figure 5.8 on page 109 of 

Ebeling has two tie-sets T1 = AB and T2 = CD so that Q(all tie-sets) = (1  0.54)(1  0.56) 

= 0.202400 so that RSys    1  Q(all tie-sets) = 1  0.202400 = 0.797600, the equality 

occurring because there are only two minimal paths. 

 

Network  RE  Computations  Using  the  Factoring  Algorithm 

 To Illustrate this concept, I am making use of the very good Example 2.22 borrowed 

from the text by E. A. Elsayed (2012) entitled “ Reliability Engineering” published by Wiley 

ISBN: 978-1-118-13719-2, pp. 129-130.  In order to comprehend RE computations for a 

simple network, I will go through the Example 2.22 of Elsayed in a stepwise fashion.  

 A graph, G, is a pictorial representation of a network which consists of nodes and 

edges.  Elsayed’s Figure 2.21 on his page 129 is reproduced below.  Node A is where gas 

is vaporized, and nodes B, C, D, E are distribution centers where gas is received from node 

A and must be delivered to destination node F where critical services are provided for a city. 

Graph G in Figure 2.21 of Elsayed has 8 edges ei , i = 1, 2, ..., 8, (in actuality an edge in this 

example is a transmission gas pipeline) and 6 nodes A, B, C, D, E, F.  Since I have not 

done research in network RE, my understanding of the subject is limited and it seems from 

studying Elsayed’s text that nodes are always reliable and that only edges (or gas pipe lines 

in this case) in a graph can fail.  For the example 2.22 of Elsayed, node A is where gas is 

vaporized, and nodes B, C, D, E, F are distribution centers.  The objective is to get from 

node A through the eight edges to node F, which provides gas to critical services of a city. 

 Step 1:  Select an arc (or edge, or a pipe), say edge 1 (which connects node A to B) 

and construct 2 subgraphs  G1 and 1G , where G1 implies that e1 is reliable and 1G implies 

that edge 1 has failed.  The two subgraphs are reproduced below.  Letting pi represent the 

RE of ei, then from the law of total Pr we have 
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RSys = R(G) = p1 R(Ge1) + q1 R(G 1e ) = p1R(Ge1)+(1  p1)R(G 1e )                      (33)   

 
Note that equation (33) is based on 2 mutually exclusive events: either e1 is reliable or 

e1 is unreliable, i.e., these 2 events have no intersection. 

 Step 2:  Divide G1 further into two subgraphs G1,4 and 1,4G , where subgraph G1,4 consists 

of only nodes and arcs where both e1 and e4 are working reliably, while 1,4G  implies that e1 

is working reliably while e4 has failed.  These two subgraphs are shown on pp. 44-45..   
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    Figure 2.21 of E. A. Elsayed (2012)
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Therefore, the 1st term on the RHS of (33) can be further dissected as  

 R(Ge1) = p4R(Ge1, e4)  +  (1  p4 )R(Ge1, 4e ) = p4R(Ge1, e4) +  

                  q4R(Ge1, 4e )                                      (34a) 

I will 1st compute R(Ge1, e4), followed by R(Ge1, 4e ), and then substitute these into (34a) 

to obtain R(Ge1).  To compute R(Ge1, e4), consider the subgraph G1,4 below.    
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Figure 2.21. 
Graph 1G  
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Graph G1,4 
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R(G1,4) = R(Ge1, e4) = (p7 + p6p8  p7p6p8) + (p2 + p3  p2p3)p5p8   

               p7(p2 + p3  p2p3)p5p8  (p6p8  p7p6p8)(p2 + p3  p2p3)p5                 (35a)             

    

When and if all ei’s have the same reliability p, then equation (35a) reduces to  

                           R(Ge1, e4) = p(1 + p + p2  5p3 + 4p4  p5)                        (35b)

     

Next we compute R(Ge1, 4e ), which is a part of the 2nd term on the RHS of 

 (34a). Now concentrate on subgraph 1,4G  below. 

 

 

 

 

 

 

 

 

 

 

 

R( 1,4G ) = R(Ge1, 4e ) = (p2 + p3  p2p3)p5(p8 + p6p7  p6p7p8)                        (36a)  

When all ei’s have the same reliability p, then equation (36a) reduces to   

R(Ge1, 4e ) = p3(2 + p  3 p2 + p3)                         (36b)  

Substitution of equations (36b) and (35b) into (34a) yields 

  R(Ge1) = p2(1 + p + p2  5p3 + 4p4  p5) + (1  p)p3(2 + p  3p2 + p3)  

      = p2(1 + 3p   9p3 + 8 p4  2p5)                                                         (34b) 

Step 3:  Dissect subgraph 1G  further into 2 subgraphs 1,7G  and 1,7G ; the subgraph 1,7G  

implies that edge 1 has failed but arc 7 is reliable, while 1,7G  represents the subgraph 

where both arcs 1 and 7 have failed.  Again using the law of total Pr, the last term on the 
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Figure 2.20. 
Graph 1,4G  
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RHS of  Eq. (33) becomes   

R(G 1e ) = p7 R(G 1e , e7) + q7 R(G 1e , 7e ) = p7 R(G 1e , e7) + (1  p7)    

                   R(G 1e , 7e ).                               (37a)      

In order to compute R(G 1e , e7), concentrate on 1,7G  drawn below.  

R(G 1e , e7) = p2[p5(p8 + p6   p6p8) + p3p4  p3p4p5(p8 + p6   p6p8)]                     (38a)      

Note that when e8 fails the above subgraph can still be reliable through the path e2e5e6 

because e7 is 100% reliable.  In the case of p1 = p2 = ... = p8, equation (38a) reduces to 

 

    

 

 

 

 

 

 

 

 

                   

R(G 1e , e7) = p3(3  p  2 p2 + p3)                                                     (38b)       

 In order to compute the last term on the RHS of (37a), concentrate on the graph 1,7G . 

   R(G 1e , 7e ) = p2( p5p8 + p3p4p6p8  p3p4p5p6p8)                       (39a)  

For the case of all equal reliabilities, equation (39a) reduces to   

       R(G 1e , 7e ) = p3(1 + p2  p3)                                              (39b) 

Substituting equations (39b) and (38b) into (37a), and assuming that all pi’s are equal, 

results in  

R(G 1e ) = p4(3  p  2 p2 + p3) + (1  p)p3(1 + p2  p3) =  

     = p3(1 + 2p  4p3 + 2p4)                             (37b)    
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Finally, substituting (37b) and (34b) into equation (33) we obtain the following result, which 

is valid only for the case when all pi’s are equal to p. 

RSys = R(G) =  p[p2(1 + 3p   9p3 + 8p4  2p5)] + (1  p)p3  

                        (1 + 2p  4p3 + 2p4)= p3(2 + 4p  2p2  13p3 + 14p4  4p5)   

This last system RE is identical to the one given in equation (2.52) on page 130 of E. A. 

Elsayed (2012).  When all pi’s are all equal to p = 0.995, then RSys = R(G) = 0.99992450566. 

 

Three-State  Models  for  a  Series  System  

 As Ebeling describes in his section 5.6, p. 113, almost all electrical devices have 3 

states: (1) operating reliably, (2) failing open, or (3) failing short.  For example, when a diode 

fails open, then current flow in all direction becomes almost zero (i.e., impedance becomes 

almost infinite in all directions), while if the diode fails short, then resistance in all directions 

becomes almost zero. Other devices such as valves and switches can also fail in more then 

one way; a switch can fail open (so that current will not flow), or vice a versa can fail short 

so that it will be impossible to stop current flow.  Similarly, a resistor or transistor can fail 

open (i.e., will not let current through), or may fail short (i.e., resistance becomes almost 

zero in all directions).  Following Ebeling’s notation, to this end, let Ri = the ith unit is reliable, 

qoi = the Pr that the ith unit fails open , and qsi = the Pr that the ith unit fails short; therefore, Ri 

= 1  qoi  qsi.  Mechanical devices, such as valves and flaps, can also fail while they are in 

the open and shut states.  If a valve fails (to) open, then it is impossible to open in order to 

allow liquid to flow.  If it fails shut (or fails short), regardless of its initial state, then it is 

impossible to shut in order to stop liquid flow.  

 Now consider n = 3 units (such as switches) in series for closing a circuit (for current 

to flow), where each unit can be in 3 different states :  (1) functioning reliably, (2) failing 

open (o = state 2), and (3) failing short (s = state 3).  The system will be reliable iff all 3 units 

are reliable.  However, because the 3 units are in series, the system will fail open, if at least 

one of the 3 switches opens (unexpectedly) and totally stops current flow.  Therefore, the Pr 

that the system will fail open, denoted by Fo(Sys), is given by  Fo(Sys) = P[at least one unit 

fails open] = 1  P[no units fail open]       
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                                        Fo(Sys) = 1  
3

oi
i 1

(1 q )


                                            (40a)    

In general, a serial system fails iff at least one unit fails open, or all units fail short. 

Further the system becomes short-circuited, iff all 3 units fail short; thus, the Pr that the 

system fails short is given by 

                             Fs(Sys) = P[all 3 units fail short] = 
3

si
i 1

q

                          (40b)

  

Eqs. (40a&b) clearly show that system unreliability is given by SysR  = QSys =  

Fo(Sys) + Fs(Sys) because the two failure modes are mutually exclusive.  Therefore for a 3-

unit system, we obtain 

RSys = 1  Fo(Sys)  Fs(Sys) = 1  [1  
3

oi
i 1

(1 q )


 + 
3

si
i 1

q

 ]   

                          RSys = 
3

oi
i 1

(1 q )


   
3

si
i 1

q

                            (41a)       

Equation (41a) is identical to Ebeling’s (5.20) near the bottom of page 114 for the general 

case of n units in series.  The argument for the general case is identical to the above.  If all 

3 units are functionally identical (i.e., qoi = qo for all i, and qsi = qs), then equation (41a) 

reduces to 

                 RSys = (1  qo)3  3
sq                  (41b)       

As Ebeling mentions, unlike the case of a 2-state serial system where the addition of more 

units in series will diminish system RE, the addition of more units to a 3-state series will not 

necessarily decrease system RE.  Therefore, the objective now is to obtain the optimal 

number of units, no, that will maximize RSys = (1  qo)n  n
sq  for the case of n identical units.  

To accomplish this task, we need to set RSys/n equal to zero and solve the resulting 

equation for no.  
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SysR

n




 =  

n




[(1  qo)n  n
sq ] = 

n




(1  qo)n  
n




n
sq  = 

n




 an  
n




bn,       (42)     

where for convenience we have let 1  qo = a, and qs = b.  We need to be reminded of the 

fact that any real number x  0 can be written as x = eln(x)  because of the fact that the 

exponential and natural logarithm are inverse functions.  Invoking this information into 

equation (42) results in 

SysR

n




= 

n




 (eln(a))n  
n




(eln(b))n = 
n




(
nln(a)e )  

n




(
nln(b)e ) = 

nln(a)e (ln a)  

nln(b)e (ln b)  = an(ln a)  bn(ln b) = (1  qo)n [ln(1  qo)]  n
sq (ln qs)       

                                                            
Set equal to   0               (43)     

 Equation (43) shows that at the optimal n, denoted by no, we must have 

on
o(1 q ) [ln(1  qo)] = on

sq (ln qs)   ono

s

1 q
( )

q


 = s

o

lnq

ln(1 q )
     

                    no = s o

o s

ln[lnq / ln(1 q )]

ln[(1 q ) / q ]




                           (44)       

The optimal solution no in equation (44) is a decreasing function of qo for a fixed value of qs 

but is an increasing function of qs at a fixed value of qo. 

 

Three-State  Parallel  Systems  

 For illustrative purposes, consider a 4-switch pure parallel system where each switch 

has 3 states (1 = functioning reliably,  2 = fail open, and 3 = fail short).  Since the n = 4 units 

are in parallel, then the system will fail in the open mode only if all 4 units fail open.  Thus, 

using the notation of the previous section, Fo(Sys) = 
4

oi
i 1

q

 .  However, the system will fail 

short only if at least one unit fails short, i.e., Fs(Sys) = 1  
4

si
i 1

(1 q )


 .  Hence,  

RSys = 1  Fo(Sys)  Fs(Sys) = 1  [
4

oi
i 1

q

 + 1 

4

si
i 1

(1 q )


 ]   
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    RSys  =  
4

si
i 1

(1 q )


   
4

oi
i 1

q

                                (45)      

Equation (45) is identical to Ebeling’s (5.21 on page 115) for the general case n.  When all n 

units are identical (i.e., qsi = qs, and qoi = qo), equation (45) generalizes to RSys = (1  qs)n 

 n
oq .  The optimum number of units, no, in parallel redundancy is obtained by partially 

differentiating RSys = (1  qs)n  n
oq  with respect to n and setting the resulting derivative equal 

to zero.  You may verify that the solution is given by  

           no = o s

s o

ln[lnq / ln(1 q )]

ln[(1 q ) / q ]




. 

Unlike the series system, no is an increasing function of qo for a fixed qs but is a decreasing 

function of qs at a fixed value of qo.  

 

Three-State  Parallel-Series  Systems 

Consider an (n = 2, m = 3) Parallel-Series (high-level redundancy) System as depicted in 

Figure 3 on the next page. We assume that units of the same letter are identical, i.e., qoa1 = 

qoa2 = qoa, qsa1 = qsa2 = qsa; similarly for units B and C. Thus all 6 units can fail open or fail 

short. The A-series fails open if at least one A-unit fails open; similarly, for the B- and C-

series. However, for any of the 3 series to fail short, both units in the series must fail short.  

Further, in order to arrive at RSys, we simplify the notation by letting  qoa = qo1, qsa = qs1,  qob = 

qo2, qsb = qs2, qoc = qo3, and qsc = qs3.  In the following development, I will use the notation 

consistent with the previous 2 sections.  Then it follows that  Fo(A) = 1  (1qo1)2,  Fo(B) = 1  

(1qo2)2,  Fo(C) = 1  (1qo3)2   Fo(Sys) =  Fo(A)Fo(B)Fo(C).  Similarly, Fs(A) = (qs1)2,  

Fs(B) = (qs2)2,  and  Fs(C) = (qs3)2   Fs(Sys) = 1  [1 (qs1)2][1 (qs2)2][1 (qs3)2].  Hence, 

            RSys = 1  Fo(Sys)  Fs(Sys) = 
3

2
si

i 1

(1 q )


   
3

2
oi

i 1

[1 (1 q ) ]


                        (46) 

When qsi = qs and qoi = qo for all i, equation (46) reduces to 

                                      RSys = 2 3
s(1 q )   2 3

o[1 (1 q ) ]     

When there are n units in series in m-parallel redundancy, then Eq. (46) generalizes to         
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                             RSys  = 
m

n
si

i 1

(1 q )


   
m

n
oi

i 1

[1 (1 q ) ]


                      (47a) 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

When all units are identical in their failure modes, Eq. (47a) for system RE reduces to           

                        RSys  = n m
s(1 q )   n m

o[1 (1 q ) ]                   (47b) 

Which is identical to that of Elsayed’s (2.59) near the bottom of page 116.   

  

 Exercise 11.   Derive  the RE expression for a Three-State Series-Parallel  

system (low-level redundancy) for the case (m = 2 parallel units in n = 3 series) and then 

generalize to any n and m.   

 We will not discuss System structure function because Ebeling does not use it, as far 

as I know, much anywhere in his text except for pp. 108-110.  However, it is an interesting 

mathematical tool for system Reliability computations. 

 

A1 A2 

B1 B2 

C1 C2 

Figure 3 


