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INSY 7380    Reference:  Chapter 5  of  Ebeling                Maghsoodloo 

Dynamic  Models 

 Static models (chapter 5 Part 1) are applicable only if components' RE practically stay 

constant (i.e., do not change appreciably during mission time).  If components' RE do 

decrease as a function of time, then we must apply dynamic models (i.e., the hazard function 

is increasing during mission time and hence R(t) is a decreasing function of time as 

expected).  There are two types of such models: (1) Non-repairable, and (2) Repairable. 

 

 Exercise 12.   Consider a system whose RE stays almost constant during the fixed mission 

time t.  Determine the approximate value of its hazard function h(t).  Hint: Use the fact that f(t) = 

dR/dt. 

 

The  Series  (or Serial) Nonrepairable  Dynamic  Models 

 This is a system where all n components must function reliably during the mission 

interval (0, t) in order to complete the mission; further, the RE of the ith subsystem (i = 1, 2, ..., 

n), Ri(t), is a decreasing function of time.  The system RE is given by 

              RSys(t) = 
n

i
i 1

R (t)

           (48a) 

Clearly, RSys(t) < Min[Ri(t)], i = 1, 2, ..., n. 

 Next, let hi(t) be the hazard function (HZF) of the ith component and hSys(t)  

be the HZF of the system.  Then (from Chapter 2)  

                iR (t)= 

t

i
0

h (x)dx

e


    ,  and      RSys(t) = 

t

Sys
0

h (x)dx

e


.                             (48b)                

 Substituting these last 2 equations into (48a) results in   

RSys(t) = 

t

Sys
0

h (x)dx

e


 = 
n

i
i 1

R (t)

 = 

t

i
0

h (x)dxn

i 1

e





 =

t n

i
i 10

h (x)dx

e 
 

                       (48c) 

  Hence, 



 53

      hSys(t) = 
n

i
i 1

h (t)

       and   RSys(t) = 

tn

i
i 1 0

h (x)dx

e 
 

=  

n

i
i 1

H (t)

e 


                         (49)         

   From equation (48b), we can compute the MTTF = E(T) = Sys

0

R (t)dt


 = 

t

Sys
0

h (x)dx

0

e dt
 

 = 

t n

i
0 i 1

h (x)dx

0

e dt
 

 =

n t
i0

i 1
h (x)dx

0

e dt

   
 
 
 
                 

  Or:           MTTFSys  = 

n

i 1
H(t)

0

e dt

   
 
 
  
       (50a) 

               

 Example 8.   An electrical system has n = 3 circuit breakers in series for the purpose 

of closing the circuit (in order for the current to flow), as depicted below. 

   

Each breaker has the same constant failure rate  = 0.00005/hour. (a) Obtain the HZF and 

compute system RE for a mission of length t = 400 hours.  (b)  Compute the MTTF.  (c)  

Obtain the system failure density function.  Note that if the objective were to interrupt current, 

then we would need at least one unit to open reliably.  

hSys(t) =
3

i
i=1

h (t)   =  
3

i=1

0.00005  = 30.00005 = 0.00015/hour           

 H(t) = 0.00015t         RSys(t) = 
H(t)e  = 

0.00015te        

Note that this last RE function for the n = 3 series system can also be obtained from  RSys(t) = 

R1(t)R2(t)R3(t) = 
te te te = 

3 te 
 = 

0.00015te    RSys(400) = e0.06 = 0.9417645.    (b) 

 MTTF = Sys

0

R (t)dt


  = 
0.00015t

0

e dt


  = 
1

0.00015
 = 6666.6667 hours. 
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 (c)  fSys(t) = dRSys/dt = 0.00015
0.00015te    

0

0.00015t0.00015e dt


  = 1.00000  

 Exercise 13.   Suppose each component of a n-unit series system has a constant 

failure rate h(t) = i (i =1, 2, ..., n), i.e., each lifetime Ti  is independently and exponentially 

distributed.  (a) Prove that in general for such a series system 

              RSys(t) = 

n

i
i 1

( )t

e 
 

   ,   and     MTTFSys  = 1/(
n

i
i 1

 ).         (50b) 

(b)  Use the results of part (a) to show that the TTF of a series system, whose individual 

component lifetimes, Ti (i = 1, 2, ..., n), are independently and exponentially distributed with 

failure rates i, is also exponentially distributed with a failure rate  = 
n

i
i 1

 .  This proof also 

shows, a well-known result in stochastic processes, that the sum of n independent Poisson 

streams at rates 1, 2, ..., n is also Poisson at the arrival rate  =
n

i
i 1

 .  Moreover, if all 

failure rates i (i = 1, 2, ..., n) are equal to , then  MTTFSys  = 1/(n).  

 

      Example 3.1 on Page 172 of A. E. Elsayed (2012).   A series system consists of n = 

5 components, three of which have constant failure rates  1 = 5106,  2 = 3106  and 3 = 

9106.  The remaining components c4 and c5 have Weibull lifetime distributions with 

minimum lives 4 = 5 = 0, characteristic lives 4 = 1.5104, 5 = 2.5104, and slopes (or 

shapes) 4 = 2.2, 5 = 2.1.  Compute system RE at t = 1000 hours.  In order to use Eq. (49), 

we must first obtain the HZFs of c4 and c5 using the result of Exercise 5(c) in Chapter 2, 

which showed that for a zero minimum life Weibull the HZF is h(t) = 1(t / )





,  t  0.  

Hence, h4(t) = 
4 1.2

4

2.2
(t / 1.5 10 )

1.5 10



= 1.4289661109 (t1.2),  h5(t) = 

4 1.1
4

2.1
(t / 2.5 10 )

2.5 10



 = 1.2205211 109 (t1.1)   hSys(t) = 

n

i

i 1

h (t)


 = 17106  + + 
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1.4289661109 (t1.2) +1.2205211 109 (t1.1)   H(t) = 

t
6 9 1.2 9 1.1

0

17 10 + 1.4289661 10 (x ) + 1.2205221 10 (x ) dx[ ]       

            RSys(t)  = 
6 10 2.2 10 2.117 10 t 6.49530023 10 t 5.812005 10 t[ ]e

       
.                  (51)      

                         

To evaluate the RE at 1000 hours, simply put t = 1000 hours in equation (51).  This yields 

RSys(1000 hours) = e 0.020745473  = 0.9794682339, which is consistent with Elsayed’s answer of 

0.9795 on his p. 172. 

 
The  RE  Function  for a Nonrepairable  Series  System with a Weibull  TTF 

 Consider an n-unit series system each unit of which has the HZF  hi(t) = i 1i
i

i

(t / ) 



, 

 i = 1, 2, ..., n.  Eq. (49) yields hSys(t) = i
n

1
i i i

i 1

( t) 


   where i = 1/i.  From equation (48c), 

we obtain  RSys(t) = 

n

i 1
H(t)

e 


= 

tn
1i( / )(x / ) dxi i i

i 1 0e

    

 

= 

                                                                  = 

n
i(t / )i

i 1e

 



= 

( )i
n

i

i 1
t

e
  




                  (50c)

                                                                          

If the n units have identical Weibull distributions, then (50c) reduces to RSys(t) = 
n(t / )e

 
= 

n( t)e
 

.   The MTTF of a serial dynamic system with n different Weibull components is not 

easy to obtain because this author could not find a closed-form antiderivative for the RSys(t) in 

(50c) when i’s are different.  I surmise that such an antiderivative may not exist in closed-

form and numerical integration has to be applied once the system parameters n, i , and i (i 

= 1, 2, ..., n) are specified.  However, when the n units have the same Weibull slope  = i for 

all i, then from Eq. (50c) MTTFSys = E(T) = Sys0
R (t) dt


  =  

n
t (1 / )i

i 1
0

e  dt

  
 


  = 
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t
0

e  dt
    = t

0
e dt

  , where  = 
n

i
i 1

(1/ )


  = 

n

i
i 1

( )


 .  If we make the 

transformation x = t in the integral t
0

e dt
  , then after 8 long and tedious steps we will 

obtain 

     MTTFSys = 
1/   

1
(1 ) 


= 

1/n

i
i 1

 




 
 

  
 1

(1 ) 


                (50d)

    

The MTTF of a series system has to be a decreasing function of n, which is exhibited by Eq. 

(50d).  Moreover, if all characteristic lives, i, are identical to , i.e., iid Weibull lifetimes, then 

(50d) further reduces to 

              MTTFSys = 1/n     
1

(1 ) 


 =  
1/

(1 1/ )

n 
  

                (50e)

                 

Eq. (50e) shows that the MTTF is a decreasing function of n while it is an increasing function 

of both  and .   

 

 The Example 3.6 on Page 180 of A. E. Elsayed(2012).   For this example, n = 6 

components,  = 1.75, and the vector  = 105[ 7    8.2    4.6    6.5     6.8     5.0]T.   Matlab 

computations using equation (50d) yields MTTF = 192262.7302989619 hours.     

 

Pure  Parallel  Nonrepairable  Dynamic  Models (Hot Spares) 

 In a pure parallel n-unit redundant system, at least one subsystem must function 

reliably in order for the system to complete the specified mission of length t.  Furthermore, it 

is tacitly assumed that component failures are completely independent.  Therefore, the 

system fails during the interval (0, t) only if all n subsystems (or components) fail, i.e., 

RSys(t) = 1  QSys(t) = 1  FSys(t) = 1  
n

i
i 1

Q (t)

  =1  

n

i
i 1

[1 R (t)]


                          (52a) 

where Qi(t) is the failure (cumulative) Pr of the ith component ci (i = 1, 2, ..., n).  If all n 

parallel units have independent and exponential lifetimes with failure rates i, then Ri(t) 
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= ite and as a result equation (52a) reduces to 

   RSys(t)  =1  
n

i
i 1

[1 R (t)]


  = 1  i
n

t

i 1

[1 e ]


                          (52b)        

Further, if all n components also have identical failure rates  = i for all i, then (52b) reduces 

to 

RSys(t)  = 1  
n

t

i 1

[1 e ]


  = 1  

t n(1 e )  = 1  
n

t k n k
n k

k 0

C ( e ) (1) 


                           

            = 
n

t k
n k

k 1

C ( e ) 


 = 

n
k 1 k t

n k
k 1

C ( 1) (e )  


       (52c) 

                      

 Example 9.   Consider the 3 circuit breakers of Example 8 that were in series for the 

purpose of closing the circuit, but now the objective is to stop the current from flowing.  Then 

the system has n = 3 hot spares where at least one breaker must open circuit W/O failure to 

stop the current flow at time t = 400 hours, where each unit has the same failure rate i = 

0.00005/hour = .  The use of equation (52c) with n = 3 yields RSys(t) = 3 (+1)
te  + 3 (1) 

2 te 
 + (1)(1)

3 te 
= 3

te   3
2 te 

 + 
3 te 

.   Note that this last expression is the same 

as 
3 te 

+ 3C2 
2 te 

(1  te ) + 3C1
te (1  te )2 .  Therefore, system RE at 400 hours is 

given by RSys(400) = 3e0.02  3e0.04 + e0.06 = 0.99999223604754.   

 The HZF for a pure parallel system is obtained by using the fact that hSys(t) = 

fSys(t)/RSys(t), where RSys(t) is given in equation (52a).  First, we need to obtain the system 

failure density function by fSys(t) = dRSys(t)/dt.  Therefore,  

   hSys(t) = 

n

i
i 1
n

i
i 1

d
[1 R (t)]

dt

1 [1 R (t)]







 




                      (53a) 

If the pure parallel system consists of n identical, independent, and exponential lifetimes each 

at the failure rate , then equation (53a) reduces to 
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            hSys(t) = 

1

1

1

1

( 1) ( )

( 1) ( )

n
k k t

n k
k
n

k k t
n k

k

C k e

C e





  



 










              (53b)          

Equation (53b) clearly shows that the HZF of a pure n-unit parallel system is a decreasing 

function of time (i.e., the failure rate is not a constant), and hence the system TTF is not 

exponentially distributed (i.e., this is not a Poisson process). 

 For the Example 9 above, the hazard rate for the parallel system at t = 400 is equal to  

hSys(400) = 

3
1 0.02

1

0.00005 ( 1) ( )

0.99999223604754

k k
n k

k

C k e 




 = 5.764973554342638108 , while h(1000) = 

3.394241026928207107 > h(400). 

 The MTTF of a pure parallel system is obtained by integrating the RSys(t) from 0 to .   

Thus,   E(T) = MTTFSys = 
10

1 [1 ( )]
n

i
i

R t dt




 
  

 
                                                 (54a) 

In the special case of identical exponential lifetimes at the rate  equation (54a) reduces to    

E(T) = MTTFSys = 1

10

( 1) ( )
n

k k t
n k

k

C e dt


 


  = 

n
k 1 k t

n k
k 1 0

[ C ( 1) e dt ]


  


        

        =
n

k 1
n k

k 1

[ C ( 1) / k ]


  =

n
k 1

n k
k 1

1
[ C ( 1) / k ]




                                      (54b)       

                   

Eq. (54b) shows that the MTTF of the pure parallel system of Example 9 is given by E(T) = 

3/  3/(2) + 1/(3) = 36666.66666666667 hours.  Moreover, (54b) clearly shows that E(T) is 

an increasing function of n but a decreasing function of lambda.  If we increase   from 

0.00005 to 0.00007 in Example 9, then E(T) reduces to 26190.47619047619, while if we 

increase n from 3 to 5 at the same  = 0.00005, then E(T) increases to 45666.66666666667 

hours.  Finally, equation (54b) can be used to determine the number of units in pure parallel 

redundancy needed to achieve a desired MTTF = E(T).  If we wish to increase the MTTF of 

the Example 9 from 36666.66666666667 to 70000.0000 hours, then an n of at least 19 units 
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are needed in pure parallel redundancy.  

 Exercise 14.   Consider a pure parallel system of n = 4 units where each unit has the 

same constant hazard function  = 0.00005.  Obtain the expression for the RE function and 

compute the value of R(500 hours).  (b) Use R(t) from your part (a) to compute the MTTFSys.  

 (c) Compute the value of the HZF at t = 500 hours. 

 

Pure  Parallel  Nonrepairable  Dynamic  Models  with  Weibull  TTF 

 Since the RE function for a Weibull TTF is given by R(t) = 

t
( )

e



 and in case  = 0, 

then the RE function for the ith unit with zero minimum life is Ri(t) = 
ii(t / )e

 
= 

ii( t)e
 

, 

where i is the characteristic life tc of  component ci  and i is the Weibull slope of ci (i = 1, 2, 

..., n).  Substituting for Ri(t) in equation (52b) results in 

        RSys(t) = 1  
ii

n
( t)

i 1

1 e[ ]
 


                                                (55a) 

When all n units have identical tc’s and slopes, then equation (55a) reduces to 

RSys(t)  = 1  
n

(t / )1 e
    

 = 1  
k n

n k (t / ) k
n k

k 0

C (1) ( e )


  


 =  

  = 
k n

k 1 k( t)
n k

k 1

C ( 1) e



  



                                      (55b) 

I could not find a closed-form antiderivative for the system RE function in equation (55a) in 

order to obtain an expression for MTTFSys = E(T) for the general n, different i’s and i’s.  So, 

it seems that the following integral in (56a) has to be evaluated for specified values of n, i’s 

and i’s. 

                            MTTFSys = E(T) = 
ii

n
(t / )

0
i 1

1 1 e dt[ ]
  



    
  

               (56a) 

However, if we take the special case of i =  and i =  for all i (i.e., identical and ind. Weibull 

TTFs), then after 20 tedious steps equation (56a) reduces to  

                         MTTFSys =  
1

(1 ) 


k 1k n
n k

1/
k 1

( 1) C
[ ]

k






      
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                                  =  
1

(1 ) 


k n
k 1 1/

n k
k 1

( 1) C (1/ k)


 



                (56b)  

 Example 3.7 on pages 181 of Elsayed(2012).   For this example, n = 4, and h(t) = 

3.5106t  for all four components.  Then the RE function of each ci (i =1, 2, 3, 4) is given by 

Ri(t) = 

t
xdx

0e
 

 = 
2t / 2e =  

2t

2
( )

e



, where for convenience I have let 3.5106 = .  

Clearly this is the RE function for a Weibull with  = 0, (1/ ) = 
2


, and the slope  = 2.  

Hence, the value of the tc =  = 
2


 = 

6

2

3.5 10
 = 755.9289460184544 hours.  

Substituting n = 4,  =  755.9289460184544 hours, and  = 2 into equation (56b) yields MTTF 

= 1049.611304905619 hours.  This answer does not match that of Elsayed’s (970.184 hours) 

on his page 181? 

 Example 3.8 on Pages 182 of Elsayed (2012).   For this example n = 3, h1(t) = 1t1.5, 

h2(t) =2t1.5 and h3(t) = 3t1.5, where 1 = 0.25106, 2 = 0.20106 , and 3 = 

0.24390244106.  Therefore, the three RE functions are R1(t) = 
2.5

1( / 2.5)te 
,  R2(t) = 

2.5
2( / 2.5)te 

,  and  R3(t) = 
2.5

3( / 2.5)te 
,  and 1 = 630.9573444802,  2 = 689.864830731, 

and 3 = 637.22021701 hours.   From (55a) RSys(t)  = 1  Q1(t)Q2(t)Q3(t); thus,  

         RSys(t)  =1  (1  
2.5

1(t/ )e  )(1 
2.5

2(t/ )e   (1 
2.5

3(t/ )e  )                              (57a) 

Note that the all 3 units in (57a) have Weibull TTFs with i =  = 2.5, and tc values given 

above  MTTF1 = 559.8256221451 hours, MTTF2 = 612.0921032752 and MTTF3 = 

5.6538244233402hours.  In order to evaluate the system MTTF by integrating the RE 

function in (57a), we must first expand the last term on the RHS so that the integration can be 

carried out.  This leads to 

RSys(t) = R1(t) + R2(t) + R3(t) R1(t)R2(t)  R1(t)R3(t)  R2(t)R3(t) + 

               R1(t)R2(t)R3(t)                                  (57b) 

Equation (57b) has 7 terms, each of which is a Weibull RE function, that have to be 

integrated from 0 to  one-by-one in order to compute the MTTF.  I will illustrate the 
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integration for R1(t) = 
2.5

1( / 2.5)te 
and you may verify the other 6 in (57b). 

In the integral 
2.5

1( / 2.5)t

0
e dt

   , make the change of variable, x = (1/2.5)t2.5    dx = 

(1)t1.5dt .  Making the substitutions dt = 
1.5

1

dx

t
 , t = 1/ 2.5

1

2.5x
( )


=  
0.40

1

2.5x
( )


  and 

t1.5 = 
0.60

1

2.5x
( )


 into the last integral, we obtain x
0.600

1 1

dx
e

(2.5x / )

 

   = 

1

1


x 0.60

10
e (2.5x / ) dx

   = 
1

1


x 0.60 0.60

10
e ( / 2.5) (x )dx

   = 
0.40 0.60

1

1

(2.5)
 

x 0.40 1

0
e (x )dx

    = 
0.40 0.60

1

(0.40)

( ) (2.5)




 = 
0.40 0.40

1

0.40 (0.40)

( ) (2.5)



= 

0.40
1

(1 0.40)

(0.40 )

 


=   559.8256221451 

hours.  Similar calculations yield MTTFSys = 795.60317214 hours, which matches Elsayed’s 

answer of 795.62 hours. 

 

The  k-Out-Of-n  Non-reparable  Parallel  Systems (k < n) 

 As in the previous two cases, it is assumed that all n units fail independently of each 

other, but the system is reliable iff at least 1 < k < n units operate successfully during the 

mission interval (0, t).  The RE expression when the n units are not identical is not simple, 

and each case has to be obtained for the specific process parameters n, k, Ri(t) where at 

least two Ri(t)’s are different.  As A. E. Elsayed points out on pages 157-158, for most such 

systems the n independent units have identical HZF hi(t) 

= h(t) for all i = 1, 2, ..., n,  and thus Ri(t) = 

t

0

h(x)dx

e


 =
H(t)e  for all i.  In case all n units also 

possess exponential lifetimes, then Ri(t) = 
te , where each unit has the same constant 

failure rate .  In this latter exponential case, the RE expression is given by 

RSys(t) = R(k; n, 
te ) = 

n
t r t n r

n r
r k

C (e ) (1 e )   



 =
n

r t t n r
n r

r k

C e (1 e )   



  

                                                                                     (58a) 

The failure density function for a k-out-of-n Parallel System, with identical exponential 
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lifetimes, is obtained from fSys(t) = dRSys/dt, where RSys(t) is given in (58a). 

                 fSys(t) =  
n

r t t n r 1 t
n r

r k

C e (1 e ) (r ne )    



                        (58b)     

The corresponding HZF is given by hSys(t) = fSys(t)/RSys(t), where fSys(t) is given in (58b) and  

RSys(t) is computed from (58a). 

 

 Examples 3.4&3.5 on Page 177 of Elsayed (2012).   For this example n = 3, k = 2, i 

=  = 0.00003 and t = 1000 hours.  Substitution into Equation (58a) yields RSys(1000) = 

0.99743123021029, which is identical to Elsayed’s answer to 4 decimals.  The value of 

hazard rate by Matlab computations is fSys(1000)/RSys(1000) = 5.022905383950688106.  

For Elsayed’s Example 3.5, let us change system parameter requirements to a more real-life 

situation.  Keeping lambda at 0.00004/hour, we wish to determine the number of parallel 

units, n, for a 2-out-of-n system such that RSys(2000)  0.99950.  Using equation (58a), 

Matlab computations yields R(2;4, e0.08) = 0.99828695648591, while R(2;5, e0.08) = 

0.99983604029385; thus, n = 5 identical units are needed to guarantee a RE of at least 

0.9995 for a mission of duration 2000 hours.  

 To obtain the MTTF for a k-out-of-n system with n identical exponential lifetimes, we 

must integrate the RSys(t) in equation (58a) from 0 to . 

 MTTFSys = 
n

r t t n r
n r

r k0

C (e )(1 e ) dt


   



  =
n

r t t n r
n r 0

r k

C e (1 e ) dt
   



                 (59a)     

                               

 The integral in equation (59a) inside the brackets is tedious to compute for general n, but I 

made two transformations in (59a) in order to obtain the integration result; the change of 

variables are x = t  followed by n  r = j.  After 32 careful steps, equation (59a) integrates to 

         MTTFSys  =  
1



jn k
r

n n j j r
j 0 r 0

C C ( 1) / (n r j)[ ]



 

 
   

  
                  (59b)       

     Example 3.9 on Page 183 of Elsayed(2012).   

 For this example, n = 4, k = 2, and  = 8.5108 failures/hour.  Inserting these values 

into (59b), Matlab computations yield MTTFSys(2;4, 8.5108 ) =  127450.9804 hours, which is 

consistent to Elsayed’s answer to 5 significant figures. 
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The  RE  function  for  a  k-Out-Of-n  Nonrepairable  Weibull  System   

 As before, we assume that the failures of the n units are independent and all units 

possess a minimum life  = 0, tc =  = 1/, and the same slope .  Then each RE function 

Ri(t) = 
(t / )e

 
= 

( t)e
 

for all i.  Then equation (58a) becomes  

RSys(t) = R(k; n,
( t)e

 
) = 

n
( t) r ( t) n r

n r
r k

C [e ] [1 e ]{ }
     



 = 

       = 
n

r( t) ( t) n r
n r

r k

C e [1 e ]
     



 ,                                      (60) 

where only for simplicity we have let 1/ =  in equation (60).  The MTTF is obtained from 

MTTFSys = 
n

r( t) ( t) n r
n r0

r k

C e [1 e ] dt
      



  =
r n

r( t) ( t) n r
n r 0

r k

C e [1 e ] dt
       



           

                                     (61a) 

This last integral inside brackets is not easy to carry out for general n and k.  It took me 5 

pages of tedious calculations to carry out the integral in (61a).  I first made the transformation 

(t) = x.  Then I used the fact that  (1  ex)nr = 
n r

x j
n r j

j 0

C ( e )






  and made a 2nd 

transformation u = (r + j)x to obtain the following result:    

                MTTFSys = 
jr n n r

n r j
n r 1/

r k j 0

( 1) C(1 1/ )
C

(r j)

 



 

   
 

   
                                 (61b)   

  

 Example 3.10 on page 184 of Elsayed(2012).    From the problem statement n = 4, k 

= 2, and h(t) = 2.7104t.  The RE function for each unit is Ri(t) = 

t 4
0

2.7 10 xdx
e

 
 = 

4 21.35 10 te
 

for all i = 1, 2, 3, 4, or R(t) = 
2 2( 1.35 10 t)e

 
.   Therefore, the TTF of each unit 

has a W(0, 100/ 1.35  , 2) distribution so that  = 1.35  /100.  Inserting n = 4, k = 2,  = 

1.35  /100, and  = 2 into my equation (61b), Matlab computations result in MTTF = 
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85.71996308005328 hours.  This answer is smaller that of Elsayed’s by a factor of 1000.  

The system RE given by A. E. Elsayed is RSys(t) = 6
2k te   8

21.5k te  +  3
22k te  and 

MTTFSys = 
2 2 2k t 1.5k t 2k t

0
(6e 8e 3e )dt

     =   (6 / 4k   8/ 6k  + 3/ 8k )  are 

indeed correct but there seems some glitch in the final answer.  I also used Matlab to 

compute the expression in the middle of page 184 of Elsayed (2012), and it also yielded the 

value of MTTFSys =   (6 / 4k   8/ 6k  + 3/ 8k ) = 85.71996308005338, which is 

identical to the value from equation (61b). 

 I surmise that by now you have gotten the message about how to compute the MTTF 

of a time-dependent non-repairable system.  The 1st  key step is to obtain the RE function, 

RSys(t), and then integrate the system RE function always from zero to , no matter what the 

value of minimum life t0 =   0 is. 

 Exercise 15.   Consider a nonrepairable parallel redundant system of n = 4 

components each with a constant failure rate of  = 0.00005/hour.  The system is reliable 

only if at least 2 units function W/O failure during the mission time of t = 400 hours.  Obtain 

the general form of the reliability function RSys(t) and then compute RSys(t) at t = 400.  (b) 

Compute the hazard function rate at t = 400 hours, and the MTTF.  (a) 0.9999694054.  (b)  

2.260379378172426107,  MTTF = 21666.666666667. 

 

Repairable  Systems 

 So far we have dealt with system RE W/O repair and maintenance, and therefore, 

system availability at time t, A(t), was simply the same as system RE at time t, R(t).  

Examples of nonrepairable components are light bulbs, resistors, computer chips and 

batteries, while complex systems such as airplanes, cars and air conditioning systems have 

many repairable components.  If a system is repairable, then there are two important 

performance criteria: MTBF (Mean Time Between Failures), and steady-state (or long-term) 

availability.  Unfortunately, a detailed discussion of repairable systems will have to wait until 

Chapter 9 of Ebeling because such systems (where Time to Repair, TTR, is generally much 

smaller than TTF and as a result MTTR << MTBF) require a thorough knowledge of Markov 

Chains and Renewal theory, which I will cover once we arrive at Chapter 6.  By renewal we 
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mean that a system fails but upon failure the failed component is either replaced with a brand 

new unit or is repaired to its original condition.  This is called a renewal process.  A renewal 

process is the generalization of a Poisson process where the interarrival (or intervening) 

times between two successive events (failures) can have any pdf instead of just the 

exponential.  Thus, a Poisson process is the simplest renewal process because its renewal 

density function is a constant  , and as a result the renewal function E[Nf(t)] = Expected-

value of number of Poisson events = t. 

  If a failed component is immediately replaced with a new one (i.e., if its Mean-Time-to-

Repair, MTTR, is negligible compared to MTBF), then the long-term availability of the system 

is almost 100%, and its point availability at time t, A(t), is equal to RSys(t).  Otherwise, if the 

TTR has a specified distribution, such as exponential with repair rate r (or r) then the steady-

state (i.e., as t   ) inherent availability will be shown to equal the expression given below. 

       AI = 
MTBF

MTBF MTTR
                   (62a) 

If the system failure rate is also a constant  , then (62a) reduces to 

               AI = 
r

1/

1/ 1/


 

 = r

r


 

.                  (62b)       

              Example 3.13 of Elsayed(2012) on his pages 189-190.   The TTF is Weibull with  

= 0, tc = 5106 hours  and slope  = 2.15, and the repair time is exponential at the rate r = 

104 per hour.  Therefore, the failure density function is given by f(t) = 
6

2.15

5 10
( 1.15t

)


× 

2.15(t / )e 
,  where  = 5106 hours, and the TTR has the pdf  g(t) = r

rte , where r = 104. 

 Using equation (7) of chapter 2, the MTBF =  (1 + 
1


) = 5106(1 + 

1

2.15
) = 

4.428041951947659106 , and MTTR = 1/104 = 10,000 hours.  Substituting these mean 

times into equation (62a) gives AI = 0.99774675406220. 

 Before we discuss standby redundant systems, we must alert you to the fact that in RE 

engineering the repair time may consist of several phases: (1) Detection and Diagnosis, (2) 

Delay in obtaining parts, (3) The actual active repair itself, (4) Testing time at the repair 

facility before returning the item to service.  Therefore, the repair rate r may be an ensemble 
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of the all the aforementioned phases which are also referred to as administrative and logistic 

times.  

 

Standby  Redundant  Systems (Cold  or  Inactive Spares) 

 For example, a dc power supply generator, a sensing switch and 3 batteries (in 

standby) would form a 4-unit standby system.  The three batteries are called cold (or inactive) 

spares, and it is generally assumed that their idle (or quiescent, de-energized, or off-line) 

failure rates are almost zero.   Figure 4 depicts the 4-unit standby system.  Only unit 1 is on-

line (or energized) at time 0, while units 2, 3 and 4 are in idle standby (i.e., cold spares).  

First, we consider the case of perfect switching where Rsw = 1.  We first consider the simpler 

case of four identical units, where each unit for our standby system has i = = 0.001/hour 

and we wish to compute RSys(t), specifically RSys(t) at t = 500 hours, as depicted                      

           



Switch









Switch






 

             

       Figure 4.   A 4-unit Standby System with identical failure rates                           

in Figure 4.  Clearly the system lifetime, TSys = T4, is given by 

 

                          TSys = T4 = TTF1 + TTF2 + TTF3 + TTF4                   (63)   
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where TTFi = the time to failure of unit i (i =1, 2, 3, 4).  In equation (63) the notation T4 means 

 the Sum of 4 independent rvs.  Note that for a 4-unit pure parallel system equation (63) does 

not hold because in a parallel system all 4 units are simultaneously energized at time zero; 

further, for a standby system equation (63) is a good approximation only because we are 

assuming that the quiescent failure rate d (d for de-energized) of a standby unit is far much 

smaller than its energized failure rate.  For the three batteries in standby, for example, the 

value of off-line failure rate, d, could be as small as 107 per hour.  Note that Ebeling on pp. 

130-132 performs a Markov-analysis of a 2-unit Standby system, where d is not small 

enough to be ignored.  Since each TTFi has an exponential density given by fi(t) = 

0.001
0.001te , then the Pr density of T4 is the 4-fold convolution of  0.001

0.001te  with 

itself, i.e., the pdf of T4 is given by 
4Tg (t) =  f1(t)*f2(t)*f3(t)*f4(t), where * denotes convolution.  I 

showed in chapter 2 that this 4-fold convolution is simply a gamma pdf with parameters n = 4 

and  = 0.001, i.e., the pdf of system lifetime TSys = T4 is given by 

                        
4Tg (t)   = 

3!


(t)3 te   ,           0  t <  

Thus, RSys (500 hours ) = P(TSys > 500) = 3 t
500

( t) e dt
6

 
 .  Making the transformation x = 

t  in this last integral yields RSys (500) = 
3

x

0.50

x
e dx

6


 .  After three integrations by part, we 

obtain  RSys(500) = 
3

x

0.50

x
e dx

6


  = (0.503/6)e0.5  + 0.125 e0.5  + 0.5e0.5  + e0.5  = 

0.9982484.  Note that this result could also have been obtained by noting that R(500) =  P(T4 

> 500 hours) = P[X(500 hours)  3 failures] = 
k3

t

k 0

( t)
e

k!




 =  
k3

0.50

k 0

(0.50)
e

k!



  =  

0.9982484, where we have made use of the relationship between the Gamma density and 

the Poisson pmf, and the rv X(500) represents the number of failures occurring in 500 hours. 

 Further, in this example, if the sensor switch had a constant RE of 0.999 during the interval 

[0, 500 hours], then system RE would reduce to RSys (500) = 0.99824840.999 = 

0.99725013.           
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   Exercise 16.   Repeat the above example for n = 3 and RSW = 0.999.  ANS: RSys (500) 

= 0.999P(T3 > 500 hours) = 0.984627.   

 

 Now consider an example of a 3-unit standby system where 1 = 0.0005, 2 = 0.001 

and 3 = 0.001 so that i's are not equal.  Then TTFSys = TTF1 + TTF2 + TTF3  in equation (63) 

has no longer a gamma pdf with n = 3 and constant FR, and we have to resort to either to the 

following procedure, or to a Markov-analysis in Chapter 6, in order to compute the system RE 

for a given t.  However, the MTTFSys = E(TTF1 + TTF2 + TTF3 ) = E(TTF1 )+ E(TTF2 )+ E(TTF3 

) = 
1 2 3

1 1 1
 

  
 = 4000 hours.  Letting Sys represent the system’s effective failure rate, 

then Sys = 1/4000 = 0.00025 per hour.  Note that this does not mean that the system failure 

intensity (or rate) is a constant!  This is due to the fact that hSys(t) = fSys(t)/RS(t). 

 Mode 1.   Unit 1 is put on-line at t = 0 and is reliable for the duration of mission time t = 

500 hours, or during the interval [0, 500 hours].  Then 

                     (1)
SysR (500) = 1te = e0.25 = 0.778801. 

 Mode 2.    Unit 1 fails at time t1 < 500, the switch (assumed to have Rsw = 1) works at 

t1, and unit 2 is reliable for the duration of 500  t1.  Hence 

    (2)
SysR (500) =  1 1

1

500
t

1 1 2 1
t 0

e dt R (500 t )



  =  e0.50 1 1

1

500
t

1
t 0

0.0005e dt


 =  

    e0.50 1
5000.0005t

0
e 
                (2)

SysR (500) = 0.172270. 

Note that f1(t1)dt1 = 1
1 1te dt1 gives the mortality Pr element for unit 1 during the interval (t1, 

t1 + dt1). 

  Mode 3.    Unit 1 fails at t1, unit 2 fails at t2 (0 < t1 < t2 < 500), and unit 3 is reliable from 

t2 to 500 hours.  Note that all times are measured from 0, as depicted in Figure 5. 

    

                          T         Figure 5. 

 

Recall that 1 = 0.0005, 2 = 3 = 0.001.  Then   

0 t1 t2 500 hours 

t2 
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(3)
SysR (500) =

2

1
2

500
t

1 1 1 2 2 1 2 3 2t 0
t 0

f (t )dt f (t t )dt R (500 t )




    

                 =
2 1

1
2

500
t 0.0005t0.50

1 2 1 2t 0
t 0

e e dt dt




    

In this last integral integration wrt t1 must be carried out first followed by t2.  Carrying out the 

double integral results in (3)
SysR (500) =  0.041274921.  Since the above three modes are 

mutually exclusive, then RSys (500) = (1)
SysR (500) + (2)

SysR (500)  + (3)
SysR (500) =  0.992346.  This 

system RE is a bit larger than a 3-unit standby RE of 0.985612 = 
k2

0.50

k 0

(0.50)
e

k!



 , where all 

3 failure rates are equal to  = 0.001; this is due to fact that for this case 1 = 0.0005 is equal 

to half of 0.001.  Note that if the quiescent failure rates of the 2 standby units were not close 

to zero, such as both D = 0.000002 per hour or less, then  Mode 2 RE changes as follows: 

(2)
SysR (500) = 1 1 D 1

1

500
t t

1 1 2 1
t 0

e dt e R (500 t ) 



  +  1 1 D 1 D 1

1

500
t t t

1 1 3 1
t 0

e dt (1 e )e R (500 t )  



   , 

and mode 3 changes to (3)
SysR (500) =

2 D 2

1
2

500
t t

1 1 1 2 2 1 2 3 2t 0
t 0

f (t )dt f (t t )dt e R (500 t )




   .  At 

the present, I am not certain about the validity of these last 3 equations. 

 

 Exercise 17.   (a) Verify the answer RSys(500) = 0.985612 for the 3-unit standby where 

each i = 0.001 using the 3 possible modes of success.  (b) For mode 3 reliability above, 

(3)
SysR (500) = 0.04127492, exchange the order of integration and recompute

(3)
SysR (500),  

where integration wrt t2 is carried out first followed by t1. 

 

Imperfect  Switching 

 When it is possible for the switch to fail during the mission of length t, which is more 

realistic, it is generally assumed that it has a constant failure rate sw  so that its RE function 

is equal to swte .   For example, consider the 3-unit standby in the last example but assume 
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Rsw < 1 and sw = 0.00001/hour.  Further, 1 = 0.0005, 2 = 3 = 0.001.  How does the 

imperfect switching affect the values of  system REs for modes 2 and 3? 

  (2)
SysR (500) = 1 1

1

500
t

1 1 sw 1 2 1
t 0

e dt R (t )R (500 t )



  = 

  = 0.0005 e-0.50 1

500
0.00049t

1
0

e dt = 0.1718223 

 which is a bit smaller than (2)
SysR (500) = 0.172270 for the case of perfect switching as 

expected!              

      Exercise 18.   Compute 
(3)
SysR (500) for mode 3 when the switch is imperfect with 

Rsw(t) = swte  = 
0.00001te  (ANS < 0.041275).  Then compute the overall system RE at t = 

500 hours.  ANS: RSys(500) = 0.9917592063. 

 

Mixed  Parallel  and  Standby  Systems (Hot and Cold Spares) 

 As an example, consider the following system where units A and B are in pure parallel 

redundancy (i.e., both energized at t = 0) and unit C is in cold standby (i.e., idle at t = 0).  For 

convenience, let   = A = B = C = 0.0001.   Mission time  t = 1000 hours. We 1st assume 

that at least one reliable unit is needed for mission success. 

 

        Mode 1.   At least one of the 2 units, A or B, is reliable for 1000 hours. 

(1)
SysR (1000) = RA + RB  RARB = e0.10 +  e0.10  e0.20 = 0.99094408299394.                

Parameter values are  A = B = C = 0.0001/hr, and sw = 0.00005/hr.   
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       Mode 2.    Unit A fails at t1 < 1000, B is reliable by t1 but fails at t2 (or vice versa),  

switch is reliable at t2 and C is reliable from t2 to 1000 hours.       

(2)
SysR (1000) = 2 

1000
t

A 1 1 B 1 B 2 1 2 sw 2 C 2t 0
t 0

2

1
2

f (t )dt R (t )f (t t )dt R (t )R (1000 t )




   =  

Note that RB(t1)fB(t2  t1)dt2 = fB(t2)dt2 =  t2e dt2.  Hence, the above double integral reduces 

to     
(2)
SysR (1000) = 2 

1000
t tt t (1000 t )

1 2t 0
t 0

2 sw 21 2 2

1
2

e dt e dt e e   




    =  

                           

2e0.10 
1000

t t 0.00005t2
1 2t 0

t 0

2 1 2

1
2

[ e e dt ]dt 




  = 2e0.10 (46.7980195) = 0.008468919824. Thus, 

RSys(1000) = (1)
SysR (1000) + (2)

SysR (1000) = 0.99094408299394 + 0.008468919824   

RSys(1000) = 0.9994130028.    

      Secondly, suppose at least 2 reliable units are needed for mission success, i.e., we now 

simply have a 2-unit series system with one cold spare in standby redundancy.  Then 

 Mode 1.   Both A and B work W/O failure for 1000 hours. 

                     (1)
SysR (1000) = 

2 te 
= e0.20  = 0.8187307531 

 Mode 2.   Either A or B fails at t1, the other is reliable for 1000 hours, and C is reliable 

for 1000  t1, while the switch is also reliable at t1. 
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(2)
SysR (1000)= 2 1

1

1000
t t

1 sw 1 C 1
t 0

e dt e R (t )R (1000 t ) 



  =  

                      = 2e0.20 1000 0.00005t
10

1e dt = 0.15971988002631     

        RSys(1000) = (1)
SysR (1000) + (2)

SysR (1000)   = 0.97845063313. 

 

 Exercise 19.   Consider a mixed system where units A, B, C are in parallel 

redundancy with A = B = C = 0.0003/hour and unit D is in standby redundancy with D = 

0.0003/hr.  The switch has a constant failure rate of sw = 0.00001/hr.  The switch puts the 

parallel system on-line at t = 0.  Compute the system RE at t = 800 hours if at least 2 reliable 

units are needed for mission success.  For convenience, let  = 0.0003/hour for all 4 units. 

 

Shared-Load  Parallel  Redundancy 

 Consider 2 components, A and B, in pure parallel redundancy (hot spares).  When 

both units are reliable, their failure rates are at half-load and equal to h = 0.00007/hr, but 

ASA one of them fails, the other failure rate increases to full-load at f = 0.00012/hr.  What is 

this system's reliability for a mission of t = 1000 hours if at least one operational unit is 

needed for mission success? 

 Mode 1.    Both A and B are reliable at half loads. 

 (1)
SysR (1000) = t 2h(e )  =  2 the   = e0.14 = 0.86935823539881.         

 Mode 2.   Either A or B fails at half load at time t1 and the other is reliable at half load 

at t1 and then is reliable at full load from t1 to 1000 hours. 

 (2)
SysR (1000) = 2 

1000
t

h 1 h 1 f 1
t 0

h 1

1

e dt R (t )R (1000 t )



  =  

 = 2he0.12 
1000

0.00002t
1

t 0

1

1

e dt


 = 2he0.12(990.0663346622349) = 0.12293540922846   

RSys (1000) = 0.99229364462727. 

 

 Exercise 20.   Compute RSys(1000) hours for the system below, where at least one 
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reliable unit is needed for mission success. 

The parameter values are  h(A) = h(B) = 0.00008/hr, and f(A) = f(B) = f(C) =  

0.00014/hour.  Mission time = t =1000 hours and  RSW = 0.9990.  The switch is needed only 

to put unit C on-line.  Note that a pure parallel system with 3 units having the same 

parameters has a RE of 0.9999651 at  = 0.00008 and a RE of 0.9977703 at  = 0.00014.  

ANS: RSys = 0.999521912.      
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