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INSY 7380          Accelerated  Life  Testing  (ALT)             Maghsoodloo        

 In most instances component reliability is so high that placing even n = 100 units on test 

may not yield any failures for a test duration, of say, more than 5000 hours.  If a new product is 

being developed, such long testing times cannot be tolerated because the new product has to get 

to the global market in due time, or else lack of market share may occur.  In such cases, the 

experimenter has no choice but to use accelerated testing procedures to induce failures in order 

to estimate component TTF (or reliability). 

 Accelerated life testing (ALT), in combination with DOE (design of experiments), is 

conducted by subjecting n identical units to stresses well beyond what the units on test will 

experience under normal operating conditions.  Such high stresses for ALT that accelerate 

failure mechanism may be applied in many forms: very high, or very low temperatures, 

humidity levels well beyond normal operating conditions, excessive usage, very high levels of 

voltage, extreme cycling between low and high levels beyond what is considered normal 

operating conditions, excessive force, excessive vibrations, ten times more units on test than 

needed, etc, etc. 

 As Elsayed (Reliability Engineering, E.A. Elsayed, Chapter 6, Wiley INC. (2012) points 

out in the beginning of section 6.4, the underlying assumption is that the failure mechanism 

under ALT conditions is, except for a multiplicative factor,  similar to failure mechanism under 

normal operating conditions.  Put differently, ALT is based on the principle that a unit under 

accelerated test will exhibit the same behavioral statistical pattern in a short testing time under 

very high stresses as it will exhibit in a much longer time at normal operating stresses.  For 

example, if the underlying failure distribution is W(, , ), then under ALT the change in the 

shape parameter  will be much smaller than the changes in minimum life  and scale parameter 

   .  That is to say, under ALT the change in  (or overall process variability, or CV) will be 

negligible compared to changes in  and the characteristic life  as compared to normal 

operating conditions.  There are 3 different physical models that have been developed in the past 

115 years that can be used to estimate the MTTF under normal operating conditions (o = normal 

operating conditions) from ALT data, where subscript “s” will be used to designate statistics 

computed under high stressed conditions. 
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 (1)  The  Arrhenius  Model 

 This is the most commonly used model relating TTF to high thermal stresses.  Thermal 

stresses occur in solid state diffusion, chemical reactions, many semiconductor failure 

mechanism, battery life, etc.  The underlying distribution of TTFo (TTF under normal operating 

conditions) in almost all these cases is exponential, Weibull, or lognormal (i.e., all positively 

skewed pdfs).  The Arrhenius rate law that describes the (failure) rate, r, at which reaction to 

temperature of the test unit occurs is given below. 

                                r = C aE /(ke Τ
= C B/e Τ                                (102)                   

where C is a constant which is characteristic of the failure mechanism of the item under test, Ea 

= the activation energy needed to induce failure measured in eV (= electron volts; close to 

vaporization energy for metals and chemical bond energies for polymers), k = the Boltzman’s  

constant = 8.6171105 eV/Kelvin (Note that Google.com gives k = 8.616105, while L. W. 

Condra, p. 232, gives k = 8.617105 ) and T = the temperature in Kelvin = Centigrade +  

273.15, and B = Ea/k.  In RE engineering, the Arrhenius model is also used to measure the 

impact of temperature on reliability because we make the assumption that the TTF is inversely 

proportional to the reaction (failure) rate, r, given in equation (102), i.e.,     

            TTF = C aE /(k )e T
= C B/e Τ                       (103) 

where C  1/C is the constant of proportionality characteristic of the product under test.  The 

Arrhenius model is applicable when the product r1TTF1 = r2 TTF2, where r1 and r2 are 

reaction rates at testing temperatures T1 and T2, respectively.  The relationship Rate1TTF1 = 

Rate2 TTF2 implies that r TTF will practically stay constant over the range of temperature 

applicability, and as a result roTTFo  rsTTFs, where TTFo represents TTFo under normal 

operating conditions and TTFs represent component life under (accelerated) stressed conditions.  

Thus,  
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Eq. (125a) shows that the acceleration factor for the Arrhenius model is given by     
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                      Af = TTFo / TTFs = 
a

1 1
E ( ) / k

e


o sT T =

1 1
B( )

e


o sT T                                      (104b)                                   

Note that the smaller the required activation energy Ea is, the more rapidly the unit on test will 

fail resulting in smaller Af value.   

 

The Example 6.11 on page 405 of E. A. Elsayed.   In this example n microelectronic devices 

(the value of n not specified by the author) are put on accelerated test at Ts = 200 Celsius = 200 

+ 273.15 = 473.15 Kelvin and the MTTfs of the n units was approximately equal to 4000 hours.  

The operating temperature To = 50 C = 323.15K, and the required activation energy was 0.191 

eV.  Thus, the sample MTTfo =  MTTfs 
a

1
E ( ) / k

e


o s

1
T T = 4000 

51 1
0.191( )/8.6171 10

323.15 473.15e
 

=  

35191.33024 hours.  The value of acceleration factor is Af = 35191.33024 /4000 = 8.79783256. 

 Example 16.    The TTF of n = 10 samples under an accelerated temperature of Ts = 100 

Centigrade are t(i) : 130, 140, 160, 180, 185, 195, 205, 205, 240, and 260 hours.  The 

measurement of interest is the thermo-compression bond between two dissimilar metals, the 

strength of which reduces in time by the formation of voids by solid-state diffusion which has 

an activation energy of 0.90 eV.  The normal operating temperature is To = 25 Celsius.  The 

sample statistics are sx =190, Ss = 40.8248290, and cvs = 21.487% showing that the accelerated 

data is obviously not exponentially (i.e., IFR) and if it is Weibull, then the slope   5.0 (see my 

Table 1 on p. 10).  Most probably, the accelerated data is lognormally distributed.  The use of 

equation (104a) yields the normal operating sample mean to failure mttfo = 190  

51 1
0.90( )/(8.6171 10 )

298.15 373.15e
 

= 1901142.3450161 = 217045.5531 hours   Af = 

1142.3450161.  If we wish to be more conservative about our estimate of  MTTF  in normal 

operating use, we could estimate it as  mttfo  = 130
51 1

0.90( )10 /8.6171
298.15 373.15e


= 148504.8521 

hours, giving an acceleration factor of Af = 148504.8521/190 =781.6044847, where 130 is the 

value of  the 1st order statistic, x(1) = t1,  under stressed condition.  Note that we are using mttf as 

the sample MTT failure. 

 It is reported in the literature that the value of Ea ranges in the interval 0.30  0.60 for  
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semiconductor failures, for intermetallic diffusion (like in Example 16) it ranges in the interval 

0.90 1.1 eV, and for silicon junction defects Ea = 0.80 eV.  The question arises how high the 

stressed temperature should be for a unit under accelerated test so that the resulting stressed life 

can be extrapolated to the expected life under normal operating conditions.  Almost all metals 

change properties when the testing temperature exceeds 50% of their melting temperature Tm.  

Therefore, the accelerated testing temperature, Ts, must not exceed 0.50Tm. 

 

 Example 17.    The lifetimes of n = 50 PC components under an accelerated temperature 

of  Ts = 100C   yielded the sample mean sx = 232.2 hours and a standard deviation of Ss = 82.8 

hours, with Ea = 0.85 eV and To = 27C.  The use of equation (104b) gives an acceleration 

factor of  Af = 
a

1 1
E ( )/k

e


300.15 373.15 = 619.695651 giving an estimated mttfo = Af  sx = 

619.695651232.2 = 143893.3301 hours  16.42618 years.  Since the sample size n > 20, then 

we may use the normal approximation to the SMD of sx  to obtain an approximate lower 95% 

CI for the MTTFs, given by  Ls = 232.2  1.64582.8 / n  = 212.937563 hours   Lo = 

619.695651212.938 = 131956.75253264 hours  15.0635562252 years   MTTFo <   at the 

95% confidence level.  Note that this normal approximation would not be permissible unless n > 

20.  Methods of analysis for the exponential, Weibull, and lognormal underlying distribution of 

TTFs, for any n, are given by Wayne Nelson,  (1990), “ Accelerated  Testing, Wiley, New York, 

ISBN: 0-471-52277-5. 

 

Determination  of  the  Acceleration  Factor  Af  Using  Linear  Regression  

 In order to use regression to estimate Af, the Arrhenius model must first be linearized as 

shown below.  From equation (103), TTF = C aE / (k T)e , which can be linearized by taking the 

natural logarithm of both sides only once.  This leads to y = ln(TTF) = ln (C)  +  Ea /(kT) = 

ln (C)  +  Ea x , where x = 105 /(8.6171T), and T must be in units of Kelvin.  I used the data 

provided by Boris Gnedenko et al (Statistical Reliability Engineering, Wiley, Example 5.2 on 

pp. 171-172, ISBN: 0-471-12356-0) and W. Nelson (1990), which are listed for your 

convenience below, to estimate C and Ea using regression analysis.  The experiment from the 
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above two authors involved a new Class-H motor insulation with a design temperature of To 

= 180 C = 453.15 Kelvin, where n = 40 units were equally and randomly divided and tested 

to failure at the accelerated temperatures 190, 220, 240, and 260 Celsius.  The accelerated 

times TFs in hours are provided in Table 5.2 of B. Gnedenko and duplicated herein.  I used 

Minitab to regress y on x, where x = 105/(8.6171T), and its output is provided below. 

 

Table 5.2  of  Boris  Gnedenko et al (page 171) 

190 C 220 C 240 C 260 C 

7228 hours 

7228 

7228 

8448 

9167 

9167 

9167 

9167 

10511 

10511 

1764 hours 

2436 

2436 

2436 

2436 

2436 

3108 

3108 

3108 

3108 

1175 hours 

1175 

1521 

1569 

1617 

1665 

1665 

1713 

1761 

1953 

600 hours 

744 

744 

744 

912 

1128 

1320 

1464 

1608 

1896 

mttf = 8782.20        2637.6000             1581.4000               1116.0000 

S = 1244.0117         453.5654                 244.2745                439.2357 

cv = 14.165%     cv = 17.196%        cv  = 15.447%      cv = 39.358%   

Regression Analysis: y versus x 
  
The regression equation is 
y = - 7.28341 + 0.64936 x, x = 105/(8.6171 T) 
 
Predictor       Coef      SE Coef        T       P 
Constant      -7.2837      0.7719      -9.44    0.000 
x             0.64938     0.03317      19.58    0.000 
 
S = 0.2557      R-Sq = 91.0%     R-Sq(adj) = 90.7% 
 
Analysis of Variance 
Source            DF        SS          MS         F        P 
Regression         1      25.073      25.073    383.36    0.000 
Residual Error    38       2.485       0.065 
  Lack of Fit      2       0.368       0.184      3.12    0.056 
  Pure Error      36       2.118       0.059 
Total             39      27.558 
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Unusual Observations 
Obs        x         y         Fit      SE Fit    Residual    St Resid 
 11       23.5   7.4753      7.9973     0.0416   -0.5220       -2.07R  
 39       21.8   7.3827      6.8509     0.0635    0.5319        2.15R  
 40       21.8   7.5475      6.8509     0.0635    0.6966        2.81R  
 
R denotes an observation with a large standardized residual 
 
 

The above regression output clearly shows that ŷ =  7.28341 + 0.64936 x  is an excellent 

model because 2
ModelR = 91% so that  ln(C) =   7.28341  C = 0.00068684 and Ea = 

0.649358eV.   To extrapolate the expected life to the operating temperature of  180C = 453.15 

K, we insert xO = 100000/(8.6171453.15) = 25.609251 into our regression model   Oŷ  =   

 7.28341 + 0.649358xO = 9.34617   omttf  =  9.34617 e = 11459.8130 hours.  I will next 

convert the above regression model ŷ =  7.28341 + 0.64936x ,  ln(TTF) = ln (C)  + Ea /(k T) to 

the Arrhenius format:    

                   omttf  = 0.00068684
50.64936×10 / (8.6171T)e ,                 (105)        

where 0.00068684 = eC = e  7.28341 and the temperature T must be measured in Kelvin.  

Inserting To = 180 + 273.15 = 453.15 into equation (105) again yields mttfO (180C) = 

11459.8130 hours.  The acceleration factors from 180 to 190C is Af = 11459.8130 /8782.20 = 

1.3043.  In practice, I would use only the stressed-Temperature that is closest to TO to compute 

the AF.  Further, I attempted to improve the above model by adding the regressors x2 and x3 to 

the model, unfortunately the 2
ModelR  improved by a minute amount to 92.3% but all the 

coefficients in the model became highly insignificant (i.e., a worthless model). 

 

 Exercise 26.    Boris Gnedenko et al mention on their page 172 that the failure data at 

260 Celsius in the above experiment looks very suspicious because it exhibits much higher 

sample cv than the other 3 accelerated temperatures.  That is to say, the failure mechanism at 

260 C is different from failure modes at lower temperatures.  Repeat my analysis of the above 

experiment but remove the data at 260 C. ANS: omttf  (180 C)  > 12000 hours. 



 219

(2)  The  Inverse  Power  Law  (IPL) 

 This law is generally used when the TTF is inversely proportional to the applied 

(accelerated) stress, and the underlying lifetime distribution is almost always Weibull, or 

perhaps lognormal.  As in the case of Arrhenius model, the IPL model is applicable only when 

there is a single type of stress, which in most cases is voltage accelerated stress, alternating 

temperature stress, or mechanical vibration in order to induce fatigue failure.  The general form 

of the IPL is given by 

                        TTFs  = C/ Sb            (106a) 

where C > 0 and the exponent b > 0 are constants characteristics of the items under test, and S 

is the applied (accelerated) stress.  The value of  the exponent b = [2, 3] for metals and 

electronic solder joints, b = [4, 10] for microelectronic parts, and b = [4, 7] for intermetallic 

fatigue failures.  

 

Example 22 (borrowed from L. W. Condra, RE Improvement with DOE, pp 236-237, 

Marcel Dekker, ISBN: 0-8247-0527-0).    A sample of n electronic solder joints are placed on 

accelerated fatigue-testing at a displacement of S = 0.0008 inches with a MTTfs = 10 cycles.  

Assuming that under normal use the maximum displacement is So = 0.00005 inches and the 

exponent b = 2.50, our objective is to estimate MTTFo.  We need to compute the value of the Af 

= mttfo/ MTTfs = 
b
o
b

C/ 

C/ S
S

 = Sb/ b
oS  = (0.0008/0.00005)2.5 = 1024    mttfo = 102410 = 

10,240 cycles to failure.  

 Elsayed provides another form of IPL given in his equation (6.67) which is modified as 

            TTFs  = C(Vo / Vs)b         (106b) 

where Vo is the standard specified (voltage) operating stress, Vs is the accelerated voltage 

stress, and the constant C is characteristic of the product under test , fabrication method, etc. 

 

The Example 6.13 on pages 410-411 of Elsayed.   In this experiment two samples of 20 

CMOS integrated circuits each are put on accelerated life test, where Vs represents accelerated 

electric field stresses at 10 and 25 eV.  The underlying distribution of TTF is assumed Weibull 

and there is only one stress factor, namely electric field, and hence the IPL is a plausible model 
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for TTFs.  The normal operating stress is at Vo = 5 eV.  For your convenience I have duplicated 

Table 6.7 of E. A. Elsayed on his page 410 below.  I first used the data under the two 

accelerated stress levels, V1 = 10 and V2 = 25 eV, to obtain the MLEs  of  the Weibull 

parameters  and .   Using my equations 111 (a &b) the MLEs are ˆ
1s = 1.836028, ˆ

1s = 

9343.5856011 hours, and at  V2 = 25 eV,  ˆ
2s  = 1.981834234,  2ŝ  = 3916.9661061541  

hours.  These MLEs under stressed conditions are consistent  with those of Elsayed’s.  It seems 

that if the stressed data set is W(0, , ), then a rough value of the Weibull slope is close to   

1.910.  However, it is not clear what the estimate of the characteristic life at normal operating 

stress 5 eV is, because ˆ
1s = 9343.585601 hours  and ˆ

2s  = 3916.9661061541  hours were 

obtained under accelerated testing conditions.  I will now obtain the least-squares estimate of . 

Table 6.7 of Elsayed page 410 (TTF under accelerated  testing condition)  

10 eV  1037.39 hours, 3218.11, 3407.17, 3520.36, 3879.49, 3946.45, 6635.54, 6941.07, 7849.78, 8452.49 

10 eV  9003.08, 9124.50, 9365.93, 9642.53, 10429.50, 10470.60, 11162.90, 12204.50, 12476.90, 23198.30 

25 eV 809.10, 1135.93, 1151.03, 1156.17, 1796.53, 1961.23, 2366.54, 2916.91, 3013.68, 3038.61 

25 eV   3802.88, 3944.15, 4095.62, 4144.03, 4305.32, 4630.58, 4720.63, 6265.99, 6916.16, 7113.82 hours 

 

 In order to obtain a LS estimate of , I first linearized the IPL model, TTFs  = C/ Sb, by taking 

the natural logarithm of both sides.  This leads to y = ln(TTFs) = ln(C)  b ln(S) , where S is at 

2 levels, 10 and 25 eV.  I used Minitab to regress y =  ln(TTFs) on  x = ln(S), with the following 

output. 

 
The regression equation is 

y = 11.0 - 0.941 x,  x = ln(S) 
 
Predictor      Coef       SE Coef        T        P 
Constant      11.0065      0.6383      17.24    0.000 
x             -0.9406      0.2281      -4.12    0.000 
 
S = 0.6609      R-Sq = 30.9%     R-Sq(adj) = 29.1% 
 
Analysis of Variance 
 
Source            DF        SS          MS         F        P 
Regression         1      7.4281      7.4281     17.01    0.000 
Residual Error    38     16.5968      0.4368 
Total             39     24.0248 
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Unusual Observations 
Obs      x       y         Fit      SE Fit    Residual    St Resid 
1       2.30    6.979     8.841     0.148      -1.862       -2.89R  
 

 

I must caution the reader before using the above Minitab model for extrapolation!  You must 

observe that the value of  2
ModelR  = 30.9% is woefully too small to be an adequate model due 

to the fact that there is too much within (or experimental error) variability in the data.   The data 

under level 1 of stress (10 eV) ranges from 1037.39 stressed hours to 23198.30 hours, which is 

very large, but still the regression is highly significant.  The above model cannot be improved 

because there are only 2 levels of stress factor and hence regression can have only one df and 

any attempt to improve it by adding regressors such as x2, x3 and 1/x to the model will be futile 

because the design does not provide but one df for studying effects.  Hence, we have to 

extrapolate with a model whose 2
ModelR  = 30.9%.  The estimate of the constant Ĉ  = e11.0065 = 

60264.591, and the estimate of the exponent b̂ = 0.9406  is very close to Elsayed’s answer of 

0.95318.  To estimate the MTTFo at 5 eV, we insert x = ln(5) =1.609438 into the regression 

model.  This yields ŷ (1.60944) = 11  0.94061.60944 =  9.49266  omttf  = e9.49266 = 

13262.06124 hours, which is fairly close to Elsayed’s answer of 12140.  Since the Weibull 

mean E(T) =  
1

Γ(1 + )
β

, then oθ̂  = 13262.06124 / 1
Γ(1 + )

1.910
 = 14947.92193 hours.  The 

two acceleration factors are Af1 = 13262.06124 /8298.3295 = 1.59816036, where 8298.3295 = 

mttf(at 10 eV)  and Af2 = 13262.06124 /3464.2455 = 3.82827. 

 

(3)  The Eyring  Model    

 Both the Arrhenius and IPL models include only the effect of one accelerated 

stress.  The Eyring model contains two stress factors, one of which is always temperature 

stress, and the other can be any stress type such as electric field, voltage, humidity, mechanical 

stress (load per area),  even temperature cycling, or electrical current stress.  The rate of reaction 

(or rate of failure) to the two stresses is given by 

                 r = C1 aE /(ke  Sb                     (107a) 



 222

where r is the rate of reaction to the two stresses; r may be thought of the parameter  if the 

underlying distribution is exponential, but r  1/   if the TTF is W(0, , ), and if TTF is 

lognormal, then r = 1/T0.50 (the inverse of median life).  Thus, from (107a) we deduce that  

                    TTFs = C aE /(ke sΤ  / Sb = C aE /(ke sΤ Sb                       (107b)

                        

The values of Ea and exponent b can be obtained empirically once accelerated data are available.  

For electronic applications, b  2 to 3 and Ea = 0.90 eV, and C is a constant characteristic of the 

product and testing conditions.  Equation (107b) implies that under normal operating conditions 

the TTF is given by 

                TTFo = C a oE /(ke  
 / b

oS              (107c) 

Combining equations (128 b&c) yields 

    

              Af = o

s

TTF

TTF
 = 





Τ

Τs S

E /(k ba o
o

E /(k ba

e / S

e /
  =  (S/So)b (E / k)(1 / T - 1 / T )a o se    (108)                    

Note that Af must be directly proportional to Ea because larger activation energy required to 

induce failure in the test unit generally implies longer MTTFo. 

 

 Example 18.    L. W. Condra (RE  Improvement with DOE, 2nd edition, Marcel 

Dekker) reports (on his p. 239) the results of an accelerated  life testing experiment of n 

(unspecified) microelectronic circuits conducted at the standard accelerated temperature stress 

of 85 C  and a standard accelerated relative humidity (RH) of S = 85%.  (He refers to this type 

of accelerated testing as Temperature-Humidity Operating Bias test.)  The sample MTTfs is 

reported to be 800 hours and normal operating conditions are To = 40 C and  RHo = 60%.  The 

Model (107b) when the 2nd stress represents S = RH (relative humidity) is referred to as Peck’s 

relationship.  Peck, D. S. (1986) ”Proc. International RE  Physics  Symposium, 24, pp. 44-45,  

reports an exponent  value of  b  2.70 and an activation energy of  Ea = 0.79 eV, but Condra in 

his example uses the rough values of b = 3 and Ea = 0.90 eV.  I will use Peck’s values in 

equation (129) to estimate the acceleration factor Af. 
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       Af  = (85/60)2.7
5(0.79 10 /8.6171)(1/313.16 - 1/358.16)e  = 101.3547 

which yields mttfO = 101.3547 800 hours = 81083.74783 hours = 9.2561356 years. The above 

estimated value of  mttfO  = 9.2561356 years does not conform well with that of Condra’s 16.6 

years.  If we use Condra’s values of b = 3 and Ea = 0.90 eV in equation (108), we obtain Af = 

187.780224 and an estimated mttfO  = 187.780224  800 = 150224.179364 hours = 17.148879 

years.  I tried to obtain Condra’s answer of Af = 182 by using his values of To = 313 and Ts 

= 358 in equation (108) but I still got an answer of Af = 188.5450005 which is not equal to 

Condra’s answer of 182.  The reader should be careful about interpreting the values of mttfO  

because if the underlying distribution is exponential, then mttfO  is an estimate of MTTF; if the 

underlying distribution is Weibull, then mttfO is an estimate of the characteristic life tc = , and 

if the underlying distribution is lognormal, then mttfO is an estimate of the median life.  

Furthermore, the farther the operating conditions are from the stressed conditions, the less 

accurate the regression estimates of b and Ea become.  This problem gets compounded when the 

baseline distribution is very highly skewed and /or there are outliers in the data. 

 

Example 6.14 on page 412 of Elsayed.     The data listed in Table 6.8 on page 412 of Elsayed 

presents the results of an ALT with 8 FLCs (factor level combinations) of Temperature and 

Voltage stresses.  For your convenience, I am providing Elsayed’s data below.  The normal 

operating temperature To = 30 C = 303.16 Kelvin and the operating voltage is Vo = 25 volts.  

Instead of using Elsayed’s parametric  approach to estimate MTTFo, I linearized  the Eyring  

Model (107b) as follows: y = ln(TTFs) = ln ( C)  b ln(Vs) + Ea x, where x = 100000/(8.6171 

Ts),  and then I regressed y on ln(Vs) and x.   The Minitab output is given below  

The regression equation is 

y = 2.25333 - 0.426737 LV + 0.199714 x,  LV = ln(Vs),  x = 100000/(8.6171Ts), 
 
Predictor       Coef      SE Coef        T        P 
Constant        2.253       1.405       1.60    0.170 
LV           -0.42674     0.03955     -10.79    0.000 
x             0.19973     0.04057       4.92    0.004 
 
S = 0.05824     R-Sq = 96.6%     R-Sq(adj) = 95.2% 
 
Analysis of Variance 
 
Source            DF        SS          MS         F        P 
Regression         2     0.47708     0.23854     70.32    0.000 
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Residual Error     5     0.01696     0.00339 
Total              7     0.49404 
 
Source       DF      Seq SS 
LV            1     0.39488 
x             1     0.08220 
 

Table 6.8 of E. A. Elsayed (p. 412) 

Voltage 

 

Temperature 

50 100 150 200 volts 

60  C 1800  hours 1500 1200 1000 

        70 C 1500 1200 1000 800 hours 

 

In the above Minitab output, LV = ln(Vs) and y = ln(TTFs).  Note that the value of Ea from the 

above regression output is Ea = 0.199714 which is in agreement with the reported value by 

Elsayed on his page 412.  In order to estimate the MTTFo, I used extrapolation (which is 

generally not a good idea in regression analysis) in the above regression model, which has an 

excellent 2
ModelR , as follows:  oŷ(30 C, 25volts)=  2.25333  0.426737ln(25) + 0.199714  

100000/(8.6171303.15) = 8.52494  mttfO  = e8.52494 = 5038.8636 hours, which is a bit larger 

than Lo = 4484.11 hours reported by Elsayed.  There will be 8 different values of Af because 

there are 8 FLCs of the two stresses.  The value of Af from normal operating conditions (30C, 

25 volts) to stress FLC (60 C, 50 volts) is fÂ  = 5038.8636 /1800 = 2.79937.  To verify the 

adequacy of the Eyring model to the data, we also need to estimate this last acceleration factor 

Af  from equation (108) as follows: fÂ (Model) = 0.42673750
( )
25

 (19971.4/8.6171)(1/303.15 1/333.15)e   

= 2.6758, which is fairly consistent with the regression-value of 2.7994. 

 

 Example 6.7 of  Elsayed  on pages 388-389.   This experiment makes no assumptions about 

the underlying distributions of Times TF (i.e., the nonparametric) and uses regression to 

estimate the MTTF by extrapolation.  I used the data in Table 6.1 of Elsayed on his page 388 to 

regress the TTF on stress factor Temperature in Kelvin, and stress factor electric field measured 

in units of eV.   For your convenience, I am duplicating Elsayed’s Table 6.1 on the next page. 
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The resulting Minitab output is given below: 

Regression Equation 
 
TTFs  =  6061.97 - 17.8487 T + 160.159 eV 
 
Coefficients 
Term         Coef  SE Coef       T      P 
Constant  6061.97  3.55841   1703.56  0.000 
T          -17.85  0.01343  -1329.01  0.000 
eV         160.16  0.22473    712.68  0.000 
 
 
 

Table 6.1  (on page 388 of Elsayed) 

Temperature  C       100                 100     100      100      100             100       

Electric Field (eV)  10                   10       10        10         10              10         

Stressed TTF 

(TTFs) 

1000 hours    1002    1003    1004    1005         1006  hours    

 

Temperature  C       150        150         150         150        150         150       

Electric Field (eV)  10          10           10            10          10           10         

Stressed TTF 

(TTFs) 

110      110.5       110.7        111      111.4       111.8   hours 

 

Temperature  C       200   200   200    200    200      200      200    200     200     200 

Electric Field (eV) 15      15      15      15    15         15        15      15       15        15 

Stressed TTF 

(TTFs) 

19      19    19.1   19.2  19.3    19.32   19.38   19.4   19.44   19.49  

 
Summary of Model 
 
S = 1.16308      R-Sq = 100.00%        R-Sq(adj) = 100.00% 
PRESS = 36.9518  R-Sq(pred) = 100.00% 
 
Analysis of Variance 
 
Source      DF   Seq SS   Adj SS   Adj MS        F  P 
Regression   2  3967238  3967238  1983619  1466367  0 
  T          1  3280158  2389312  2389312  1766270  0 
  eV         1   687080   687080   687080   507916  0 
Error       19       26       26        1 
Total       21  3967264 
 
Fits and Diagnostics for Unusual Observations 
 
Obs  TTFs      Fit    SE Fit  Residual  St Resid 
 17  1000  1003.33  0.474824  -3.33333  -3.13951  R 
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 22  1006  1003.33  0.474824   2.66667   2.51161  R 
 
R denotes an observation with a large standardized residual. 
 
 
Predicted Values for New Observations 
 
New Obs      Fit    SE Fit        95% CI              95% PI 
      1   1541.19  0.836013  (1539.44, 1542.94)  (1538.19, 1544.18) 
 
Values of Predictors for New Observations 
 
New Obs       T  eV 
 1  298.15    5  X 
 
X denotes a point that is an outlier in the predictors. 
 
   

General Regression Analysis: TTFs versus TempC, eV ; using the centigrade data  
 
Regression Equation 
 
TTFs  =  1186.61 - 17.8487 TempC + 160.159 eV 
 
Coefficients 
 
Term         Coef  SE Coef         T      P 
Constant  1186.61  1.29166    918.67  0.000 
TempC      -17.85  0.01343  -1329.01  0.000 
eV         160.16  0.22473    712.68  0.000 
 
Summary of Model 
 
S = 1.16308      R-Sq = 100.00%        R-Sq(adj) = 100.00% 
PRESS = 36.9518  R-Sq(pred) = 100.00% 
 
 
Analysis of Variance 
 
Source      DF   Seq SS   Adj SS   Adj MS        F  P 
Regression   2  3967238  3967238  1983619  1466367  0 
  TempC      1  3280158  2389312  2389312  1766270  0 
  eV         1   687080   687080   687080   507916  0 
Error       19       26       26        1 
Total       21  3967264 
 
Fits and Diagnostics for Unusual Observations 
 
Obs  TTFs      Fit    SE Fit  Residual  St Resid 
 17  1000  1003.33  0.474824  -3.33333  -3.13951  R 
 22  1006  1003.33  0.474824   2.66667   2.51161  R 
 
R denotes an observation with a large standardized residual. 
 
 
Predicted Values for New Observations 
 
New Obs      Fit    SE Fit        95% CI              95% PI 
      1  1541.19  0.836013  (1539.44, 1542.94)  (1538.19, 1544.18) 
 
 
Values of Predictors for New Observations 
 
New Obs  TempC  eV 
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    1     25    5  X 
 
X denotes a point that is an outlier in the predictors. 
 
General Regression Analysis: LnTTF versus x, LV  
 
Regression Equation 
 
LnTTF  =  -11.6518 + 0.599347 x - 0.0332739 LV 
 
 
Coefficients 
 
Term          Coef    SE Coef         T      P 
Constant  -11.6518  0.0659043  -176.798  0.000 
x           0.5993  0.0011245   532.968  0.000 
LV         -0.0333  0.0151534    -2.196  0.041 
 
 
Summary of Model 
 
S = 0.00715762      R-Sq = 100.00%        R-Sq(adj) = 100.00% 
PRESS = 0.00124123  R-Sq(pred) = 100.00% 
 
 
Analysis of Variance 
 
Source      DF   Seq SS   Adj SS   Adj MS       F          P 
Regression   2  58.9100  58.9100  29.4550  574939  0.0000000 
  x          1  58.9098  14.5526  14.5526  284055  0.0000000 
  LV         1   0.0002   0.0002   0.0002       5  0.0407246 
Error       19   0.0010   0.0010   0.0001 
Total       21  58.9110 
 
 
Fits and Diagnostics for Unusual Observations 
 
Obs    LnTTF      Fit     SE Fit    Residual  St Resid 
  1  2.94444  2.95815  0.0022634  -0.0137082  -2.01878  R 
  2  2.94444  2.95815  0.0022634  -0.0137082  -2.01878  R 
 
R denotes an observation with a large standardized residual. 
 
 
  

In order to estimate the MTTFo from the above regression models at the normal operating 

temperature To = 25C = 298.15 Kelvin, and 5 eV, we insert these values into the first model as 

follows:  mttfO  =  17.8487298.15 + 160.1595 = 1541.19 hours which is  consistent with that 

of Elsayed’s answer.  The value of the acceleration factor from normal operating conditions 

(25C, 5 eV) to stress levels (100C, 10 eV) is equal to f1Â  = 1541.19/ omttf(100 C,10 eV)  = 

1541.19/1003.33333 = 1.5331.  Equation (108) gives f1Â (Model) = 

0.0332739 (59937.7/8.6171)(1/298.15 1/373.15)10
( ) e

5
  = 2.367, which is not consistent with f1Â  =  

1.533, which may warrant the rejection of the Eyring model.   
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Chapter Summary 

1.  The acceleration factor For the Arrhenius Model is given by     Af  = 

a
1 1

E ( ) / k
e


o sT T

         MTTFo =  Af MTTFS, where k = Boltzman’s  constant = 

8.617110 5.  Two cases exit:  (a) The required activation energy Ea to induce 

failure is known, (b) Ea is not known and has to be empirically  estimated from 

accelerated data.  For Semiconductor failure  0.30  Ea  0.60; for intermetallic 

diffusion 0.90  Ea  1.10; For silicon junction defects  Ea = 0.80.   

    

(a) Assume Ea = 0.50 and normal operating temperature is 25 C and accelerated 

testing is done at 50 C. Then To = 25 + 273.15 = 298.16K and TS = 50 + 273.15 =  

323.1600K    

             Af  =      

51 1
0.50( )10 / 8.6171

e


298.15 323.15 = 4.506862 

Note that Af is an increasing function of Ea because larger values of Ea imply that 

more energy is required to induce failure which in turn would lead to higher 

MTTFO.  Note that some sources use the conversion Kelvin = C + 273.15 and 

others use Kelvin = C + 273.16. 

 

(b) Ea is unknown. 

Identify at least two stressed temperature levels, such as 50C and 75C (< 

0.50Tm ) and obtain stressed failure data.  Linearize the Arrhenius model   TTFS = 

C aE /(k )e sT  and regress ln(TTFS) on x = 105 /(8.6171T); then the rough estimate 

of Ea is given by the slope of the regression line.  However, one  must be 

cognizant of the fact that extrapolation is classical regression violates 

regression assumptions and is generally frowned upon.  But than when there are 

no information about Ea (physical or otherwise), then the regression approach 

would be the only way to obtain a statistically unsound manner of obtaining a 

rough estimate of the activation energy Ea.  
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2.  The IPL :     TTFs  = C/ Sb   Larger values of b induce  

higher failure rate reaction and smaller TTF.   The value of  

b = [2, 3] for metals and electronic solder joints, b = [4, 7] for 

intermetallic fatigue failure, and b = [4, 10] for microelectronic parts, and very 

rarely b lies outside the range [2, 20]. 

(a) b is known  Af = Sb/ b
oS .  For example, suppose the normal operating 

voltage is So = 110V, stressed voltage is S = 220 and b = 2.8.  Then Af = 

 (220/110)2.8 = 6.9644. 

 

(b) b is unknown.  First linearize  TTFs  = C/ Sb   

y = ln(TTFs), x = ln(S), y-intercept= ln(C), and b̂ =   slope of the LS line.   

3. The Eyring Model : TTFs = C aE /(ke sΤ  / Sb = C aE /(ke sΤ Sb    

                        Af = (S/So)b 
(E / k)(1 / T - 1 / T )a o se  

     =(S/So)b 
5(10 E / 8.6171)(1 / T - 1 / T )a o se  

(a) Both Ea and b are known. 

 

     (b)  At least one is unknown.  Use stressed data to extrapolate to estimate b 

and Ea.  Note that this extrapolation often does not provide adequate and /or 

reasonable estimates of Ea and b, which implies that the Eyring model does not 

fit the data, and/or regression assumptions are grossly violated.  Further, 

extrapolation is always on poor statistical ground and is used in accelerated 

testing because there are no other options, i.e., the constants b and Ea are 

unknown and testing under normal operating conditions involves well over 

thousands of hours.  


