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Statistical  Process  Control  (SPC) 

The objective of SPC is to test the null hypothesis that the value of a process 

parameter is either at a desired specified value (0), or at a value that has been 

established from past (long- or short-term) data.  This objective is generally carried out 

through constructing a Shewhart control chart from m (generally m  20) subgroups of 

data.  Further, it is assumed that the underlying distribution is approximately Laplace-

Gaussian, and for moderately large sample sizes, it is also assumed that the SMD 

(sampling distribution) of the statistic used to construct the Shewhart chart is also 

Laplace-Gaussian.  When a sample point goes out of control limits, the process must 

be stopped in order to look for assignable (or special) causes of variation, and if one is 

found by  the operator, then corrective action must be taken and the corresponding 

point should be removed from the chart.  In case no assignable (or special) causes are 

found for a point out of control, then the control chart has led to a false alarm (or a type 

I error) and the corresponding point should be kept on the control chart.  Since false 

alarms are very expensive and disruptive to a manufacturing process, all Shewhart 

charts are designed in such a manner that the Pr of committing a type I error, , is very 

small.  The standard level of significance, , of all Shewhart charts, assuming a 

Gaussian chart ordinate, is set roughly at  = 0.0027 (or 0.27%). 

When departures from the underlying assumptions are not grossly violated, then 

a Shewhart control chart will generally lead an experimenter to 27 false alarms in 

10,000 random samples of size n.  Moreover, setting the value of  at 0.0027, will 

correspond to three-sigma control limits for a control chart as long as the normality 

assumption is tenable.  Perhaps, the three-sigma control limits by Shewhart was first 

constituted, and then the 0.0027-level test followed as its result (I am not sure; the 

chicken& egg problem); in other words, the 3-sigma limit most likely came first and the 
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value of type I error rate of 27 in 10, 000 followed as a result, assuming normality of the 

statistic that is being charted.  We will discuss only two types of charts: (1)  Charts for 

continuous variables, and (2) Charts for attributes, where the measurement system 

merely classifies a unit either as conforming to customer specifications or 

nonconforming to specifications (i.e., Success/Failure,  0/1,  Defective/Effective, 

Pass/Fail, Accept/Reject, etc.), or the measurement system simply counts the number 

of defects (or nonconformities) per unit.  

 

Shewhart  Control  Charts  for  Variables 

Consider the Example 6-3 borrowed from pages 260-267 of D. C. Montgomery’s 

text entitled “Introduction to Statistical Quality Control”,  7th Edition, published by John 

Wiley & Sons, Inc. (2013), (ISBN: 978-1-118-14681-1) where the objective is to control 

the dimension of piston ring inside diameters, X,  with design specifications X: 74.00  

0.05 mm.  As stated by D. C. Montgomery (2001), the rings are manufactured thru a 

forging process.  Since the random variable X is continuous, then we need two charts; 

one to control within-sample process variability (or internal variability measured by X = 

), and a second chart to monitor the between (samples) process variability, or simply 

the process mean .  If subgroup sample sizes, ni, are all equal and lie within 2  ni = n 

 15, then an R-chart (i.e., range-chart) should be used to monitor variability, but for n > 

15, an S-chart should be used for control of variation.  This is due to the fact that the 

SMD (Sampling Distribution) of sample range, R, becomes unstable for moderate to 

large sample sizes.  For sample sizes ni = n = 13, 14 & 15, it is not clear as to whether 

the S-chart is preferred to an R-chart.  In practice, I would recommend using the one 

that provides more statistical power to detect sudden shifts in process variation.   

 To design a trial (or initial) control chart, samples of sizes ni (i = 1, 2, …, m) are 

taken from a process in the time-order of production, generally at equal intervals of 

time, (where hourly or daily samples, or samples taken at different shifts, are the most 

common; further, sampling frequency generally depends on production rate), and the 

number of initial subgroups m should generally lie within the interval 20 < m  50.  

Samples should be taken in such a manner as to minimize the variability within 

samples (X) and maximize the variability among (or between) samples ( X ), a 
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concept that is consistent with Design of Experiments (DOE, or DOX).  Such samples 

are generally referred to as rational subgroups, whose variation is attributable only to a 

system of constant common causes.  Sampling different machines, sampling over 

extended periods of time, or from combined output of different sources are examples of 

nonrational sampling (generally leading to stratification) that must be avoided when 

setting up control charts.  

 

R and x  Control Charts (for 2  n  15 and ni = n for all  i = 1 , 2, ..., m, 

i.e., the Case of Balanced Design)  

In practice I recommend that the R-chart should be constructed first in order to 

bring variability in a state of statistical control, followed by developing the x - chart for 

the purpose of monitoring the process mean.  Although most will construct x - chart 

first.  In order to use the R-chart for monitoring process variation, the subgroup sample 

sizes ni (i = 1, 2, …, m) must be the same, i.e., ni = n for all i, or else an R-chart cannot 

be constructed.  All univariate (i.e., a single response variable) control charts consist of 

a central line, denoted by CNTL, a lower control limit LCL, and an upper control limit 

UCL.  Further, nearly in all cases to ensure   0.0027, LCL = CNTL 3se(sample 

statistic), and UCL = CNTL + 3se(sample statistic), where in the case of the R- chart 

the sample statistic will be the sample range R, while for the x  chart  the sample 

statistic will be the sample mean x .  The pertinent formulas for an R-chart are provided 

below.  (Note that some authors like A. J. Duncan consider x -chart as one word; I will 

do both in these notes.) 

            CNTLR = R = 
m

i
i 1

1
R

m 
                                                   (1) 

Note that we are taking the liberty to use the terminology standard error, se, as  

the estimate of the STDEV of the sample statistic.  Thus, se(R) = R̂  = d3 R /d2, where 

the values of d2 = E(W) = E(R/), (W = Relative Sample Range = R/) for a normal 

universe are given in Table 10 on the next page for n = 2, 3, …, 15.  Because d2 = 

E(W) = E(R) /X, then X  = E(R)/d2, which implies X̂  R /d2.   Further, 2
3d  = V(W) = 

V(R/) = V(R)/2 implies that V(R) = 2
3d  2

X  V̂(R) = 2
3d  2

X̂ = 2
3d ( R /d2)2  
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se(R) = d3( R /d2) = R d3 /d2, or R̂ = R d3 /d2, and the values of d3 for a normal 

universe are given in Table 11.  Since the most common of all sample sizes for 

constructing an R- and x - chart is n = 5, for illustrative purposes we compute R̂  only 

for n = 5.  From Tables 10 & 11 (due to E. S. Pearson), the se(R) = d3 R /d2 = 

0.8641R /2.326 = 0.37145R .  In general, the LCLR = R   3d3 R /d2 = (1  

3d3/d2) R  = D3 R , where the universal QC constant D3 = 1  3d3/d2.  

 

Table 10.   The Expected-Value, d2, of Relative Range (W=R/) for a N(, 2) 

   

Table 11.  The SE of Relative range W = R/ , d3, for a Normal Universe 

n 2 3 4 5 6 7 8 9 

d3 0.8525 0.8884 0.8798 0.8641 0.8480 0.8330 0.8200 0.8080 

n 10 11 12 13 14 15 

d3 0.797 0.787 0.778 0.770 0.763 0.756 

   

E. S. Pearson, Biometrika 32 (1941-42), pp. 301-308. 

 

Thus, for n = 5, the LCLR = R  30.37145R = R (1  1.1144)    LCLR = 0, and 

UCLR = (1+ 3d3/d2) R  = D4 R = 2.11444R .  In fact, it can be shown that for a 

balanced design the value of D3 = 0 and LCLR = 0 for all sample sizes in the range 2  

n  6, but D3 > 0 for all n > 6.   

 If the process standard deviation is targeted at 0, then because E(R/) = d2, 

the CNTL for the R-chart becomes d20.  Further, because the V(R/) = 2
3d , then the 3-

sigma limits for the targeted R chart are given by  LCLR = d20 3d30 = (d2 3d3)0 = 

D10,  and similarly, UCLR = d20 +3d30 = (d2 +3d3)0 = D20.  Thus, the QC constants  

n 2 3 4 5 6 7 8 9 10 

d2 1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078 

n 11 12 13 14 15 

d2 3.173 3.258 3.336 3.407 3.472 
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D1= d2 3d3 and D2 = d2+3d3.   

The central line (CNTL) for an x -chart, in general, is given by  

          xCNTL = x  =  
inm m

ij i
i 1 j 1 i 1

x / n
  
      =  

inm

ij
i 1 j 1

1
x

N  
                                  (2)       

 where N = 
m

i
i 1

n

  is the grand total number of observations.  Note that only for the 

case of equal sample sizes (balanced sampling design ni = n for all i the xCNTL  is 

given by x  = 
m n

ij
i 1 j 1

x /(mn)
 
  = 

m n

ij
i 1 j 1

x / n

m
 
 

 = 
m

i
i 1

1
x

m 
 , and the SE( x ) = 

n


.  When 

the sample sizes within subgroups differ, then SE( ix ) = 
in


.  Since a point estimate 

of  is given by x̂ = R /d2, then for the balanced sampling scheme (ni = n), x̂  = 

2

R

d n
,  as a result the xLCL  = x   3se( x ) = x   

2

3R

d n
 = x   2A R  , and  xUCL  = 

x  + 
2

3R

d n
= x  + 2A R , where the QC constant  A2 = 

2

3

d n
.  For samples of size n = 5 

per subgroup, A2 = 
2

3

d n
= 

3

2.326 5
 = 0.5768, and these last two control limits 

reduce to ( xLCL  = x  0.5768R , xUCL  = x  +0.5768R ).  

If the process mean and STDEV are targeted at 0 and 0 (i.e., these two 

parameters are the specified standard values), then the xLCL =0  30/ n = 0  

A0 and xUCL = 0 +A0, where the QC constant A = 3/ n .  For n = 5, A = 1.3416.  

The data for the inside diameter of Piston Rings of the Example 6-3 of D. C. 

Montgomery are given his Table 6-3 on page 260, where m = 25 subgroups were taken 

in order to set up trial control limits.  For your convenience, I have provided the data on 

a spreadsheet, named Table 6-3 on my website.  From D. C. Montgomery’s Table 6-3 
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we obtain 
25

i
i 1

R

  = 0.5810 and 

25 5

ij
i 1 j 1

x
 
  = 9250.1470, which lead to R = CNTLR = 

0.5810/25 = 0.023240, and xCNTL  = x  = 9250.1470/(525) = 74.001176.  Since for 

samples of size n = 5 the se(R) = 0.37145R = 0.37145 0.023240 = 0.0086325, then 

LCLR = R  30.0086325 = 0.023240  0.0258975    LCLR = 0.0000, and the UCLR = 

0.023240  + 0.0258975 = 0.0491375 mm.  The spreadsheet  (Table6-3DCM) on my 

site now shows that the minimum sample range occurs on the 11th subgroup (i.e.,  R11 

= 0.0080) and the maximum sample range occurs at the 14th subgroup (R14 = 0.0390) 

and hence all the 25 sample ranges lie within the interval 0.0080   Ri   0.0390.  

Therefore, no sample range is outside trial control limits (0, 0.0491375 mm), leading us 

to the conclusion that within sample variability is in a state of excellent statistical 

control.  I used both Minitab and MS Excel to obtain the R-chart for the Piston-Ring 

diameters of D. C. Montgomery’s 7th edition, which are given below. In general, we 

should not proceed to construct an xchart unless the R-chart shows that within-

sample (or internal) variability of the process is in a state of statistical control.  If a point 

on the R chart is out of control, Dr. Shewhart recommends that the corresponding 

assignable cause(s) for that point must be searched for, and if found, those assignable   

 

 

The R-Chart for the Example 6.3 on p. 262 of D. C. Montgomery     

  7th Edition 

 

 

causes of variation must be removed from the process and the limits on the R-chart  
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must be revised W/O the out-of-control point.  Since, the R-chart below has no point 

outside of control limits and does exhibit random pattern, then within (or internal) 

variability of the process seems to be in a good statistical control, and hence we may 

proceed to set up an x  chart.   

Next we obtain the control limits for the xchart  to examine the between-

sample variability.  Since x̂  = 2R / d  = 0.023240/2.326 = 0.00999140155, the se( x ) 

= x̂ / 5  = 0.0044683,  3se( x ) = 0.013405   xLCL  = 74.001176  0.013405 

=73.98777113, and xUCL  = 74.001176 + 0.013405 = 74.014581 mm.  The x -chart 

from Minitab is given below.  The following x chart  clearly shows that every ix  is 

well inside control limits, and further, the chart pattern seems completely random, and 

thus the between-sample variation is also in good statistical control.  The above control 

 

   

                   

 

limits may be used to monitor future production, as long as process FNC is tolerable.  

However, a periodic review (or revision) of control limits is highly recommended on a 

monthly (if a process is very stable) or weekly basis. 

So far we have established that the data of Example 6.3 of D. C. Montgomery 

The R-Chart for the Example 6.3 of D. C. Montgomery 7th    edition 

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0 5 10 15 20 25 30

Production Order

0.04914

0.02324 

Sample Ranges



 59

 

 

do not exhibit any points out of control and they also exhibit random pattern, and thus 

we may conclude that there are no special (or local) causes of variation in the process 

such as broken tool, contaminated raw material, wrong machine settings, and 

personnel with insufficient training, etc.  Note that local (or sporadic) problems can 

generally be corrected simply by operators and/or immediate supervisors.  Further, if 

there are no special or assignable causes of variation, then the process is governed 

only by a system of common causes of variation. 

 On the other hand, system problems can be corrected only by teams of Plant, 

QC, and Production managers.  Typical system problems are (1) Poor workstation 

design, (2) Poor lighting, (3) Poor training and supervision, (4) Poor Methods, and (5) 

Poorly maintained machines or machines W/O sufficiently tight tolerances.  At this 

point, because Dr. W.  Edwards Deming was the “Father” of institutionalization of SPC 

throughout the world (starting in Japan after World War II), we will state Deming’s 14 

Points that management must institute for the prime purpose of never-ending quality 

and productivity improvement. 

(1) Innovate and allocate resources in such a manner as to fulfill the long-term 

needs of the company and its customers, rather than short-term profitability. 

(2) Discard the old philosophy of tolerating and accepting defective products. 

(3) Eliminate dependence on mass inspection for quality control. 

(4) Reduce the number of multiple source suppliers. 

(5) Use statistical methods to identify the two sources of waste:  Local Faults 

(between 15% to 20%), and System Faults (about 80 to 85%). 

(6)   Institute more thorough and better job training. 

Example 6.3 of D. C. 
Montgomery 7th Ed. 

Order 
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(7)   Provide supervision that includes statistical training. 

(8)   Reduce fear throughout the organization by encouraging open, two-way,   

        non-punitive communications.  

(9)   Reduce waste by encouraging design and research engineers to learn 

        more about production problems. 

(10) Eliminate goals and slogans to encourage productivity unless training  and top 

management support is also provided. 

(11) Closely examine the impact of work standards.  Do they consider quality or 

help anyone do a better job? 

(12) Institute a broad, basic and elementary statistical training on a company-wide 

scale.     

(13) Institute a vigorous program for retraining people in new skills. 

(14) Make maximum use of statistical knowledge and talent in one’s company.  

  

   Before closing this section, it is almost impossible to mention Deming’s name 

as the key quality Guru of the twentieth century, and not to mention Dr. Joseph M. 

Juran’s  contributions to the field of statistical QC, along with many other notables 

such as Armand V. Feigenbaum (TQC, 1951) and Philip Crosby.   Dr. Juran worked 

with Dr. Walter A. Shewhart, the originator of control charts, at the AT&T Bell labs 

during the late 1940’s and 1950’s.  Dr. Juran’s philosophy is more focused on 

managerial aspects of quality improvement (QI) and shares Dr. Deming’s view that 

at least 80% of quality problems are system type and that only top management can 

address such problems.  The overall Philosophy of Deming and Juran can be 

summarized in an acronym called “TQM”, which stands for Total Quality 

Management.  Dr. Juran refers to Deming’s system faults as chronic problems, and 

he refers to Deming’s special faults as sporadic problems.  On the other hand, Dr. 

Crosby is probably the most successful quality consultant and he does have his 

own 14 points, which are not far different from those of Deming’s.  Crosby does 

have four Absolutes of Quality:  (1) Quality is conformance to customer 

requirements, and therefore, there is absolutely no reason to sell faulty products.  

(2)  A quality system must be based on prevention rather than detection of 

nonconforming units.  (3) The performance standard must be zero defects.  (4) The 
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measure of quality is the price of nonconformance.  Crosby states that the cost of 

quality is divided in two areas: the price of nonconformance (PONC) and the price 

of conformance (POC).   PONC is the price of not doing it right the first time.  POC 

is the sum of all the costs associated with quality efforts, such as prevention 

measures and education (SPC & QI, By J. M. smith, 4th Ed., 2001,  Prentice Hall, 

pp. 28-32). 

   All three (Deming, Juran, and Crosby) emphasize total management 

commitment to quality through a prevention (rather than detection) system.   There 

is a bit of philosophical difference between Deming and Crosby in that Deming 

opposes slogans while Crosby likes posters and zero-defect concept.  

 

Out-of-Control Criteria and Patterns 

(1) One point outside the 3-Sigma control limits (for sudden shifts) 

(2) A run of at least 7 successive points below or above the CNTL 

(3) A run-down or run-up of length at least 6 indicates a very high probability of a 

downward or upward trend, respectively, on a control chart 

(4) Two successive points or 2-out-of-3 points in the region of (  3-Sigma,  

         2-Sigma) or (+2-Sigma, +3-Sigma) signals a high probability of an  

         out- of-control process. 

If a control chart is revised once for assignable causes, but then now there is one or 

two points which were originally in control go out-of-control, then the experimenter 

must check the once-revised chart by the above Criteria (2), (3) and (4) for lack of 

randomness. 

 

 

How Do We Ascertain that a Process Suffers From System (or 

Chronic) Problems? 

  This is a difficult question to answer, and I am not certain that my answer to 

such a question is totally accurate.  My recommendation is as follows.   After the 

use of control charts identifies all local (or special) faults and all assignable causes 

of variation are removed from a process by operators and/or immediate supervisors, 
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then process variability should be governed only by system problems that are the 

common sources of variation.  Then as a second step, we must do a process 

capability study from our control chart data to ascertain if the process yield, defined 

as (1  p), meets company-wide standards.  For example, if tolerable process FNC 

company-wide is  = 100 ppm (parts per million), but our system problems are 

producing a FNC = p = 500 ppm, then there are system problems, and only 

management can institute further QI for the process.  I am not certain that my partial 

answer to the above question is adequate, but to illustrate this concept I will do a 

process capability analysis of the Example 6-3 of D. C. Montgomery’s 7th edition, 

assuming that the random variable piston inside diameter is N(74.001176,  

0.009991401552) and tolerable FNC =  = 100 ppm (i.e., 0.01% FNC).   We simply 

estimate p by computing LẐ = (LSL   74.001176)/0.00999140155  =   

5.12200413  Lp̂  = 0.0615115263434; UẐ = (USL   74.001176)/0.00999140155 

= 4.8866017201   Up̂  = 0.0651295667011  p̂  = 0.06664109304451  p̂  = 

0.66411 ppm < <  = 100.  Thus, it seems that there are no system problems 

because p̂  <<  = 100 ppm.  Note that my numerical answers differ a bit from those 

of Montgomery’s (4th edition) listed in the middle of his page 216 because I carried 

more decimals in my computations.  He gives p̂  roughly equal to 20 ppm while my 

answer is approximately 1 ppm.  Therefore, the capability of the above process is 

estimated at (USL  LSL)/ x̂  = 0.10/0.00999140155 = 10.00860585sigma, or the 

process capability ratio is estimated to be PCRhat = pĈ = 10.00860585 /6 = 

1.668101, where PCR stands for Process Capability Ratio).  Since the above 

process is a bit off-centered based on the sample result, it is best to measure 

process capability from the capability index (or process performance index), which 

takes this into account to some extent, as computed below.  

pkĈ = L U
1 ˆ ˆMin( Z , Z )
3

 =  
x x

1 LSL x USL x
Min( , )

ˆ ˆ3

 
 
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       = 
1 73.95 74.001176 74.05 74.001176

Min ,
3 0.0099914 0.0099914

( ) 
 = 

4.8866017201  

3
 = 

1.62886724  pĈ .  Note that pĈ disregards the position of the process mean 

relative to the ideal target m, while pkĈ to some extent takes into account the off-

centering of the mean from the ideal target, which in this example is m = 74.000 

mm.  To fully take the off-centering of the process into account, it is best to use the 

Taguchi quality concept to define the process capability index shown below. 

                Cpm = 
2 2

Tolerance Range

6 ( m)   
  = 

USL LSL 2

6 E(Taguchi'sQLF / k)

  
         (3)

 For the example 6-3 of Montgomery, from equation (3) the estimated value of   

   Cpm is given by 

           pmĈ  = 
2 2

2 0.05

6 0.0099914 (74.001176 74)



 
 = 1.6566651  pĈ . 

 

Motorola’s  Definition  of  6-Sigma  Process  Quality 

 Motorola, due to global competition, instituted Six-Sigma Quality Program 

throughout  the company for the quality of individual components (or individual parts) of 

a complex system in order to reduce rework, scrap and field failure.   The six-sigma 

concept revolves around improving (or tightening) machine tolerances to the point that 

the design specifications (LSL  and  USL) are at least 6 standard deviations from the 

process mean  (i.e., a PCR of exactly equal to 2).   I have not seen the original 

document from Motorola, and therefore, I am not certain if they defined 6- quality as 

the capability of a machine that can maintain at least one of the two specification limits 

at six STDEVs from the process mean  or from the ideal target m.  If I had to venture 

a guess, I would say 6- quality implies LSL =    6, and  USL =   + 6.  If a 

process is centered, then the point I am raising is totally moot and irrelevant because  

= m, but if a process is way off-centered, say by two STDEVs, then it does make a 

difference how 6- quality is defined.  If a process is centered and is normally 

distributed and operates at 6- quality (or at a process capability of 12-sigma), then on 
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the average of 0.0019731752901 ppm are nonconforming to design specifications.  

However, if a process is off-centered to the right such that  = m + 2, then a 6- 

quality process on the average puts out 31.67124184 ppm NCUs (nonconforming 

units).  If we try to compute this last 31.67124184 ppm NCUs using the 6- concept 

where LSL =   6   and USL =  + 6, then we would have to change our design 

specifications to LSL = (m + 2)  6   and USL = (m + 2) + 6 as the process mean 

shifts, which does not make sense because design specifications are fixed and are 

generally determined by product developers/ engineers and customer requirements.  

So, it seems that Motorola should have used Taguchi’s quality concept and defined 

“Six-Sigma Quality” as spec limits at a distance of 6 from the ideal target m (not ). 

 

 Exercise 17.   The data on my website give 28 subgroups each of size n = 4, 

where the response variable X represents shaft diameters with an ideal target of 0.500 

inches and a tolerance range of 0.495-0.505.  For your convenience I am providing the 

data on a spreadsheet on my website under Ex17.  Obtain the R- & x - charts, 

assuming assignable causes for any point out of control.  Then, perform a complete 

process capability analysis, assuming  = 0.002.  You must draw the two control 

charts, only after removing points out-of-control, using Minitab and  Excel and 

determine if there are system problems.  

 

The  Average  Run  Length  (ARL)  for an  x Chart  

 Suppose the mean of a process is in statistical control on the Shewhart control 

chart at  = x , then the Pr of a false alarm on each sample of size n (most often n = 5), 

assuming normality of x ,  is equal to Pr( Z  > 3 ) = 20.00135 = 0.0027, where Z ~ 

N(0, 1).  Therefore, as we take samples of size 5 from a normal process, which is in a 

state of statistical control, then on the average the out-of-control signal (being a 

Geometric process) will occur every 1/0.0027 = 370.398347345 sample, i.e., the 

average number of  samples before a sample point x  gives a false alarm is equal to 

370.40.  The quantity 1/0.0027 = 370.40 is called the ARL at 0 and is denoted by ARL0 

= 1/0.0027 = 370.40.  Note that the formula ARL0 =1/ can easily be obtained from the 

fact that as we sample the process, say on an hourly basis, then we are going through 
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a geometric process where the Pr of a false alarm at each trial is , and hence the 

average number of Bernoulli trials required for the occurrence of the 1st false alarm is 

given by   + 2(1  ) + 3(1  )2 + 4(1  )3 + ... =  i 1

i 1

i (1 )





  = 1/.   

Suppose now there is a shift in the process equaling to 1.5 x  = 1.5 x / n , then the 

Pr of catching this shift on the 1st sample after the shift has occurred is equal to 1, 

which is computed as depicted in Figure 4 below.  Figure 4 shows that the Pr of 

catching a 1.5 x  shift (or z = 1.5 standardized units) on the x - chart is given  

1    Pr( x  > xUCL ) = Pr( 
x

x  


 > x x

x

UCL (x 1.5 )  


 ) = Pr(Z > 1.5) = 0.06681, 

and hence the value of the ARL at  = xx 1.5   is equal to ARL1 = 1/0.06681 = 

14.96844623  15, i.e., if there is a shift equal to x1.5  in the process mean, then a 

Shewhart 3-sigma chart will on the average require 15 samples each of size 5 before a 

correct alarm is sounded on the x -chart.  Further, the Pr of catching the shift on the 5th 

sample after the x1.5  shift has occurred is (0.93319)40.06681 = 0.05067, and 

 

  

0.00135

LCL UCL

1

x
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
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the Pr of catching the shift after the 5th sample is given by (0.93319)5 = 0.70771.  

 

Note that if a process is in a state of statistical control, then a run of length 

2 within two-sigma (or warning) and 3-sigma limits has roughly an occurrence Pr of 

(0.02275  0.00135)2 = 0.00045796 << 0.00135.  Therefore, such an event on a  

Shewhart control chart would be highly significant because its occurrence Pr is  

less than 0.00135 and will require work stoppage in order to look for special causes of 

variation.    

  Exercise 18.   (a) Compute the values ARL at a shift from x  to x  + (0.3 x , + 

0.5 x , + 0.80 x  , +1 x , 1.4 x , 1.6 x ,  2.0 x ,  2.5 x ,  3.00 x ) and graph ARL 

versus the amount of shift.  (b) Determine what run length within either the interval (  

1-Sigma,   2-Sigma) limits or within (1-Sigma, 2-Sigma) limits on Shewhart chart 

would be significant at the 0.0027 level.  

 

 

S- and x -Charts   

(a)  The case of Balanced Sampling Scheme  

It can be shown (using the properties of 2 ) that for one random sample of size n 

from a normal universe the E(S)  = (c4,n) (this proof is a bonus problem for you worth 15 

points), where the QC constant c4,n = 
2

n 1
 

(n / 2)

[(n 1) / 2]


 

  lies in the interval 

[0.7978845608,  1) for all n  2 and the limit of c4,n as n   is equal to 1.  Further, this 

author has shown that for n  20, the value of c4,n can be approximated, to 5 decimals, by 

c4,n  
24n 8n 3.876

(4n 3)(n 1)

 
 

.   These discussions imply that, in the long-run, the statistic S 

underestimates the population standard deviation , and hence an unbiased estimator of 

X for a normal universe is given by x̂ = S/c4,n [this is due to the fact that E(S)  = c4,n 

 E(S/c4,n) = X].  The reader must bear in mind that if E(S) were equal to , then V(S)  

0 and hence S would not be a random variable. 
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(i) The Case of Targeted  and Balanced Design 

If the desired value of  is targeted at 0 for which the sampling scheme must be 

balanced, then E(S) = c4,n shows that the CNTLS = c40; further, because V(S) = E(S2) 

[E(S)]2 = 2 (c4,n)2 =[1  2
4c (at n) ]2 , then the SE(S) = 2

X 4,n1 c   , where c4,n =c4(at n) 

= 
2

n 1
  

(n / 2)

[(n 1) / 2]


 

.  Hence, for the targeted , the SE(S) = 2
0 4,n1 c   and 

0SE(x) / n  .  

 

(ii) The Case of Unknown and Untargeted  but Balanced 

 If all sample sizes are all equal (ni = n for all i, or n > 15), and the S-chart is 

being used to monitor process variability, then it is common to use   

                          CNTLS = S  = 
m

i
i 1

1
S

m 
  

because both S  and S are biased estimator of  with the same amount of bias due to 

the fact that all ni’s are all equal; bear in mind what are being charted on an S-chart are 

Si values each of which is a biased estimator, and hence a biased CNTLS.  

Furthermore, it can easily be shown that for the case of balanced design (ni = n for all i) 

2
pS  > (S )2, where Sp is defined on the next page.  This claim follows from the fact that 

for the balanced case 
m

2
i

i 1

S

  clearly must exceed  

m
2

i
i 1

1
S

m
( )


  due to the fact that 

m
2
i

i 1

S

  

m
2

i
i 1

1
S

m
( )


  =

m
2
i

i 1

S

   

m

i
i 1

S S

  = 

m

i i
i 1

S (S S)[ ]


  =
m

i i
i 1

S (S S)[ ]


    

m

i
i 1

S (S S)


  =
m

i i
i 1

S S) (S S)[( ]


   = 
m

2
i

i 1

S S)(


 > 0. 

Before computing the SE(S), we must state that for m random subgroups each of 

identical size n from a normal universe, we may easily show that E(S ) = c4,n so that an 

unbiased estimator of X is given by S /c4.  Further, if you are using Excel to compute the 

value of c4,n for a given n, then (n) = exp(gammaln(n)).  Because SE(S) = 2
X 4,n1 c  , 
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then the sample se(S) = (1  2
4,nc )1/2 x̂  = (1  2

4,nc )1/2(S/c4,n) = 2
4,nS (c ) 1   .  Thus 

the control limits for the case ni = n for all i = 1, 2, ..., m are given by 

          LCLS  = S   3S 2
4,n(c ) 1    = [1  3 2

4,n(c ) 1  ]S = B3 S                       (4a)        

          UCLS = S  + 3S 2
4,n(c ) 1    = [1 + 3 2

4,n(c ) 1   ]S = B4 S              (4b)                              

Note that the LCLS = 0 when 2 ≤ n ≤ 5, but LCLS > 0 when n > 5.  The quantity 1  

3 2
4,n(c ) 1   on the RHS of (4a) is denoted by B3 in QC literature and the QC 

constant  B4 = 1 + 3 2
4,n(c ) 1  .  Only for the balanced case 

                                       CNTL x  = x  = 
m

i
i 1

x / m

   

        xLCL = x   3 
4,n

S

c n
 ,    and     xUCL  = x  + 3 

4,n

S

c n
 .                          (5a) 

 

        (2)  The Case of Unknown and Untargeted  but Unbalanced 

 If subgroup sample sizes differ and /or n > 15, then process variation must be 

monitored by an S-Chart.  The most common occurrence of an S-Chart is when the 

sampling design is not balanced, i.e., ni’s (i = 1, 2, …, m) are not the same, then the 

experimenter has no option but to use an S-Chart for the control and monitoring of 

variation.  The central line for the unbalanced case is given by 

                       CNTLS = Sp = 

1/2m
2

i i
i 1
i m

i
i 1

(n 1)S

(n 1)






 
 

 
 

 
 




=  

1 / 2m

i
i 1

CSS (W) / (N m)[ ]


 , 

where N = 
i m

i
i 1

n



  is the grand total number of random observations, and the quantity 

2
i i(n 1)S  = 

ij n
2

ij i
j 1

(x x )



  = CSSi(W) is called the corrected sum of squares within the 

ith subgroup.  The reader must be cognizant of the fact that when the sampling design 
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is unbalanced, then the value of Sp, which is biased, must be used to represent the 

CNTLS.   When sampling design is unbalanced, then each point on the S-chart has its 

own control limit, which is approximately given by 

   

LCL(Si) = pS  3 pS
i

2
4,n(c ) 1    = [1  3

i

2
4,n(c ) 1   ] pS                         (6a)                                   

UCL(Si) = pS + 3 pS
i

2
4,n(c ) 1    = [1 + 3

i

2
4,n(c ) 1   ] pS .                  (6b)                             

Once variability is in a state of statistical control (i.e., all sample Si’s lie within 

their own control limits), then an x -chart is developed to monitor the process mean.  

The central line of an x -chart is given by 

                        CNTL x  = x  =
inm

ij
i 1 j 1

x / N
 
  =

m

i i
i 1

n x

 /N      

where N = 
i m

i
i 1

n



 .  For the case of differing sample sizes, since the V( ix ) = 2/ni, se( ix ) 

= x iˆ / n  = p iS / n , and as a result for the ith subgroup  

            iLCL(x ) = x   3 
p

i

S

n
 ,   and    iUCL(x )   = x  + 3 

p

i

S

n
 .                     (5b) 

Note that if the sampling design is unbalanced, then all points on the S- and x -charts 

have the same CNTL but every point on both charts has its own control limits due to 

differing sample sizes.  This implies that in the formulas (6) and (5b) the control limits 

vary according to the size of the sample, ni, in the ith subgroup because the value of 

c4,ni depends on ni.  It should be clear that the subgroups with larger sample sizes have 

tighter control limits. 

 

 

Shewhart  Control  Chart  for  Fraction  Nonconforming (the p-Chart) 

As an example, consider an injection molding process that produces instrument 

panels for an automobile.  The occurrence of splay, voids, or short shots will make the 

panel defective.  Thus, we have a binomial process where each panel is classified as 

defective (i.e., 1) or as conforming (i.e., 0).  The binomial rv, X, represents the number 
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of nonconforming panels in a random sample of size ni, where it is best to have at least 

m > 20 subgroups in order to construct the (preliminary or trial) p-chart, where p is the 

FNC of the process.  The sample FNC is given by p̂ = X/n, and if n > 30 and np and nq  

> 10, then the SMD of p̂  is approximately normal with mean p and SE( p̂ ) = 
pq

n
 , 

where q = (1 p) is the process fraction conforming (or process yield).  The central line 

is given by 

               CNTLp = 

m

i
i 1
m

i
i 1

X

n








 =  

m

i i
i 1

ˆn p

N



 = p                                           (7)  

where  N = 
i m

i
i 1

n



  is the total number of units inspected by attributes in all m samples, 

Xi represents the number of NC units in the ith subgroup, and ip̂ = Xi /ni is the sample 

FNC of the ith subgroup.  Since the estimate of the se( ip̂ ) = 
i

p (1 p)

n


, then the 

control limits for the ith subgroup is given by LCLi( p̂ ) = p   3
i

p (1 p)

n


 ,  and  UCLi( p̂ ) 

= p  + 3
i

p (1 p)

n


.   Note that, when subgroup sizes differ on a Shewhart p-chart, then 

every sample FNC, ip̂ , has its own control limit.  If the difference between maximum 

and minimum sample sizes do not exceed 10 units, then a p-chart based on average 

sample size should be constructed for monitoring process FNC.  In all cases the central 

line stays the same, but the average control limits simplify to LCL( p̂ ) = p   3 

p(1 p)

n


,  and  UCL( p̂ ) = p  + 3

p(1 p)

n


 ,  where n  = 

m

i
i 1

1
n

m 
 .  The reader is 

cautioned to the fact that if a p-chart based on an average sample size is used to 

monitor process FNC, then all points (i.e., all sample FNCs) that are close to their 

average control limits (whether in or out of control) must be checked against their own  
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limits to ascertain their control nature. 

 

Shewhart  Control  Chart  for  Number of  Nonconformities  per Unit   

(the u-Chart) 

Since the construction of the u-chart is not as straight forward as the others 

discussed thus far, we will describe the methodology through an example.  In practice, 

it is best to have at least m = 20 subgroups to construct the trial control limits, but 

herein for simplicity we will use m = 10 samples of differing sizes.  Consider a textile 

process that produces oilcloth in lots of differing sizes (borrowed from A. J. Duncan, 5th 

edition, pp. 471-473, Irwin Press) measured in square meters.  An inspector selects m 

= 10 lots at random and counts the number of defects, ci, in each lot (or sample).  

Duncan’s data are displayed in Table 12.  Note that in Table 12, because of different 

square meters, we have arbitrarily let 100 square meters equal to one unit, although 

50, or, 10, or any other convenient square meters would work just as well.  Further, ui = 

ci /ni  represents the average number of defects per unit.  Note that because of  

differing ample sizes, it would be erroneous to compute the average number of defects 

per unit from 
m

i
i 1

u / m

 = 7.0289, where this last formula would work only if all ni’s were 

identical.  The correct formula for the central line is given by 

  

Table 12 

Sample 

Number 

i =1 2 3 4 i = 5 6 7 8 9 10 

Square 

Meters 

180 150 120 90 150 160 120 140 130 175 

ci 9 15 6 5 16 10 4 12 14 9 

ni 1.8 1.5 1.2 0.90 1.5 1.6 1.2 1.4 1.3 1.75 

ui 5.0 10.00 5.00 5.556 10.667 6.25 3.333 8.571 10.769 5.143 

LCLi 1.123 0.5554 0.00 0.00 0.555 0.762 0.00 0.327 0.0724 1.038 

UCLi 13.012 13.579 14.348 15.474 13.579 13.372 14.348 13.807 14.062 13.096 
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                                  CNTLu = u  = 

m

i
i 1
m

i
i 1

c

n








  =  

m

i i
i 1

m

i
i 1

n u

n








  = 

100

14.15
 = 7.0671  

It is well known that the random variable number of defects per unit, C, follows a 

Poisson distribution, and hence its variance is also given by E(C), i.e., V(C) can be 

approximated by u .  Unfortunately, the terminology and notation for a u-chart has been 

somewhat confusing in statistical and QC literatures and we anticipate no change.  

Therefore, herein we attempt to remedy the notational problem to some extent.  First of 

all, the 5th row of Table 12 actually provides the average number of defects per unit for 

the ith sample, and hence the proper notation for the 5th row should be iu (not ui as is 

used in QC literature) because a bar is generally placed on averages in the field of 

Statistics.  This implies that a u-chart is actually a u -chart because it is the average 

number of defects per unit that is plotted on this chart.  Secondly, the central line 

should be called u  because the CNTL gives the weighted grand average of all average 

number of defects per unit.  These discussions lead to the fact that firstly V(u ) = 

V(C)/n, and secondly V(u ) can be estimated by u /n.  Since we do not wish to deviate 

from QC literature terminology, we will stay with the existing notation and let ui 

represent the average number of defects per unit with the CTL as u  and the se(u) = 

iu / n .  Thus, the LCLi(u) = u  3 iu / n  , and  UCLi(u) = u  + 3 iu / n .  The values 

of control limits for all the m =10 samples are provided in the last two rows of Table 12.  

Table 12 clearly shows that each ui is well within its own control limits, implying that the 

process is in a state of excellent statistical control.  Further, in all cases when the value 

of LCL became negative, a zero LCL was assigned in row 6 of Table 12.   

This example provides a good illustration of a process that is in an excellent 

state of statistical control, but one that is in all Pr not capable of meeting customer 

specifications due to the fact that u  = 7.0671 is too large and customers in today’s 

global market will generally demand lower average number of defects per unit.  If this 

manufacturer’s management does not improve its process capability through QI 

methods by removing some of the system problems, it may not survive very long in 

global competition.  
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Finally, SPC is not a QI tool but simply an on-line procedure to monitor process 

quality and to identify where the quality problems lie.  After problems are identified, 

then off-line methods (DOE or Taguchi Methods) can be applied to further fine-tune a 

process.   

 

Exercise 19.   The metal body of a spark plug is made by a combination of cold 

extrusion and machining.  The occurrence of surface cracking following the extrusion 

process has been shown by a Pareto diagram to be responsible for producing over 

90% of all the defective parts.  During one shift, 25 subgroups each of differing sizes 

were collected, and the corresponding data are on my website on an Excel file under 

Exercise19.  Conduct a complete p-chart analysis, assuming Shewhart assignable 

causes for all points out of control.  (b) Obtain an S-Chart for the data of Exercise 17 

and ascertain if every Si is in a state of statistical control. 


